1
|
Mukherjee G, Velmurugan G, Kerscher M, Kumar Satpathy J, Sastri CV, Comba P. Mechanistic Insights into Amphoteric Reactivity of an Iron-Bispidine Complex. Chemistry 2024; 30:e202303127. [PMID: 37942658 DOI: 10.1002/chem.202303127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
The reactivity of FeIII -alkylperoxido complexes has remained a riddle to inorganic chemists owing to their thermal instability and impotency towards organic substrates. These iron-oxygen adducts have been known as sluggish oxidants towards oxidative electrophilic and nucleophilic reactions. Herein, we report the synthesis and spectroscopic characterization of a relatively stable mononuclear high-spin FeIII -alkylperoxido complex supported by an engineered bispidine framework. Against the notion, this FeIII -alkylperoxido complex serves as a rare example of versatile reactivity in both electrophilic and nucleophilic reactions. Detailed mechanistic studies and computational calculations reveal a novel reaction mechanism, where a putative superoxido intermediate orchestrates the amphoteric property of the oxidant. The design of the backbone is pivotal to convey stability and reactivity to alkylperoxido and superoxido intermediates. Contrary to the well-known O-O bond cleavage that generates an FeIV -oxido species, the FeIII -alkylperoxido complex reported here undergoes O-C bond scission to generate a superoxido moiety that is responsible for the amphiphilic reactivity.
Collapse
Affiliation(s)
- Gourab Mukherjee
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad, 500007, India
| | - Gunasekaran Velmurugan
- Anorganisch-Chemisches Institut and, Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany)
| | - Marion Kerscher
- Anorganisch-Chemisches Institut and, Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany)
| | - Jagnyesh Kumar Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Peter Comba
- Anorganisch-Chemisches Institut and, Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany)
| |
Collapse
|
2
|
Yang Z, Cui Y, Pan B, Pignatello JJ. Peroxymonosulfate Activation by Fe(III)-Picolinate Complexes for Efficient Water Treatment at Circumneutral pH: Fe(III)/Fe(IV) Cycle and Generation of Oxyl Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18918-18928. [PMID: 37061925 DOI: 10.1021/acs.est.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Improving the reactivity of Fe(III) for activating peroxymonosulfate (PMS) at circumneutral pH is critical to propel the iron-activated PMS processes toward practical wastewater treatment but is yet challenging. Here we employed the complexes of Fe(III) with the biodegradable picolinic acid (PICA) to activate PMS for degradation of selected chlorinated phenols, antibiotics, pharmaceuticals, herbicides, and industrial compounds at pH 4.0-6.0. The FeIII-PICA complexes greatly outperformed the ligand-free Fe(III) and other Fe(III) complexes of common aminopolycarboxylate ligands. In the main activation pathway, the key intermediate is a peroxymonosulfate complex, tentatively identified as PICA-FeIII-OOSO3-, which undergoes O-O homolysis or reacts with FeIII-PICA and PMS to yield FeIV=O and SO4•- without the involvement of commonly invoked Fe(II). PICA-FeIII-OOSO3- can also react directly with certain compounds (chlorophenols and sulfamethoxazole). The relative contributions of PICA-FeIII-OOSO3-, FeIV=O, and SO4•- depend on the structure of target compounds. This work sets an eligible example to enhance the reactivity of Fe(III) toward PMS activation by ligands and sheds light on the previously unrecognized role of the metal-PMS complexes in directing the catalytic cycle and decontamination as well.
Collapse
Affiliation(s)
- Zhichao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Yaodan Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, PR China
| | - Joseph J Pignatello
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| |
Collapse
|
3
|
Stoichiometric Alkane and Aldehyde Hydroxylation Reactions Mediated by In Situ Generated Iron(III)-Iodosylbenzene Adduct. Molecules 2023; 28:molecules28041855. [PMID: 36838842 PMCID: PMC9958819 DOI: 10.3390/molecules28041855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Previously synthesized and spectroscopically characterized mononuclear nonheme, low-spin iron(III)-iodosylbenzene complex bearing a bidentate pyridyl-benzimidazole ligands has been investigated in alkane and aldehyde oxidation reactions. The in situ generated Fe(III) iodosylbenzene intermediate is a reactive oxidant capable of activating the benzylic C-H bond of alkane. Its electrophilic character was confirmed by using substituted benzaldehydes and a modified ligand framework containing electron-donating (Me) substituents. Furthermore, the results of kinetic isotope experiments (KIE) using deuterated substrate indicate that the C-H activation can be interpreted through a tunneling-like HAT mechanism. Based on the results of the kinetic measurements and the relatively high KIE values, we can conclude that the activation of the C-H bond mediated by iron(III)-iodosylbenzene adducts is the rate-determining step.
Collapse
|
4
|
Chen Y, Chen G, Man WL. Effect of Alkyl Group on Aerobic Peroxidation of Hydrocarbons Catalyzed by Cobalt(III) Alkylperoxo Complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yunzhou Chen
- Hong Kong Baptist University Chemistry HONG KONG
| | - Gui Chen
- Dongguan University of Technology School of Environment and Civil Engineering HONG KONG
| | - Wai-Lun Man
- Hong Kong Baptist University Chemistry Waterloo RoadKowloong Tong 0000 Hong Kong HONG KONG
| |
Collapse
|
5
|
Disproportionation of H 2O 2 Mediated by Diiron-Peroxo Complexes as Catalase Mimics. Molecules 2021; 26:molecules26154501. [PMID: 34361652 PMCID: PMC8347308 DOI: 10.3390/molecules26154501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022] Open
Abstract
Heme iron and nonheme dimanganese catalases protect biological systems against oxidative damage caused by hydrogen peroxide. Rubrerythrins are ferritine-like nonheme diiron proteins, which are structurally and mechanistically distinct from the heme-type catalase but similar to a dimanganese KatB enzyme. In order to gain more insight into the mechanism of this curious enzyme reaction, non-heme structural and functional models were carried out by the use of mononuclear [FeII(L1-4)(solvent)3](ClO4)2 (1-4) (L1 = 1,3-bis(2-pyridyl-imino)isoindoline, L2 = 1,3-bis(4'-methyl-2-pyridyl-imino)isoindoline, L3 = 1,3-bis(4'-Chloro-2-pyridyl-imino)isoindoline, L4 = 1,3-bis(5'-chloro-2-pyridyl-imino)isoindoline) complexes as catalysts, where the possible reactive intermediates, diiron-perroxo [FeIII2(μ-O)(μ-1,2-O2)(L1-L4)2(Solv)2]2+ (5-8) complexes are known and well-characterized. All the complexes displayed catalase-like activity, which provided clear evidence for the formation of diiron-peroxo species during the catalytic cycle. We also found that the fine-tuning of iron redox states is a critical issue, both the formation rate and the reactivity of the diiron-peroxo species showed linear correlation with the FeIII/FeII redox potentials. Their stability and reactivity towards H2O2 was also investigated and based on kinetic and mechanistic studies a plausible mechanism, including a rate-determining hydrogen atom transfer between the H2O2 and diiron-peroxo species, was proposed. The present results provide one of the first examples of a nonheme diiron-peroxo complex, which shows a catalase-like reaction.
Collapse
|
6
|
Guo M, Lee YM, Fukuzumi S, Nam W. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213807] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Müller L, Baturin K, Hoof S, Lau C, Herwig C, Limberg C. The Properties of Hydrotris(3‐mesitylpyrazol‐1‐yl) Borate Iron(II) Complexes with Aryl Carboxylate Co‐ligands – Stabilization of an Iron(III) Alkylperoxide. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lars Müller
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Kirill Baturin
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Santina Hoof
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Caroline Lau
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Christian Herwig
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Christian Limberg
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
8
|
Kinetic compensation effect: discounting the distortion provoked by accidental experimental errors in the isokinetic temperature value. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02710-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Shin B, Park Y, Jeong D, Cho J. Nucleophilic reactivity of a mononuclear cobalt(iii)-bis(tert-butylperoxo) complex. Chem Commun (Camb) 2020; 56:9449-9452. [PMID: 32687135 DOI: 10.1039/d0cc03385e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A mononuclear cobalt(III)-bis(tert-butylperoxo) adduct (CoIII-(OOtBu)2) bearing a tetraazamacrocyclic ligand was synthesized and characterized using various physicochemical methods, such as X-ray, UV-vis, ESI-MS, EPR, and NMR analyses. The crystal structure of the CoIII-(OOtBu)2 complex clearly showed that two OOtBu ligands bound to the equatorial position of the cobalt(iii) center. Kinetic studies and product analyses indicate that the CoIII-(OOtBu)2 intermediate exhibits nucleophilic oxidative reactivity toward external organic substrates.
Collapse
Affiliation(s)
- Bongki Shin
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea.
| | - Younwoo Park
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea.
| | - Donghyun Jeong
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea.
| | - Jaeheung Cho
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea.
| |
Collapse
|
10
|
Fukuzumi S, Cho KB, Lee YM, Hong S, Nam W. Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chem Soc Rev 2020; 49:8988-9027. [DOI: 10.1039/d0cs01251c] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Engineering
| | - Kyung-Bin Cho
- Department of Chemistry
- Jeonbuk National University
- Jeonju 54896
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- School of Chemistry and Chemical Engineering
| |
Collapse
|
11
|
Kripli B, Csendes FV, Török P, Speier G, Kaizer J. Stoichiometric Aldehyde Deformylation Mediated by Nucleophilic Peroxo-diiron(III) Complex as a Functional Model of Aldehyde Deformylating Oxygenase. Chemistry 2019; 25:14290-14294. [PMID: 31448834 DOI: 10.1002/chem.201903727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Indexed: 11/11/2022]
Abstract
The reactivity of the previously reported peroxo adduct [FeIII 2 (μ-O2 )(MeBzim-Py)4 (CH3 CN)2 ]4+ (1) (MeBzim-Py=2-(2'-pyridyl)-N-methylbenzimidazole) towards aldehyde substrates including phenylacetaldehyde (PAA), hydrocinnamaldehyde (HCA), propionaldehyde (PA), 2-phenylpropionaldehyde (PPA), cyclohexanecarboxaldehyde (CCA), and para-substituted benzaldehydes (benzoyl chlorides) has been investigated. Complex 1 proved to be a nucleophilic oxidant in aldehyde deformylation reaction. These models, including detailed kinetic and mechanistic studies, may serve as the first biomimics of aldehyde deformylating oxygenase (ADO) enzymes.
Collapse
Affiliation(s)
- Balázs Kripli
- Department of Chemistry, University of Pannonia, 8201, Veszprém, Hungary
| | | | - Patrik Török
- Department of Chemistry, University of Pannonia, 8201, Veszprém, Hungary
| | - Gábor Speier
- Department of Chemistry, University of Pannonia, 8201, Veszprém, Hungary
| | - József Kaizer
- Department of Chemistry, University of Pannonia, 8201, Veszprém, Hungary
| |
Collapse
|
12
|
Ghosh I, Banerjee S, Paul S, Corona T, Paine TK. Highly Selective and Catalytic Oxygenations of C-H and C=C Bonds by a Mononuclear Nonheme High-Spin Iron(III)-Alkylperoxo Species. Angew Chem Int Ed Engl 2019; 58:12534-12539. [PMID: 31246329 DOI: 10.1002/anie.201906978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 10/26/2022]
Abstract
The reactivity of a mononuclear high-spin iron(III)-alkylperoxo intermediate [FeIII (t-BuLUrea )(OOCm)(OH2 )]2+ (2), generated from [FeII (t-BuLUrea )(H2 O)(OTf)](OTf) (1) [t-BuLUrea =1,1'-(((pyridin-2-ylmethyl)azanediyl)bis(ethane-2,1-diyl))bis(3-(tert-butyl)urea), OTf=trifluoromethanesulfonate] with cumyl hydroperoxide (CmOOH), toward the C-H and C=C bonds of hydrocarbons is reported. 2 oxygenates the strong C-H bonds of aliphatic substrates with high chemo- and stereoselectivity in the presence of 2,6-lutidine. While 2 itself is a sluggish oxidant, 2,6-lutidine assists the heterolytic O-O bond cleavage of the metal-bound alkylperoxo, giving rise to a reactive metal-based oxidant. The roles of the urea groups on the supporting ligand, and of the base, in directing the selective and catalytic oxygenation of hydrocarbon substrates by 2 are discussed.
Collapse
Affiliation(s)
- Ivy Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| | - Satadal Paul
- Darjeeling Polytechnic, Kurseong, Darjeeling, 734203, India
| | - Teresa Corona
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| |
Collapse
|
13
|
Shimizu I, Morimoto Y, Velmurugan G, Gupta T, Paria S, Ohta T, Sugimoto H, Ogura T, Comba P, Itoh S. Characterization and Reactivity of a Tetrahedral Copper(II) Alkylperoxido Complex. Chemistry 2019; 25:11157-11165. [DOI: 10.1002/chem.201902669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Ikuma Shimizu
- Department of Material and Life Science, Division of, Advanced Science and BiotechnologyGraduate School of EngineeringOsaka University 2-1 Yamada-oka Suita, Osaka 565-0871 Japan
| | - Yuma Morimoto
- Department of Material and Life Science, Division of, Advanced Science and BiotechnologyGraduate School of EngineeringOsaka University 2-1 Yamada-oka Suita, Osaka 565-0871 Japan
| | - Gunasekaran Velmurugan
- Universität HeidelbergAnorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing, INF 270 69120 Heidelberg Germany
| | - Tulika Gupta
- Universität HeidelbergAnorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing, INF 270 69120 Heidelberg Germany
| | - Sayantan Paria
- Department of Material and Life Science, Division of, Advanced Science and BiotechnologyGraduate School of EngineeringOsaka University 2-1 Yamada-oka Suita, Osaka 565-0871 Japan
| | - Takehiro Ohta
- Picobiology InstituteGraduate School of Life ScienceUniversity of Hyogo, RSC-UH LP center, Koto 1-1-1 Sayo-cho Sayo-gun, Hyogo 679-5148 Japan
| | - Hideki Sugimoto
- Department of Material and Life Science, Division of, Advanced Science and BiotechnologyGraduate School of EngineeringOsaka University 2-1 Yamada-oka Suita, Osaka 565-0871 Japan
| | - Takashi Ogura
- Picobiology InstituteGraduate School of Life ScienceUniversity of Hyogo, RSC-UH LP center, Koto 1-1-1 Sayo-cho Sayo-gun, Hyogo 679-5148 Japan
| | - Peter Comba
- Universität HeidelbergAnorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing, INF 270 69120 Heidelberg Germany
| | - Shinobu Itoh
- Department of Material and Life Science, Division of, Advanced Science and BiotechnologyGraduate School of EngineeringOsaka University 2-1 Yamada-oka Suita, Osaka 565-0871 Japan
| |
Collapse
|
14
|
Ghosh I, Banerjee S, Paul S, Corona T, Paine TK. Highly Selective and Catalytic Oxygenations of C−H and C=C Bonds by a Mononuclear Nonheme High‐Spin Iron(III)‐Alkylperoxo Species. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ivy Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata- 700032 India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata- 700032 India
| | - Satadal Paul
- Darjeeling Polytechnic Kurseong Darjeeling 734203 India
| | - Teresa Corona
- Humboldt-Universität zu BerlinDepartment of Chemistry Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata- 700032 India
| |
Collapse
|
15
|
Pietrzak T, Justyniak I, Kubisiak M, Bojarski E, Lewiński J. An In‐Depth Look at the Reactivity of Non‐Redox‐Metal Alkylperoxides. Angew Chem Int Ed Engl 2019; 58:8526-8530. [DOI: 10.1002/anie.201904380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Tomasz Pietrzak
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Iwona Justyniak
- Institute of Physical ChemistryPolish Academy of Science Kasprzaka 44/52 01-224 Warsaw Poland
| | - Marcin Kubisiak
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Emil Bojarski
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Janusz Lewiński
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
- Institute of Physical ChemistryPolish Academy of Science Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
16
|
Pietrzak T, Justyniak I, Kubisiak M, Bojarski E, Lewiński J. An In‐Depth Look at the Reactivity of Non‐Redox‐Metal Alkylperoxides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomasz Pietrzak
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Iwona Justyniak
- Institute of Physical ChemistryPolish Academy of Science Kasprzaka 44/52 01-224 Warsaw Poland
| | - Marcin Kubisiak
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Emil Bojarski
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Janusz Lewiński
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
- Institute of Physical ChemistryPolish Academy of Science Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
17
|
Tseng TH, Chen PPY. A Switch from Mechanistic Competition Mediated by a Combination of Temperature and Concentration Effects in the Oxidation Reaction of [Fe II (N4Py/TPA)](OTf) 2. Chemistry 2018; 24:11568-11572. [PMID: 29889323 DOI: 10.1002/chem.201801028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/03/2018] [Indexed: 01/23/2023]
Abstract
The formation of [(N4Py)FeIV =O]2+ species was accomplished by the reaction of [FeII (N4Py)]2+ with 20 equivalents of tBuO2 H (TBHP, 70 % in H2 O). The temperature, [FeII (N4Py)]2+ -concentration and H2 O-concentration in anhydrous TBHP (5.5 m in decane) dependences of its yields and rates were analyzed to indicate that the proton migration from [(N4Py)FeII -HOOtBu]2+ to [(N4Py)FeII -OO⊕ HtBu]2+ is the rate-determining step followed by rapid heterolytic O-O bond cleavage of FeII -OO⊕ HtBu to FeIV =O complex. The formation of [(TPA)FeIV =O]2+ is thus revealed to be greatly enhanced by the similar oxidation of [FeII (TPA)]2+ (40 mm) with 10 equivalents of tBuO2 H at -45 °C. These results demonstrate the heterolytic O-O bond cleavage of FeII -alkylperoxo species to form FeIV =O originating from the direct reaction of iron(II) complexes/TBHP. The observation of concentration and temperature effects leads to the hypothesis that O-O bond homolysis is a kinetic control pathway and O-O bond heterolysis is a thermodynamic control pathway.
Collapse
Affiliation(s)
- Tzu-Hsien Tseng
- Department of Chemistry, National Chung Hsing University, Taichung city, Taiwan) (R. O. C
| | - Peter Ping-Yu Chen
- Department of Chemistry, National Chung Hsing University, Taichung city, Taiwan) (R. O. C
| |
Collapse
|
18
|
|
19
|
Parham JD, Wijeratne GB, Rice DB, Jackson TA. Spectroscopic and Structural Characterization of Mn(III)-Alkylperoxo Complexes Supported by Pentadentate Amide-Containing Ligands. Inorg Chem 2018; 57:2489-2502. [DOI: 10.1021/acs.inorgchem.7b02793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joshua D. Parham
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Gayan B. Wijeratne
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Derek B. Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Timothy A. Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
20
|
Geometric effects on O O bond scission of copper(II)-alkylperoxide complexes. J Inorg Biochem 2017; 177:375-383. [DOI: 10.1016/j.jinorgbio.2017.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 11/20/2022]
|
21
|
Kleinlein C, Bendelsmith AJ, Zheng SL, Betley TA. C-H Activation from Iron(II)-Nitroxido Complexes. Angew Chem Int Ed Engl 2017; 56:12197-12201. [PMID: 28766325 PMCID: PMC5672810 DOI: 10.1002/anie.201706594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/31/2017] [Indexed: 11/08/2022]
Abstract
The reaction of nitroxyl radicals TEMPO (2,2',6,6'-tetramethylpiperidinyloxyl) and AZADO (2-azaadamantane-N-oxyl) with an iron(I) synthon affords iron(II)-nitroxido complexes (Ar L)Fe(κ1 -TEMPO) and (Ar L)Fe(κ2 -N,O-AZADO) (Ar L=1,9-(2,4,6-Ph3 C6 H2 )2 -5-mesityldipyrromethene). Both high-spin iron(II)-nitroxido species are stable in the absence of weak C-H bonds, but decay via N-O bond homolysis to ferrous or ferric iron hydroxides in the presence of 1,4-cyclohexadiene. Whereas (Ar L)Fe(κ1 -TEMPO) reacts to give a diferrous hydroxide [(Ar L)Fe]2 (μ-OH)2 , the reaction of four-coordinate (Ar L)Fe(κ2 -N,O-AZADO) with hydrogen atom donors yields ferric hydroxide (Ar L)Fe(OH)(AZAD). Mechanistic experiments reveal saturation behavior in C-H substrate and are consistent with rate-determining hydrogen atom transfer.
Collapse
Affiliation(s)
- Claudia Kleinlein
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Andrew J Bendelsmith
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Shao-Liang Zheng
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Theodore A Betley
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
22
|
Kleinlein C, Bendelsmith AJ, Zheng S, Betley TA. C−H Activation from Iron(II)‐Nitroxido Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Claudia Kleinlein
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Andrew J. Bendelsmith
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Shao‐Liang Zheng
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Theodore A. Betley
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| |
Collapse
|
23
|
|
24
|
Kim B, Jeong D, Cho J. Nucleophilic reactivity of copper(ii)–alkylperoxo complexes. Chem Commun (Camb) 2017; 53:9328-9331. [DOI: 10.1039/c7cc03965d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper(ii)–alkylperoxo adducts, [Cu(CHDAP)(OOR)]+ (CHDAP = N,N′-dicyclohexyl-2,11-diaza[3,3](2,6)pyridinophane; R = C(CH3)2Ph and tBu), perform aldehyde deformylation (i.e., nucleophilic reactivity) under the stoichiometric reaction conditions.
Collapse
Affiliation(s)
- Bohee Kim
- Department of Emerging Materials Science
- DGIST
- Daegu 42988
- Korea
| | - Donghyun Jeong
- Department of Emerging Materials Science
- DGIST
- Daegu 42988
- Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science
- DGIST
- Daegu 42988
- Korea
| |
Collapse
|
25
|
|
26
|
Faponle AS, Quesne MG, Sastri CV, Banse F, de Visser SP. Differences and comparisons of the properties and reactivities of iron(III)-hydroperoxo complexes with saturated coordination sphere. Chemistry 2015; 21:1221-36. [PMID: 25399782 PMCID: PMC4316188 DOI: 10.1002/chem.201404918] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/06/2022]
Abstract
Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)-oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)-hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)-hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)-hydroperoxo reacted directly with substrates or that an initial O-O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)-hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)-hydroperoxo complex with pentadentate ligand system (L5(2)). Direct C-O bond formation by an iron(III)-hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L5(2))Fe(III)(OOH)](2+) should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)-hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O-O bond, whereas a heterolytic O-O bond breaking in heme iron(III)-hydroperoxo is found.
Collapse
Affiliation(s)
- Abayomi S Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| | - Matthew G Quesne
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati781039, Assam (India)
| | - Frédéric Banse
- Institut de Chimie Moleculaire et des Materiaux d'Orsay, Laboratoire de Chimie Inorganique, Université Paris-Sud11 91405 Orsay Cedex (France) E-mail:
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| |
Collapse
|
27
|
Codola Z, Lloret-Fillol J, Costas M. Aminopyridine Iron and Manganese Complexes as Molecular Catalysts for Challenging Oxidative Transformations. PROGRESS IN INORGANIC CHEMISTRY: VOLUME 59 2014. [DOI: 10.1002/9781118869994.ch07] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Bang S, Park S, Lee YM, Hong S, Cho KB, Nam W. Demonstration of the Heterolytic OO Bond Cleavage of Putative Nonheme Iron(II)OOH(R) Complexes for Fenton and Enzymatic Reactions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Bang S, Park S, Lee YM, Hong S, Cho KB, Nam W. Demonstration of the heterolytic O-O bond cleavage of putative nonheme iron(II)-OOH(R) complexes for Fenton and enzymatic reactions. Angew Chem Int Ed Engl 2014; 53:7843-7. [PMID: 24916304 DOI: 10.1002/anie.201404556] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/13/2014] [Indexed: 01/06/2023]
Abstract
One-electron reduction of mononuclear nonheme iron(III) hydroperoxo (Fe(III)-OOH) and iron(III) alkylperoxo (Fe(III)-OOR) complexes by ferrocene (Fc) derivatives resulted in the formation of the corresponding iron(IV) oxo complexes. The conversion rates were dependent on the concentration and oxidation potentials of the electron donors, thus indicating that the reduction of the iron(III) (hydro/alkyl)peroxo complexes to their one-electron reduced iron(II) (hydro/alkyl)peroxo species is the rate-determining step, followed by the heterolytic O-O bond cleavage of the putative iron(II) (hydro/alkyl)peroxo species to give the iron(IV) oxo complexes. Product analysis supported the heterolytic O-O bond-cleavage mechanism. The present results provide the first example showing the one-electron reduction of iron(III) (hydro/alkyl)peroxo complexes and the heterolytic O-O bond cleavage of iron(II) (hydro/alkyl)peroxo species to form iron(IV) oxo intermediates which occur in nonheme iron enzymatic and Fenton reactions.
Collapse
Affiliation(s)
- Suhee Bang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea)
| | | | | | | | | | | |
Collapse
|
30
|
Hong S, Lee YM, Cho KB, Seo MS, Song D, Yoon J, Garcia-Serres R, Clémancey M, Ogura T, Shin W, Latour JM, Nam W. Conversion of high-spin iron(iii)–alkylperoxo to iron(iv)–oxo species via O–O bond homolysis in nonheme iron models. Chem Sci 2014. [DOI: 10.1039/c3sc52236a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Lenze M, Sedinkin SL, Bauer EB. Polydentate pyridyl ligands and the catalytic activity of their iron(II) complexes in oxidation reactions utilizing peroxides as the oxidants. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2013.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Coggins MK, Martin-Diaconescu V, DeBeer S, Kovacs JA. Correlation between structural, spectroscopic, and reactivity properties within a series of structurally analogous metastable manganese(III)-alkylperoxo complexes. J Am Chem Soc 2013; 135:4260-72. [PMID: 23432090 PMCID: PMC3740743 DOI: 10.1021/ja308915x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Manganese-peroxos are proposed as key intermediates in a number of important biochemical and synthetic transformations. Our understanding of the structural, spectroscopic, and reactivity properties of these metastable species is limited, however, and correlations between these properties have yet to be established experimentally. Herein we report the crystallographic structures of a series of structurally related metastable Mn(III)-OOR compounds, and examine their spectroscopic and reactivity properties. The four reported Mn(III)-OOR compounds extend the number of known end-on Mn(III)-(η(1)-peroxos) to six. The ligand backbone is shown to alter the metal-ligand distances and modulate the electronic properties key to bonding and activation of the peroxo. The mechanism of thermal decay of these metastable species is examined via variable-temperature kinetics. Strong correlations between structural (O-O and Mn···N(py,quin) distances), spectroscopic (E(πv*(O-O) → Mn CT band), ν(O-O)), and kinetic (ΔH(‡) and ΔS(‡)) parameters for these complexes provide compelling evidence for rate-limiting O-O bond cleavage. Products identified in the final reaction mixtures of Mn(III)-OOR decay are consistent with homolytic O-O bond scission. The N-heterocyclic amines and ligand backbone (Et vs Pr) are found to modulate structural and reactivity properties, and O-O bond activation is shown, both experimentally and theoretically, to track with metal ion Lewis acidity. The peroxo O-O bond is shown to gradually become more activated as the N-heterocyclic amines move closer to the metal ion causing a decrease in π-donation from the peroxo πv*(O-O) orbital. The reported work represents one of very few examples of experimentally verified relationships between structure and function.
Collapse
Affiliation(s)
- Michael K Coggins
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | | | | | | |
Collapse
|
33
|
McDonald AR, Que L. High-valent nonheme iron-oxo complexes: Synthesis, structure, and spectroscopy. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.08.002] [Citation(s) in RCA: 397] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Iron(II) α-Aminopyridine Complexes and Their Catalytic Activity in Oxidation Reactions: A Comparative Study of Activity and Ligand Decomposition. Chempluschem 2012. [DOI: 10.1002/cplu.201200244] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Tano T, Sugimoto H, Fujieda N, Itoh S. Heterolytic Alkyl Hydroperoxide O-O Bond Cleavage by Copper(I) Complexes. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200555] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Gonzalez-Ovalle LE, Quesne MG, Kumar D, Goldberg DP, de Visser SP. Axial and equatorial ligand effects on biomimetic cysteine dioxygenase model complexes. Org Biomol Chem 2012; 10:5401-9. [PMID: 22714822 PMCID: PMC3454459 DOI: 10.1039/c2ob25406a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Density functional theory (DFT) calculations are presented on biomimetic model complexes of cysteine dioxygenase and focus on the effect of axial and equatorial ligand placement. Recent studies by one of us [Y. M. Badiei, M. A. Siegler and D. P. Goldberg, J. Am. Chem. Soc. 2011, 133, 1274] gave evidence of a nonheme iron biomimetic model of cysteine dioxygenase using an i-propyl-bis(imino)pyridine, equatorial tridentate ligand. Addition of thiophenol, an anion - either chloride or triflate - and molecular oxygen, led to several possible stereoisomers of this cysteine dioxygenase biomimetic complex. Moreover, large differences in reactivity using chloride as compared to triflate as the binding anion were observed. Here we present a series of DFT calculations on the origin of these reactivity differences and show that it is caused by the preference of coordination site of anion versus thiophenol binding to the chemical system. Thus, stereochemical interactions of triflate and the bulky iso-propyl substituents of the ligand prevent binding of thiophenol in the trans position using triflate. By contrast, smaller anions, such as chloride, can bind in either cis or trans ligand positions and give isomers with similar stability. Our calculations help to explain the observance of thiophenol dioxygenation by this biomimetic system and gives details of the reactivity differences of ligated chloride versus triflate.
Collapse
Affiliation(s)
- Luis E. Gonzalez-Ovalle
- Manchester Interdisciplinary Biocenter and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK. Fax: +44 161306 5201
| | - Matthew G. Quesne
- Manchester Interdisciplinary Biocenter and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK. Fax: +44 161306 5201
| | - Devesh Kumar
- Department of Applied Physics, School of Physical Sciences, Babasaheb, Bhimrao Ambedkar University, Vidya Vihar, Rae Bareilly Road, Lucknow 226-025, India
| | - David P. Goldberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | - Sam P. de Visser
- Manchester Interdisciplinary Biocenter and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK. Fax: +44 161306 5201
| |
Collapse
|
37
|
Tano T, Ertem MZ, Yamaguchi S, Kunishita A, Sugimoto H, Fujieda N, Ogura T, Cramer CJ, Itoh S. Reactivity of copper(II)-alkylperoxo complexes. Dalton Trans 2011; 40:10326-36. [PMID: 21808769 DOI: 10.1039/c1dt10656b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper(II) complexes 1a and 1b, supported by tridentate ligand bpa [bis(2-pyridylmethyl)amine] and tetradentate ligand tpa [tris(2-pyridylmethyl)amine], respectively, react with cumene hydroperoxide (CmOOH) in the presence of triethylamine in CH(3)CN to provide the corresponding copper(II) cumylperoxo complexes 2a and 2b, the formation of which has been confirmed by resonance Raman and ESI-MS analyses using (18)O-labeled CmOOH. UV-vis and ESR spectra as well as DFT calculations indicate that 2a has a 5-coordinate square-pyramidal structure involving CmOO(-) at an equatorial position and one solvent molecule at an axial position at low temperature (-90 °C), whereas a 4-coordinate square-planar structure that has lost the axial solvent ligand is predominant at higher temperatures (above 0 °C). Complex 2b, on the other hand, has a typical trigonal bipyramidal structure with the tripodal tetradentate tpa ligand, where the cumylperoxo ligand occupies an axial position. Both cumylperoxo copper(II) complexes 2a and 2b are fairly stable at ambient temperature, but decompose at a higher temperature (60 °C) in CH(3)CN. Detailed product analyses and DFT studies indicate that the self-decomposition involves O-O bond homolytic cleavage of the peroxo moiety; concomitant hydrogen-atom abstraction from the solvent is partially involved. In the presence of 1,4-cyclohexadiene (CHD), the cumylperoxo complexes react smoothly at 30 °C to give benzene as one product. Detailed product analyses and DFT studies indicate that reaction with CHD involves concerted O-O bond homolytic cleavage and hydrogen-atom abstraction from the substrate, with the oxygen atom directly bonded to the copper(II) ion (proximal oxygen) involved in the C-H bond activation step.
Collapse
Affiliation(s)
- Tetsuro Tano
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stasser J, Namuswe F, Kasper GD, Jiang Y, Krest CM, Green MT, Penner-Hahn J, Goldberg DP. X-ray absorption spectroscopy and reactivity of thiolate-ligated Fe(III)-OOR complexes. Inorg Chem 2011; 49:9178-90. [PMID: 20839847 DOI: 10.1021/ic100670k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of a series of thiolate-ligated iron(II) complexes [Fe(II)([15]aneN(4))(SC(6)H(5))]BF(4) (1), [Fe(II)([15]aneN(4))(SC(6)H(4)-p-Cl)]BF(4) (2), and [Fe(II)([15]aneN(4))(SC(6)H(4)-p-NO(2))]BF(4) (3) with alkylhydroperoxides at low temperature (-78 °C or -40 °C) leads to the metastable alkylperoxo-iron(III) species [Fe(III)([15]aneN(4))(SC(6)H(5))(OOtBu)]BF(4) (1a), [Fe(III)([15]aneN(4))(SC(6)H(4)-p-Cl)(OOtBu)]BF(4) (2a), and [Fe(III)([15]aneN(4))(SC(6)H(4)-p-NO(2))(OOtBu)]BF(4) (3a), respectively. X-ray absorption spectroscopy (XAS) studies were conducted on the Fe(III)-OOR complexes and their iron(II) precursors. The edge energy for the iron(II) complexes (∼7118 eV) shifts to higher energy upon oxidation by ROOH, and the resulting edge energies for the Fe(III)-OOR species range from 7121-7125 eV and correlate with the nature of the thiolate donor. Extended X-ray absorption fine structure (EXAFS) analysis of the iron(II) complexes 1-3 in CH(2)Cl(2) show that their solid state structures remain intact in solution. The EXAFS data on 1a-3a confirm their proposed structures as mononuclear, 6-coordinate Fe(III)-OOR complexes with 4N and 1S donors completing the coordination sphere. The Fe-O bond distances obtained from EXAFS for 1a-3a are 1.82-1.85 Å, significantly longer than other low-spin Fe(III)-OOR complexes. The Fe-O distances correlate with the nature of the thiolate donor, in agreement with the previous trends observed for ν(Fe-O) from resonance Raman (RR) spectroscopy, and supported by optimized geometries obtained from density functional theory (DFT) calculations. Reactivity and kinetic studies on 1a- 3a show an important influence of the thiolate donor.
Collapse
Affiliation(s)
- Jay Stasser
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Shejwalkar P, Rath NP, Bauer EB. New iron(ii) α-iminopyridine complexes and their catalytic activity in the oxidation of activated methylene groups and secondary alcohols to ketones. Dalton Trans 2011; 40:7617-31. [DOI: 10.1039/c1dt10387c] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Guisado-Barrios G, Slawin AM, Richens DT. Iron complexes of new hydrophobic derivatives of tris(2-pyridylmethyl)amine: synthesis, characterization, and catalysis of alkane oxygenation by H2O2. J COORD CHEM 2010. [DOI: 10.1080/00958972.2010.506216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gregorio Guisado-Barrios
- a EaStCHEM School of Chemistry, University of St. Andrews , North Haugh, St. Andrews, Fife KY16 9ST, Scotland, UK
| | - Alexandra M.Z. Slawin
- a EaStCHEM School of Chemistry, University of St. Andrews , North Haugh, St. Andrews, Fife KY16 9ST, Scotland, UK
| | - David T. Richens
- a EaStCHEM School of Chemistry, University of St. Andrews , North Haugh, St. Andrews, Fife KY16 9ST, Scotland, UK
| |
Collapse
|
41
|
Pokutsa A, Zaborovskiy A, Maksym D, Muzart J, Makitra R, Pal’chykova O, Kopylets V, Prystanskiy R, Paczeŝniak T. Kinetic and UV/Vis spectroscopic studies of the solvent influence on the cobalt(II)-acetylacetonate catalyzed cleavage of hydrogen peroxide. REACTION KINETICS MECHANISMS AND CATALYSIS 2010. [DOI: 10.1007/s11144-010-0184-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
New chiral phosphoramidite complexes of iron as catalytic precursors in the oxidation of activated methylene groups. Molecules 2010; 15:2631-50. [PMID: 20428070 PMCID: PMC6257337 DOI: 10.3390/molecules15042631] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/31/2010] [Accepted: 04/06/2010] [Indexed: 11/17/2022] Open
Abstract
New phosphoramidite complexes of iron were synthesized and structurally characterized. Reaction of the known chiral phosphoramidites (RO)2PNR'2 (R = binaphthyl, R' = CH3, 1a; R = binaphthyl, R' = benzyl, 1b) with [FeBr(Cp)(CO)2] afforded the title compounds [FeBr(Cp)(CO)(1a,b)] (4a,b) in 34 and 65 % isolated yields as mixtures of diastereomers, since both the metal and the ligand are stereogenic. Similarly, reaction of 1b with [Fe(Cp)I(CO)2] in the presence of catalytic [Fe(Cp)(CO)2]2 afforded [Fe(Cp)I(CO)(1b)] (5b) in 81% yield as a mixture of diastereomers. The molecular structures of 4a, 4b and 5 were determined, revealing a pseudo octahedral coordination geometry about the iron center. The new metal complexes are catalytically active in the oxidation of benzylic methylene groups to the corresponding ketones, utilizing t-BuOOH as oxidant (2 mol% catalyst, 36 h, room temperature, 31-80% yield).
Collapse
|
43
|
Namuswe F, Hayashi T, Jiang Y, Kasper GD, Sarjeant AAN, Moënne-Loccoz P, Goldberg DP. Influence of the nitrogen donors on nonheme iron models of superoxide reductase: high-spin Fe(III)-OOR complexes. J Am Chem Soc 2010; 132:157-67. [PMID: 20000711 DOI: 10.1021/ja904818z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new five-coordinate, (N(4)S(thiolate))Fe(II) complex, containing tertiary amine donors, [Fe(II)(Me(4)[15]aneN(4))(SPh)]BPh(4) (2), was synthesized and structurally characterized as a model of the reduced active site of superoxide reductase (SOR). Reaction of 2 with tert-butyl hydroperoxide (tBuOOH) at -78 degrees C led to the generation of the alkylperoxo-iron(III) complex [Fe(III)(Me(4)[15]aneN(4))(SPh)(OOtBu)](+) (2a). The nonthiolate-ligated complex, [Fe(II)(Me(4)[15]aneN(4))(OTf)(2)] (3), was also reacted with tBuOOH and yielded the corresponding alkylperoxo complex [Fe(III)(Me(4)[15]aneN(4))(OTf)(OOtBu)](+) (3a) at an elevated temperature of -23 degrees C. These species were characterized by low-temperature UV-vis, EPR, and resonance Raman spectroscopies. Complexes 2a and 3a exhibit distinctly different spectroscopic signatures than the analogous alkylperoxo complexes [Fe(III)([15]aneN(4))(SAr)(OOR)](+), which contain secondary amine donors. Importantly, alkylation at nitrogen leads to a change from low-spin (S = 1/2) to high-spin (S = 5/2) of the iron(III) center. The resonance Raman data reveal that this change in spin state has a large effect on the nu(Fe-O) and nu(O-O) vibrations, and a comparison between 2a and the nonthiolate-ligated complex 3a shows that axial ligation has an additional significant impact on these vibrations. To our knowledge this study is the first in which the influence of a ligand trans to a peroxo moiety has been evaluated for a structurally equivalent pair of high-spin/low-spin peroxo-iron(III) complexes. The implications of spin state and thiolate ligation are discussed with regard to the functioning of SOR.
Collapse
Affiliation(s)
- Frances Namuswe
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Lenze M, Bauer EB. Oxidation of activated methylene groups to ketones catalyzed by new iron phosphinooxazoline complexes and by iron(II) triflate. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcata.2009.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Ghanem M, Zhadin N, Callender R, Schramm VL. Loop-tryptophan human purine nucleoside phosphorylase reveals submillisecond protein dynamics. Biochemistry 2009; 48:3658-68. [PMID: 19191546 DOI: 10.1021/bi802339c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human PNP is a homotrimer containing three tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The catalytic sites of PNP are located near the subunit-subunit interfaces where F159 is a catalytic site residue donated from an adjacent subunit. F159 covers the top (beta) surface of the ribosyl group at the catalytic site. QM/MM calculations of human PNP have shown that F159 is the center of the most mobile region of the protein providing access to the substrate in the active site. F159 is also the key residue in a cluster of hydrophobic residues that shield catalytic site ligands from bulk solvent. Trp-free human PNP (Leuko-PNP) was previously engineered by replacing the three Trp residues of native PNP with Tyr. From this active construct, a single Trp residue was placed in the catalytic site loop (F159W-Leuko-PNP) as a reporter group for the ribosyl region of the catalytic site. The F159W-Leuko-PNP fluorescence is red shifted compared to native PNP, suggesting a solvent-exposed Trp residue. Upon ligand binding (hypoxanthine), the 3-fold fluorescence quench confirms conformational packing of the catalytic site pocket hydrophobic cluster. F159W-Leuko-PNP has an on-enzyme thermodynamic equilibrium constant (Keq) near unity in the temperature range between 20 and 30 degrees C and nonzero enthalpic components, making it suitable for laser-induced T-jump analyses. T-jump relaxation kinetics of F159W-Leuko-PNP in equilibrium with substrates and/or products indicate the conformational equilibria of at least two ternary complex intermediates in the nano- to millisecond time scale (1000-10000 s-1) that equilibrate prior to the slower chemical step (approximately 200 s-1). F159W-Leuko-PNP provides a novel protein platform to investigate the protein conformational dynamics occurring prior to transition state formation.
Collapse
Affiliation(s)
- Mahmoud Ghanem
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
46
|
Namuswe F, Kasper GD, Sarjeant AAN, Hayashi T, Krest CM, Green MT, Moënne-Loccoz P, Goldberg DP. Rational tuning of the thiolate donor in model complexes of superoxide reductase: direct evidence for a trans influence in Fe(III)-OOR complexes. J Am Chem Soc 2008; 130:14189-200. [PMID: 18837497 DOI: 10.1021/ja8031828] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron peroxide species have been identified as important intermediates in a number of nonheme iron as well as heme-containing enzymes, yet there are only a few examples of such species either synthetic or biological that have been well characterized. We describe the synthesis and structural characterization of a new series of five-coordinate (N4S(thiolate))Fe(II) complexes that react with tert-butyl hydroperoxide ((t)BuOOH) or cumenyl hydroperoxide (CmOOH) to give metastable alkylperoxo-iron(III) species (N4S(thiolate)Fe(III)-OOR) at low temperature. These complexes were designed specifically to mimic the nonheme iron active site of superoxide reductase, which contains a five-coordinate iron(II) center bound by one Cys and four His residues in the active form of the protein. The structures of the Fe(II) complexes are analyzed by X-ray crystallography, and their electrochemical properties are assessed by cyclic voltammetry. For the Fe(III)-OOR species, low-temperature UV-vis spectra reveal intense peaks between 500-550 nm that are typical of peroxide to iron(III) ligand-to-metal charge-transfer (LMCT) transitions, and EPR spectroscopy shows that these alkylperoxo species are all low-spin iron(III) complexes. Identification of the vibrational modes of the Fe(III)-OOR unit comes from resonance Raman (RR) spectroscopy, which shows nu(Fe-O) modes between 600-635 cm(-1) and nu(O-O) bands near 800 cm(-1). These Fe-O stretching frequencies are significantly lower than those found in other low-spin Fe(III)-OOR complexes. Trends in the data conclusively show that this weakening of the Fe-O bond arises from a trans influence of the thiolate donor, and density functional theory (DFT) calculations support these findings. These results suggest a role for the cysteine ligand in SOR, and are discussed in light of the recent assessments of the function of the cysteine ligand in this enzyme.
Collapse
Affiliation(s)
- Frances Namuswe
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Rowe G, Rybak-Akimova E, Caradonna J. Heterolytic Cleavage of Peroxide by a Diferrous Compound Generates Metal-Based Intermediates Identical to Those Observed with Reactions Utilizing Oxygen-Atom-Donor Molecules. Chemistry 2008; 14:8303-11. [DOI: 10.1002/chem.200800283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|