1
|
de Lavor TS, Teixeira MHS, de Matos PA, Lino RC, Silva CMF, do Carmo MEG, Beletti ME, Patrocinio AOT, de Oliveira Júnior RJ, Tsubone TM. The impact of biomolecule interactions on the cytotoxic effects of rhenium(I) tricarbonyl complexes. J Inorg Biochem 2024; 257:112600. [PMID: 38759261 DOI: 10.1016/j.jinorgbio.2024.112600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Rhenium complexes show great promise as anticancer drug candidates. Specifically, compounds with a Re(CO)3(NN)(py)+ core in their architecture have shown cytotoxicity equal to or greater than that of well-established anticancer drugs based on platinum or organic molecules. This study aimed to evaluate how the strength of the interaction between rhenium(I) tricarbonyl complexes fac-[Re(CO)3(NN)(py)]+, NN = 1,10-phenanthroline (phen), dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) or dipyrido[3,2-a:2'3'-c]phenazine (dppz) and biomolecules (protein, lipid and DNA) impacted the corresponding cytotoxic effect in cells. Results showed that fac-[Re(CO)3(dppz)(py)]+ has higher Log Po/w and binding constant (Kb) with biomolecules (protein, lipid and DNA) compared to complexes of fac-[Re(CO)3(phen)(py)]+ and fac-[Re(CO)3(dpq)(py)]+. As consequence, fac-[Re(CO)3(dppz)(py)]+ exhibited the highest cytotoxicity (IC50 = 8.5 μM for HeLa cells) for fac-[Re(CO)3(dppz)(py)]+ among the studied compounds (IC50 > 15 μM). This highest cytotoxicity of fac-[Re(CO)3(dppz)(py)]+ are probably related to its lipophilicity, higher permeation of the lipid bilayers of cells, and a more potent interaction of the dppz ligand with biomolecules (protein and DNA). Our findings open novel avenues for rational drug design and highlight the importance of considering the chemical structures of rhenium complexes that strongly interact with biomolecules (proteins, lipids, and DNA).
Collapse
Affiliation(s)
- Tayná Saraiva de Lavor
- Laboratório Interdisciplinar de Fototerapia e Biomoléculas (LIFeBio), Instituto de Química (IQ), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | | - Patrícia Alves de Matos
- Laboratório Interdisciplinar de Fototerapia e Biomoléculas (LIFeBio), Instituto de Química (IQ), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Ricardo Campos Lino
- Laboratório de Citogenética, Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Clara Maria Faria Silva
- Laboratório de Citogenética, Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Marcos Eduardo Gomes do Carmo
- Laboratory of Photochemistry and Materials Science, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcelo Emílio Beletti
- Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Antonio Otavio T Patrocinio
- Laboratory of Photochemistry and Materials Science, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Robson José de Oliveira Júnior
- Laboratório de Citogenética, Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil.
| | - Tayana Mazin Tsubone
- Laboratório Interdisciplinar de Fototerapia e Biomoléculas (LIFeBio), Instituto de Química (IQ), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Kushwaha R, Upadhyay A, Saha S, Yadav AK, Bera A, Dutta A, Banerjee S. Cancer phototherapy by CO releasing terpyridine-based Re(I) tricarbonyl complexes via ROS generation and NADH oxidation. Dalton Trans 2024. [PMID: 39078263 DOI: 10.1039/d4dt01309c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Here, we have synthesized and characterized three visible light responsive terpyridine based-Re(I)-tricarbonyl complexes; [Re(CO)3(ph-tpy)Cl] (Retp1), [Re(CO)3(an-tpy)Cl] (Retp2), and [Re(CO)3(py-tpy)Cl] (Retp3) where ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine; an-tpy = 4'-anthracenyl-2,2':6',2″-terpyridine, py-tpy = 4'-pyrenyl-2,2':6',2″-terpyridine. The structures of Retp1 and Retp2 were confirmed from the SC-XRD data, indicating distorted octahedral structures. Unlike traditional PDT agents, these complexes generated reactive oxygen species (ROS) via type I and type II pathways and oxidized redox crucial NADH (reduced nicotinamide adenine dinucleotide) upon visible light exposure. Retp3 showed significant mitochondrial localization and demonstrated photoactivated anticancer activity (IC50 ∼ 2 µM) by inducing ROS-mediated cell death in cancer cells selectively (photocytotoxicity Index, PI > 28) upon compromising mitochondrial function in A549 cells. Their diagnostic capabilities were ultimately assessed using clinically relevant 3D multicellular tumor spheroids (MCTs).
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
3
|
Kar B, Shanavas S, Karmakar A, Nagendra AH, Vardhan S, Sahoo SK, Bose B, Kundu S, Paira P. 2-Aryl-1 H-imidazo[4,5- f][1,10]phenanthroline-Based Binuclear Ru(II)/Ir(III)/Re(I) Complexes as Mitochondria Targeting Cancer Stem Cell Therapeutic Agents. J Med Chem 2024; 67:10928-10945. [PMID: 38812379 DOI: 10.1021/acs.jmedchem.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A series of novel Ru(II)/Ir(III)/Re(I)-based organometallic complexes [Ru2L1, Ru2L2, Ir2L1, Ir2L2, Re2L1, and Re2L2] have been synthesized to assess their potency and selectivity against multiple cancer cells A549, HCT-116, and HCT-116 colon CSCs. The cytotoxic screening of the synthesized complexes has revealed that complex Ru2L1 and Ir2L2 are two proficient complexes among all, but Ru2L1 is the most potent complex. A significant binding constant value was observed for DNA and BSA in all complexes. Significant lipophilic properties allow them to penetrate cancer cell membranes, and substantial quantum yield (ϕf) values support bioimaging potential. Again, these complexes are particular for mitochondrial localization and produce a profuse amount of ROS to damage the mitochondrial DNA and then G1 phase cell-cycle arrest. Protein expression analysis unveiled that pro-apoptotic Bax protein overexpressed in Ru2L1-treated cells, whereas antiapoptotic Bcl-2 protein was expressed twofold in Ir2L2-treated cells, which correlated with autophagy reticence.
Collapse
Affiliation(s)
- Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Shanooja Shanavas
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore, 575018 Karnataka, India
| | - Arun Karmakar
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Apoorva H Nagendra
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore, 575018 Karnataka, India
| | - Seshu Vardhan
- Department of Applied Chemistry, S. V. National Institute of Technology (SVNIT), Ichchanath Surat, Gujarat 395007, India
| | - Suban K Sahoo
- Department of Applied Chemistry, S. V. National Institute of Technology (SVNIT), Ichchanath Surat, Gujarat 395007, India
| | - Bipasha Bose
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore, 575018 Karnataka, India
| | - Subrata Kundu
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
4
|
Ragone F, Yañuk JG, Cabrerizo FM, Prieto E, Wolcan E, Ruiz GT. DNA structural changes (photo)induced by tricarbonyl (pterin)rhenium(I) complex. J Inorg Biochem 2024; 252:112471. [PMID: 38181612 DOI: 10.1016/j.jinorgbio.2023.112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024]
Abstract
We report on interactions of different types of DNA molecules including double-stranded and plasmid DNA as well as polynucleotides (poly[dGdC]2 and poly[dAdT]2) with fac-[ReI(CO)3(pterin)(H2O)] (or Reptr) complex. The interaction was characterized spectroscopically and changes in the plasmid structure were verified by both electrophoresis and AFM microscopy. For comparative reasons, two others related tricarbonyl rhenium(I) complexes, fac-[(4,4'-bpy)ReI(CO)3(dppz)]+ (or Redppz) and fac-[(CF3SO3)ReI(CO)3(2,2'-bpy)] (or Rebpy) were also studied to further explore the influence of the different co-ligands on the interaction and DNA (photo)damage. Data reported herein suggests that DNA molecules can be structurally modified either by direct interaction with Re(I) complexes in their ground states inducing DNA relaxation, and/or through photoinduced cross-linking processes. The chemical nature of the co-ligands modulates the extent of the damage observed.
Collapse
Affiliation(s)
- F Ragone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diag. 113 y 64, Sucursal 4, C.C. 16, (B1906ZAA) La Plata, Argentina
| | - J G Yañuk
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina
| | - F M Cabrerizo
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina.
| | - E Prieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diag. 113 y 64, Sucursal 4, C.C. 16, (B1906ZAA) La Plata, Argentina; ICS-UNAJ, Avenida Calchaqui 6200 Florencio Varela, Argentina
| | - E Wolcan
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diag. 113 y 64, Sucursal 4, C.C. 16, (B1906ZAA) La Plata, Argentina
| | - G T Ruiz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diag. 113 y 64, Sucursal 4, C.C. 16, (B1906ZAA) La Plata, Argentina.
| |
Collapse
|
5
|
Palma E, Santos JF, Fernandes C, Paulo A. DNA-Targeted Complexes of Tc and Re for Biomedical Applications. Chemistry 2024; 30:e202303591. [PMID: 38038361 DOI: 10.1002/chem.202303591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
Due to their favorable chemical features, Re and Tc complexes have been widely used for the development of new therapeutic agents and imaging probes to solve problems of biomedical relevance. This review provides an update of the most relevant research efforts towards the development of novel cancer theranostic agents using Re and Tc-based compounds interacting with specific DNA structures. This includes a variety of homometallic complexes, namely those containing M(CO)3 (M=Re, Tc) moieties, that exhibit different modes of interaction with DNA, such as covalent binding, intercalation, groove binding or G-quadruplex DNA binding. Additionally, heterometallic complexes, designed to potentiate synergistic effects of different metal centers to improve DNA-targeting, cytotoxicity and fluorescence properties, are also reviewed. Particular attention is also given to 99m Tc- and 188 Re-labeled oligonucleotides that have been widely explored to develop imaging and therapeutic radiopharmaceuticals through the in vivo hybridization with a specific complementary DNA or RNA target sequence to provide useful molecular tools in precision medicine for cancer diagnosis and treatment. Finally, the need for further improvement of DNA-targeted Re and Tc-based compounds as potential therapeutic and diagnostic agents is highlighted, and future directions are discussed.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Joana F Santos
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Célia Fernandes
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - António Paulo
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
6
|
Nyong-Bassey EE, Hicks AL, Bergin P, Tuite EM, Kozhevnikov V, Veuger S. Effect of cyclic substituents on the anti-cancer activity and DNA interaction of ruthenium(II) bis-phenanthroline dipyridoquinoline. Front Mol Biosci 2023; 10:1252285. [PMID: 37920709 PMCID: PMC10619691 DOI: 10.3389/fmolb.2023.1252285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction: Ruthenium(II) complexes have emerged recently as candidates for anti-cancer therapy, where activity is related to lipohilicity, cellular localization, and specific interactions with biomolecules. Methods: In this work, two novel complexes were synthesized and are reported based on the [Ru(phen)2(dipyrido[3,2-f:2',3'-h]quinoxaline]2+ framework. Results: Compared to the parent complex, annealing of cyclopenteno and cyclohexeno rings to the extended ligand substantially increased cytotoxicity towards a number of cancer cell lines, and induced apoptosis. The complexes localize in the nuclei of cancer cells and co-locate with DAPI on DNA. DNA binding studies show that both complexes bind strongly to DNA and one complex intercalates DNA like the parent, whilst the other appears to have multiple modes of interaction. Discussion: It is likely that the increased lipophilicity of the novel complexes is a key factor for increasing their cytotoxicity, rather than their DNA binding mode.
Collapse
Affiliation(s)
- Etubonesi E. Nyong-Bassey
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew L. Hicks
- School of Natural and Environmental Science–Chemistry, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Poppy Bergin
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Eimer M. Tuite
- School of Natural and Environmental Science–Chemistry, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Valery Kozhevnikov
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Stephany Veuger
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Pereira SAP, Romano-deGea J, Barbosa AI, Costa Lima SA, Dyson PJ, Saraiva MLMFS. Fine-tuning the cytotoxicity of ruthenium(II) arene compounds to enhance selectivity against breast cancers. Dalton Trans 2023; 52:11679-11690. [PMID: 37552495 PMCID: PMC10442743 DOI: 10.1039/d3dt02037a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Ruthenium-based complexes have been suggested as promising anticancer drugs exhibiting reduced general toxicity compared to platinum-based drugs. In particular, Ru(η6-arene)(PTA)Cl2 (PTA = 1,3,5-triaza-7-phosphaadamantane), or RAPTA, complexes have demonstrated efficacy against breast cancer by suppressing metastasis, tumorigenicity, and inhibiting the replication of the human tumor suppressor gene BRCA1. However, RAPTA compounds have limited cytotoxicity, and therefore comparatively high doses are required. This study explores the activity of a series of RAPTA-like ruthenium(II) arene compounds against MCF-7 and MDA-MB-231 breast cancer cell lines and [Ru(η6-toluene)(PPh3)2Cl]+ was identified as a promising candidate. Notably, [Ru(η6-toluene)(PPh3)2Cl]Cl was found to be remarkably stable and highly cytotoxic, and selective to breast cancer cells. The minor groove of DNA was identified as a relevant target.
Collapse
Affiliation(s)
- Sarah A P Pereira
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jan Romano-deGea
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Ana Isabel Barbosa
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| |
Collapse
|
8
|
A potential novel and general route for bromide replacement in diimine ReI tricarbonyl complexes leading to carboxylates: The effect in luminescence. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Mansour AM, Ibrahim NM, Farag AM, Abo-Elfadl MT. Evaluation of cytotoxic properties of two fluorescent fac-Re(CO) 3 complexes bearing an N, N-bidentate benzimidazole coligand. RSC Adv 2022; 12:30829-30837. [PMID: 36349156 PMCID: PMC9608107 DOI: 10.1039/d2ra05992d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
The reaction between 1H-benzimidazol-2-ylmethyl-(N-aryl)amine derivatives (LR) and [ReBr(CO)5] afforded octahedral Re(i) complexes of the general formula of [ReBr(CO)3LR] (R = 4-Cl and 4-COOCH3). The Re(i) complexes were screened for their potential cytotoxicity against three malignant cell lines and one normal cell line of different origins. The solvatochromic characteristics of the complexes were examined by UV/vis. spectroscopy with the aid of time-dependent density functional theory calculations. Strong autofluorescence emission can be seen in the two Re(i) complexes between 460 and 488 nm. They appeared to accumulate inside intercellular connections and surrounding cellular membranes. The substances gathered also, along the cell membrane, waiting for their entry. The mode of cell death staining and the DNA fragmentation analysis revealed that the 4-Cl complex showed increased apoptotic changes in the MCF-7, and the Caco-2 cell line, while the HepG2 cell line showed little apoptotic changes.
Collapse
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry, Faculty of Science, Cairo UniversityGamma StreetGizaCairo 12613Egypt
| | - Nourhan M. Ibrahim
- Department of Chemistry, Faculty of Science, Cairo UniversityGamma StreetGizaCairo 12613Egypt
| | - Ahmad M. Farag
- Department of Chemistry, Faculty of Science, Cairo UniversityGamma StreetGizaCairo 12613Egypt
| | - Mahmoud T. Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research CentreDokkiCairo 12622Egypt,Biochemistry Department, Biotechnology Research Institute, National Research CentreDokkiCairo 12622Egypt
| |
Collapse
|
10
|
Suárez-Ortiz GA, Hernández-Correa R, Morales-Moreno MD, Toscano RA, Ramirez-Apan MT, Hernandez-Garcia A, Amézquita-Valencia M, Araiza-Olivera D. Diastereomeric Separation of Chiral fac-Tricarbonyl(iminopyridine) Rhenium(I) Complexes and Their Cytotoxicity Studies: Approach toward an Action Mechanism against Glioblastoma. J Med Chem 2022; 65:9281-9294. [PMID: 35776775 DOI: 10.1021/acs.jmedchem.2c00561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of new (tricarbonyl)rhenium(I) complexes were synthesized using chiral bidentate ligands (+)/(-)-iminopyridines (LR/LS). The reaction yielded a mixture of mononuclear Re(I) diastereoisomers, formulated as fac-[Br(CO)3Re(S/R)L(S/R)]. Each single diastereoisomer was isolated and fully characterized. X-ray crystallography and circular dichroism spectra verified their enantiomeric nature. The cytotoxicity of each complex was evaluated against six cancer cell lines. The effect of the two complexes on viability, proliferation, and migration was analyzed on glioblastoma cell lines (U251 and LN229). Changes in the expression of histones, apoptotic, and key signaling proteins, as well as alterations in DNA structure, were also observed. These experiments showed that the chirality associated with both metal and ligand has a strong influence on cytotoxicity.
Collapse
Affiliation(s)
- Gloria A Suárez-Ortiz
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Rodrigo Hernández-Correa
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Melissa D Morales-Moreno
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Rubén A Toscano
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Maria Teresa Ramirez-Apan
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Armando Hernandez-Garcia
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Manuel Amézquita-Valencia
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Daniela Araiza-Olivera
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
11
|
Sahu G, Patra SA, Mohanty M, Lima S, Pattanayak PD, Kaminsky W, Dinda R. Dithiocarbazate based oxidomethoxidovanadium(V) and mixed-ligand oxidovanadium(IV) complexes: Study of solution behavior, DNA binding, and anticancer activity. J Inorg Biochem 2022; 233:111844. [DOI: 10.1016/j.jinorgbio.2022.111844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/27/2022]
|
12
|
Andrezálová L, Országhová Z. Covalent and noncovalent interactions of coordination compounds with DNA: An overview. J Inorg Biochem 2021; 225:111624. [PMID: 34653826 DOI: 10.1016/j.jinorgbio.2021.111624] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/30/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
Deoxyribonucleic acid plays a central role in crucial cellular processes, and many drugs exert their effects through binding to DNA. Since the discovery of cisplatin and its derivatives considerable attention of researchers has been focused on the development of novel anticancer metal-based drugs. Transition metal complexes, due to their great diversity in size and structure, have a big potential to modify DNA through diverse types of interactions, making them the prominent class of compounds for DNA targeted therapy. In this review we describe various binding modes of metal complexes to duplex DNA based on covalent and noncovalent interactions or combination of both. Specific examples of each binding mode as well as possible cytotoxic effects of metal complexes in tumor cells are presented.
Collapse
Affiliation(s)
- Lucia Andrezálová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - Zuzana Országhová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia
| |
Collapse
|
13
|
Mkhatshwa M, Moremi JM, Makgopa K, Manicum ALE. Nanoparticles Functionalised with Re(I) Tricarbonyl Complexes for Cancer Theranostics. Int J Mol Sci 2021; 22:6546. [PMID: 34207182 PMCID: PMC8235741 DOI: 10.3390/ijms22126546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022] Open
Abstract
Globally, cancer is the second (to cardiovascular diseases) leading cause of death. Regardless of various efforts (i.e., finance, research, and workforce) to advance novel cancer theranostics (diagnosis and therapy), there have been few successful attempts towards ongoing clinical treatment options as a result of the complications posed by cancerous tumors. In recent years, the application of magnetic nanomedicine as theranostic devices has garnered enormous attention in cancer treatment research. Magnetic nanoparticles (MNPs) are capable of tuning the magnetic field in their environment, which positively impacts theranostic applications in nanomedicine significantly. MNPs are utilized as contrasting agents for cancer diagnosis, molecular imaging, hyperfusion region visualization, and T cell-based radiotherapy because of their interesting features of small size, high reactive surface area, target ability to cells, and functionalization capability. Radiolabelling of NPs is a powerful diagnostic approach in nuclear medicine imaging and therapy. The use of luminescent radioactive rhenium(I), 188/186Re, tricarbonyl complexes functionalised with magnetite Fe3O4 NPs in nanomedicine has improved the diagnosis and therapy of cancer tumors. This is because the combination of Re(I) with MNPs can improve low distribution and cell penetration into deeper tissues.
Collapse
Affiliation(s)
| | | | - Katlego Makgopa
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa; (M.M.); (J.M.M.)
| | - Amanda-Lee Ezra Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa; (M.M.); (J.M.M.)
| |
Collapse
|
14
|
Balou S, Zarkadoulas A, Koukouvitaki M, Marchiò L, Efthimiadou EK, Mitsopoulou CA. Synthesis, DNA-Binding, Anticancer Evaluation, and Molecular Docking Studies of Bishomoleptic and Trisheteroleptic Ru-Diimine Complexes Bearing 2-(2-Pyridyl)-quinoxaline. Bioinorg Chem Appl 2021; 2021:5599773. [PMID: 34093697 PMCID: PMC8137304 DOI: 10.1155/2021/5599773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Herein, we report the synthesis and characterization of a bishomoleptic and a trisheteroleptic ruthenium (II) polypyridyl complex, namely, [Ru(bpy)2(2, 2'-pq)](PF6)2 (1) and [Ru(bpy) (phen) (2, 2'-pq)](PF6)2 (2), respectively, where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and 2, 2'-pq = 2-(2'-pyridyl)-quinoxaline. The complexes were characterized by elemental analysis, TGA, 1H-NMR, FT-IR, UV-Vis, emission spectroscopy, and electrochemistry. Their structures were confirmed by single-crystal X-ray diffraction analysis. Complexes 1 and 2 were crystalized in orthorhombic, Pbca, and monoclinic, P21/n systems, respectively. Various spectroscopic techniques were employed to investigate the interaction of both complexes with calf thymus DNA (CT-DNA). The experimental data were confirmed by molecular docking studies, employing two different DNA sequences. Both complexes, 1 and 2, bind with DNA via a minor groove mode of binding. MTT experiments revealed that both complexes induce apoptosis of MCF-7 (breast cancer) cells in low concentrations. Confocal microscopy indicated that 2 localizes in the nucleus and internalizes more efficiently in MCF-7 than in HEK-293.
Collapse
Affiliation(s)
- Sofia Balou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece
| | - Athanasios Zarkadoulas
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece
| | - Maria Koukouvitaki
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece
| | - Luciano Marchiò
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi Parma, Parco Area delle Scienze 17A, I43124 Parma, Italy
| | - Eleni K. Efthimiadou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece
| | - Christiana A. Mitsopoulou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece
| |
Collapse
|
15
|
Winstead AJ, Alabrash K, Powell BV, Parnell SJ, Hinton TV, Odebode T, Peng J, Krause JA, Zavalij PY, Mandal SK. Microwave-Assisted Synthesis of Organometallic Rhenium (I) Pentylcarbonato Complexes: New Synthon for Carboxylato, Sulfonato and Chlorido Complexes. J Organomet Chem 2021; 936. [PMID: 33953436 DOI: 10.1016/j.jorganchem.2021.121718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tricarbonylrhenium(I)(α-diimine) complexes are of importance because of their strong cytotoxic and fluorescence properties. Syntheses of such complexes were achieved through a two-step process. First, the pentylcarbonato complexes, fac-(CO)3(α-diimine)ReOC(O)OC5H11 were synthesized through a microwave-assisted reaction of Re2(CO)10, α-diimine, 1-pentanol and CO2 in a few hours. Second, the pentylcarbonato complexes are treated with carboxylic, sulfonic and halo acids to obtain the corresponding carboxylato, sulfonato and halido complexes. This is the first example of conversion of Re2(CO)10 into a rhenium carbonyl complex through microwave-assisted reaction.
Collapse
Affiliation(s)
- Angela J Winstead
- Morgan State University, Department of Chemistry, Baltimore, MD 21251
| | - Khayra Alabrash
- Morgan State University, Department of Chemistry, Baltimore, MD 21251
| | - Brent V Powell
- Morgan State University, Department of Chemistry, Baltimore, MD 21251
| | - Sabreea J Parnell
- Morgan State University, Department of Chemistry, Baltimore, MD 21251
| | - Tiara V Hinton
- Morgan State University, Department of Chemistry, Baltimore, MD 21251
| | | | - Jiangnan Peng
- Morgan State University, Department of Chemistry, Baltimore, MD 21251
| | - Jeanette A Krause
- University of Cincinnati, Department of Chemistry, Cincinnati, OH 45221
| | - Peter Y Zavalij
- University of Maryland, Department of Chemistry and Biochemistry, College Park, MD
| | - Santosh K Mandal
- Morgan State University, Department of Chemistry, Baltimore, MD 21251
| |
Collapse
|
16
|
Marker SC, King AP, Granja S, Vaughn B, Woods JJ, Boros E, Wilson JJ. Exploring the In Vivo and In Vitro Anticancer Activity of Rhenium Isonitrile Complexes. Inorg Chem 2020; 59:10285-10303. [PMID: 32633531 PMCID: PMC8114230 DOI: 10.1021/acs.inorgchem.0c01442] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The established platinum-based drugs form covalent DNA adducts to elicit their cytotoxic response. Although they are widely employed, these agents cause toxic side-effects and are susceptible to cancer-resistance mechanisms. To overcome these limitations, alternative metal complexes containing the rhenium(I) tricarbonyl core have been explored as anticancer agents. Based on a previous study ( Chem. Eur. J. 2019, 25, 9206), a series of highly active tricarbonyl rhenium isonitrile polypyridyl (TRIP) complexes of the general formula fac-[Re(CO)3(NN)(ICN)]+, where NN is a chelating diimine and ICN is an isonitrile ligand, that induce endoplasmic reticulum (ER) stress via activation of the unfolded protein response (UPR) pathway are investigated. A total of 11 of these TRIP complexes were synthesized, modifying both the equatorial polypyridyl and axial isonitrile ligands. Complexes with more electron-donating equatorial ligands were found to have greater anticancer activity, whereas the axial ICN ligands had a smaller effect on their overall potency. All 11 TRIP derivatives trigger a similar phenotype that is characterized by their abilities to induce ER stress and activate the UPR. Lastly, we explored the in vivo efficacy of one of the most potent complexes, fac-[Re(CO)3(dmphen)(ptolICN)]+ (TRIP-1a), where dmphen = 2,9-dimethyl-1,10-phenanthroline and ptolICN = para-tolyl isonitrile, in mice. The 99mTc congener of TRIP-1a was synthesized, and its biodistribution in BALB/c mice was investigated in comparison to the parent Re complex. The results illustrate that both complexes have similar biodistribution patterns, suggesting that 99mTc analogues of these TRIP complexes can be used as diagnostic partner agents. The in vivo antitumor activity of TRIP-1a was then investigated in NSG mice bearing A2780 ovarian cancer xenografts. When administered at a dose of 20 mg/kg twice weekly, this complex was able to inhibit tumor growth and prolong mouse survival by 150% compared to the vehicle control cohort.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha Granja
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brett Vaughn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Joshua J. Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell, University, Ithaca, New York 14853, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Nehru S, Veeralakshmi S, Kalaiselvam S, Subin David SP, Sandhya J, Arunachalam S. DNA binding, antibacterial, hemolytic and anticancer studies of some fluorescent emissive surfactant-ruthenium(II) complexes. J Biomol Struct Dyn 2020; 39:2242-2256. [PMID: 32216611 DOI: 10.1080/07391102.2020.1747547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Designing the effective metallodrugs with amphiphilic nature is an active approach for the biomedical applications such as chemotheraphy, bioimaging, drug carrier, etc. To elaborate this, some fluorescent emissive surfactant-ruthenium(II) complexes and its precursor ruthenium(II) complexes have been interacted with calf thymus DNA (CT-DNA) for understanding the biophysical impacts of head and tail parts of the metallosurfactants. Here, DNA binding studies were examined by UV-visible absorption, fluorescence, circular dichroism and viscosity measurements. The obtained results showed that surfactant-ruthenium(II) complexes effectively bind with CT-DNA through hydrophobic interactions dominated moderate intercalation, whereas precursor ruthenium(II) complexes interact CT-DNA through electrostatic interactions dominated moderate intercalation. Also, increase of hydrophobic alkyl amine chain length as well as size of the head group in surfactant-ruthenium(II) complexes increased the binding affinity with CT-DNA, in which tail group played a dominant role. Further investigations of antibacterial, hemolytic and anticancer activities showed that desired biological activities could be obtained by tuning the head and tail groups of the metallodrugs in near future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Selvan Nehru
- Department of Physical Chemistry, University of Madras, Chennai, Tamil Nadu, India.,School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Selvakumar Veeralakshmi
- Department of Applied Science and Technology, A.C. Tech. Campus, Anna University, Chennai, Tamil Nadu, India
| | - Siva Kalaiselvam
- Department of Applied Science and Technology, A.C. Tech. Campus, Anna University, Chennai, Tamil Nadu, India
| | - S P Subin David
- Department of Applied Science and Technology, A.C. Tech. Campus, Anna University, Chennai, Tamil Nadu, India
| | - Jayakumar Sandhya
- Department of Applied Science and Technology, A.C. Tech. Campus, Anna University, Chennai, Tamil Nadu, India
| | | |
Collapse
|
18
|
Gantsho VL, Dotou M, Jakubaszek M, Goud B, Gasser G, Visser HG, Schutte-Smith M. Synthesis, characterization, kinetic investigation and biological evaluation of Re(i) di- and tricarbonyl complexes with tertiary phosphine ligands. Dalton Trans 2020; 49:35-46. [DOI: 10.1039/c9dt04025k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kinetics of Re(i) complexes illustrated the ability to ‘tune’ the metal centre; phosphine-based complexes were more stable and more cytotoxic.
Collapse
Affiliation(s)
| | - Mazzarine Dotou
- Chimie ParisTech
- PSL University
- CNRS
- Institute of Chemistry for Life and Health Sciences
- Laboratory for Inorganic Chemical Biology
| | - Marta Jakubaszek
- Chimie ParisTech
- PSL University
- CNRS
- Institute of Chemistry for Life and Health Sciences
- Laboratory for Inorganic Chemical Biology
| | - Bruno Goud
- Institut Curie
- PSL University
- CNRS UMR 144
- Paris
- France
| | - Gilles Gasser
- Chimie ParisTech
- PSL University
- CNRS
- Institute of Chemistry for Life and Health Sciences
- Laboratory for Inorganic Chemical Biology
| | | | | |
Collapse
|
19
|
A novel and simple route for bromide replacement in pyrazolyl-pyridazine ReI tricarbonyl complexes leads to a zwitterion stabilized by hydrogen bonding. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Kundu BK, Pragti, Mobin SM, Mukhopadhyay S. Studies on the influence of the nuclearity of zinc(ii) hemi-salen complexes on some pivotal biological applications. Dalton Trans 2020; 49:15481-15503. [DOI: 10.1039/d0dt02941f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Experimental and theoretical corroboration of the various biological applications of two nuclearity-dependent dimeric and trimeric Zn(ii) hemi-salen complexes.
Collapse
Affiliation(s)
- Bidyut Kumar Kundu
- Discipline of Chemistry
- School of Basic Sciences
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Pragti
- Discipline of Chemistry
- School of Basic Sciences
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Shaikh M. Mobin
- Discipline of Chemistry
- School of Basic Sciences
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Suman Mukhopadhyay
- Discipline of Chemistry
- School of Basic Sciences
- Indian Institute of Technology Indore
- Indore 453552
- India
| |
Collapse
|
21
|
Collery P, Desmaele D, Vijaykumar V. Design of Rhenium Compounds in Targeted Anticancer Therapeutics. Curr Pharm Des 2019; 25:3306-3322. [DOI: 10.2174/1381612825666190902161400] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022]
Abstract
Background:
Many rhenium (Re) complexes with potential anticancer properties have been synthesized
in the recent years with the aim to overcome the clinical limitations of platinum agents. Re(I) tricarbonyl
complexes are the most common but Re compounds with higher oxidation states have also been investigated, as
well as hetero-metallic complexes and Re-loaded self-assembling devices. Many of these compounds display
promising cytotoxic and phototoxic properties against malignant cells but all Re compounds are still at the stage
of preclinical studies.
Methods:
The present review focused on the rhenium based cancer drugs that were in preclinical and clinical
trials were examined critically. The detailed targeted interactions and experimental evidences of Re compounds
reported by the patentable and non-patentable research findings used to write this review.
Results:
In the present review, we described the most recent and promising rhenium compounds focusing on their
potential mechanism of action including, phototoxicity, DNA binding, mitochondrial effects, oxidative stress
regulation or enzyme inhibition. Many ligands have been described that modulating the lipophilicity, the luminescent
properties, the cellular uptake, the biodistribution, and the cytotoxicity, the pharmacological and toxicological
profile.
Conclusion:
Re-based anticancer drugs can also be used in targeted therapies by coupling to a variety of biologically
relevant targeting molecules. On the other hand, combination with conventional cytotoxic molecules, such
as doxorubicin, allowed to take into profit the targeting properties of Re for example toward mitochondria.
Through the example of the diseleno-Re complex, we showed that the main target could be the oxidative status,
with a down-stream regulation of signaling pathways, and further on selective cell death of cancer cells versus
normal cells.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France
| | - Didier Desmaele
- Institut Galien, Universite Paris-Saclay, 92296 Chatenay-Malabry, France
| | - Veena Vijaykumar
- Biotechnology Department, REVA University, Bangalore, 560064, India
| |
Collapse
|
22
|
Do the bridging angle affect the luminescent properties of [(CO)3(phen)Re(µ-OH)Re(phen)(CO)3]+? An experimental and computational study on three polymorphs. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Haase AA, Bauer EB, Kühn FE, Crans DC. Speciation and toxicity of rhenium salts, organometallics and coordination complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Bauer EB, Haase AA, Reich RM, Crans DC, Kühn FE. Organometallic and coordination rhenium compounds and their potential in cancer therapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Quintal S, Pires da Silva MJ, Martins SRM, Sales R, Félix V, Drew MGB, Meireles M, Mourato AC, Nunes CD, Saraiva MS, Machuqueiro M, Calhorda MJ. Molybdenum(ii) complexes with p-substituted BIAN ligands: synthesis, characterization, biological activity and computational study. Dalton Trans 2019; 48:8449-8463. [PMID: 31116201 DOI: 10.1039/c9dt00469f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New complexes [Mo(η3-C3H5)X(CO)2(4-Y-BIAN)] (4-Y-BIAN = bis(4-Y-phenyl)-acenaphthenequinonediimine), with X = Br and Y = H, Me, OMe, COOH and X = Cl, Y = OMe, as well as the cation with X = NCMe and Y = OMe were synthesized, expanding the scope of this family. Two single crystal X-ray structures (X = Br, Y = Me, OMe) display a less symmetric arrangement (axial isomer), where one N donor atom is trans to the allyl group and the second to one CO. DFT studies showed similar energies for the two possible isomers of the complexes, with a very small preference for the observed axial isomer. The HOMO of the complexes is localized in the metal and the HOMO-1 of the oxidized species has a contribution from the BIAN ligand, while the LUMO is fully localized in BIAN. Electrochemical studies showed one process corresponding to the oxidation of Mo(ii) to Mo(iii) for complexes with X = Br, Y = H, Me, and two oxidation reactions for those with X = Br, Y = Cl, OMe, while the COOH derivative exhibited no oxidation wave. The antitumor effect of the complexes with X = Br was tested in cancer lines, and the H and OMe complexes were particularly active, with EC50 values below 8 μM in HeLa cell lines. The DNA binding constants determined by titration experiments were comparable with those of doxorubicin and ethidium bromide, suggesting a mechanism of action based on intercalation in DNA.
Collapse
Affiliation(s)
- Susana Quintal
- Centro de Química e Bioquímica, DQB, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Quinoline-derivative coordination compounds as potential applications to antibacterial and antineoplasic drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1043-1052. [DOI: 10.1016/j.msec.2019.01.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 11/23/2022]
|
27
|
Wang FX, Liang JH, Zhang H, Wang ZH, Wan Q, Tan CP, Ji LN, Mao ZW. Mitochondria-Accumulating Rhenium(I) Tricarbonyl Complexes Induce Cell Death via Irreversible Oxidative Stress and Glutathione Metabolism Disturbance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13123-13133. [PMID: 30888144 DOI: 10.1021/acsami.9b01057] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mitochondria play a critical role in tumorigenesis. Targeting mitochondria and disturbing related events have been emerging as a promising way for chemotherapy. In this work, two binuclear rhenium(I) tricarbonyl complexes of the general formula [Re2(CO)6(dip)2L](PF6)2 (dip = 4,7-diphenyl-1,10-phenanthroline; L = 4,4'-azopyridine (ReN) or 4,4'-dithiodipyridine (ReS)) were synthesized and characterized. ReN and ReS can react with glutathione (GSH). They exhibit good in vitro anticancer activity against cancer cell lines screened. Besides, they can target mitochondria, cause oxidative stress, and disturb GSH metabolism. Both ReN and ReS can induce necroptosis and caspase-dependent apoptosis simultaneously. We also demonstrate that ReN and ReS can inhibit tumor growth in nude mice bearing carcinoma xenografts. Our study shows the potential of Re(I) complexes as chemotherapeutic agents to kill cancer cells via a mitochondria-to-cellular redox strategy.
Collapse
Affiliation(s)
- Fang-Xin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Jin-Hao Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Ze-Hua Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Qin Wan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
28
|
He L, Pan ZY, Qin WW, Li Y, Tan CP, Mao ZW. Impairment of the autophagy-related lysosomal degradation pathway by an anticancer rhenium(i) complex. Dalton Trans 2019; 48:4398-4404. [DOI: 10.1039/c9dt00322c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A Re(i) complex induces autophagy, which is arrested at the lysosomal stage due to lysosomal dysfunction, and inhibits tumor growth in vivo.
Collapse
Affiliation(s)
- Liang He
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
| | - Zheng-Yin Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Wei-Wei Qin
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zong-Wan Mao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
| |
Collapse
|
29
|
Pizarro N, Saldías M, Guzmán N, Sandoval-Altamirano C, Kahlal S, Saillard JY, Hamon JR, Vega A. 1IL and 3MLCT excited states modulated by H+: the structure and photophysical properties of [(2-bromo-5-(1H-pyrazol-1-yl)pyrazine)Re(CO)3Br]. NEW J CHEM 2019. [DOI: 10.1039/c8nj04196b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical characterization of pyrazolyl–pyrazine Re(i) complex, shows a 1IL and 3MLCT excited states, being just the 3MLCT able to react with trifluoroacetic acid to yield the protonated and long-lived 3ILH+ species. These findings make the compound a potential sensor for protons in solution in the presence of light.
Collapse
Affiliation(s)
- Nancy Pizarro
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas
- Viña del Mar
- Chile
| | - Marianela Saldías
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas
- Viña del Mar
- Chile
| | - Nicolás Guzmán
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas
- Viña del Mar
- Chile
| | | | - Samia Kahlal
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Jean-Yves Saillard
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Jean-René Hamon
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Andrés Vega
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas
- Viña del Mar
- Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA
- Chile
| |
Collapse
|
30
|
Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Masternak J, Gilewska A, Kazimierczuk K, Khavryuchenko OV, Wietrzyk J, Trynda J, Barszcz B. Synthesis, physicochemical and theoretical studies on new rhodium and ruthenium dimers. Relationship between structure and cytotoxic activity. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.07.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Fumanal M, Vela S, Gattuso H, Monari A, Daniel C. Absorption Spectroscopy and Photophysics of a ReI
-dppz Probe for DNA-Mediated Charge Transport. Chemistry 2018; 24:14425-14435. [DOI: 10.1002/chem.201801980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/12/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Maria Fumanal
- Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg; UMR-7177 CNRS/Université de Strasbourg; 1 Rue Blaise Pascal BP 296/R8 F-67008 Strasbourg France
| | - Sergi Vela
- Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg; UMR-7177 CNRS/Université de Strasbourg; 1 Rue Blaise Pascal BP 296/R8 F-67008 Strasbourg France
| | - Hugo Gattuso
- Université de Lorraine and CNRS, LPCT UMR 7019; Boulevard des Aiguillettes, Vandoeuvre-lès-Nancy F-54000 Nancy France
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019; Boulevard des Aiguillettes, Vandoeuvre-lès-Nancy F-54000 Nancy France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg; UMR-7177 CNRS/Université de Strasbourg; 1 Rue Blaise Pascal BP 296/R8 F-67008 Strasbourg France
| |
Collapse
|
33
|
Rana U, Hossain MD, Chakraborty C, Nagano R, Morita H, Hattori S, Minowa T, Higuchi M. Long Chain Effects on DNA‐Binding and Cytotoxicity to Cancer Cells in Metallo‐Supramolecular Oligomers. ChemistrySelect 2018. [DOI: 10.1002/slct.201800961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Utpal Rana
- Electronic Functional Macromolecules Group National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba 305–0044, JapanPresent address of Dr. C. Chakraborty: Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus,Shameerpet, Jawahar Nagar, Secunderabad, Telangana 500078,India. Present address of Dr. M. D. Hossain: Department of Chemistry, Faculty of Science, Jagannath University, Dhaka-1100, Bangladesh
| | - Md. Delwar Hossain
- Electronic Functional Macromolecules Group National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba 305–0044, JapanPresent address of Dr. C. Chakraborty: Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus,Shameerpet, Jawahar Nagar, Secunderabad, Telangana 500078,India. Present address of Dr. M. D. Hossain: Department of Chemistry, Faculty of Science, Jagannath University, Dhaka-1100, Bangladesh
| | - Chanchal Chakraborty
- Electronic Functional Macromolecules Group National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba 305–0044, JapanPresent address of Dr. C. Chakraborty: Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus,Shameerpet, Jawahar Nagar, Secunderabad, Telangana 500078,India. Present address of Dr. M. D. Hossain: Department of Chemistry, Faculty of Science, Jagannath University, Dhaka-1100, Bangladesh
| | - Reiko Nagano
- Nanotechnology Innovation Station, NIMS, 1–2-1 Sengen Tsukuba 305–0047 Japan
| | - Hiromi Morita
- Nanotechnology Innovation Station, NIMS, 1–2-1 Sengen Tsukuba 305–0047 Japan
| | - Shinya Hattori
- Nanotechnology Innovation Station, NIMS, 1–2-1 Sengen Tsukuba 305–0047 Japan
| | - Takashi Minowa
- Nanotechnology Innovation Station, NIMS, 1–2-1 Sengen Tsukuba 305–0047 Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba 305–0044, JapanPresent address of Dr. C. Chakraborty: Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus,Shameerpet, Jawahar Nagar, Secunderabad, Telangana 500078,India. Present address of Dr. M. D. Hossain: Department of Chemistry, Faculty of Science, Jagannath University, Dhaka-1100, Bangladesh
| |
Collapse
|
34
|
Banerjee HN, Vaughan D, Boston A, Thorne G, Payne G, Sampson J, Manglik V, Olczak P, Powell BV, Winstead A, Shaw R, Mandal SK. The Effects of Synthesized Rhenium Acetylsalicylate Compounds on Human Astrocytoma Cell Lines. ACTA ACUST UNITED AC 2018; 10. [PMID: 29707104 PMCID: PMC5915335 DOI: 10.4172/1948-5956.1000512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose Because of the scarcity of suitable brain cancer drugs, researchers are frantically trying to discover novel and highly potent drugs free of side effects and drug-resistance. Rhenium compounds are known to be nontoxic and exhibit no drug resistance. For that reason, we have developed a series of novel rhenium acetylsalicylato (RAC or ASP) complexes to test their cytotoxicity on brain cancer cells. Also we have attempted to explore the DNAbinding properties of these compounds because many drugs either directly or indirectly bind to DNA. Methods We have treated the RAC series compounds on human astrocytoma brain cancer cell lines and rat normal brain astrocyte cells and determined the efficacy of these complexes through in vitro cytotoxicity assay. We carried out the DNA-binding study through UV titrations of a RAC compound with DNA. Also we attempted to determine the planarity of the polypyridyl ligands of the RAC series compounds using DFT calculations. Results RAC6 is more potent than any other RAC series compounds on HTB-12 human astrocytoma cancer cells as well as on Glioblastoma Multiforme D54 cell lines. In fact, The IC-50 value of RAC6 on HTB-12 cancer cells is approximately 2 μM. As expected, the RAC series compounds were not active on normal cells. The DFT calculations on the RAC series compounds were done and suggest that the polypyridyl ligands in the complexes are planar. The UV-titrations of RAC9 with DNA were carried out. It suggests that RAC9 and possibly all RAC series compounds bind to minor grooves of the DNA. Conclusion Because of the very low activity of RAC6 on normal cells and low lC50 value of on astrocytoma (HTB-12) cell lines, it is possible that RAC6 and its derivatives may potentially find application in the treatment of brain cancers. The DFT calculations and UV titrations suggest that RAC series compounds either bind to DNA intercalatively or minor grooves of the DNA or both. However, it is highly premature to make any definite statement in the absence of other techniques.
Collapse
Affiliation(s)
- Hirendra N Banerjee
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Deidre Vaughan
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Ava Boston
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Gabriel Thorne
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Gloria Payne
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Josiah Sampson
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Vinod Manglik
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Pola Olczak
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Brent V Powell
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Angela Winstead
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Roosevelt Shaw
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Santosh K Mandal
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| |
Collapse
|
35
|
Wilder PT, Weber DJ, Winstead A, Parnell S, Hinton TV, Stevenson M, Giri D, Azemati S, Olczak P, Powell BV, Odebode T, Tadesse S, Zhang Y, Pramanik SK, Wachira JM, Ghimire S, McCarthy P, Barfield A, Banerjee HN, Chen C, Golen JA, Rheingold AL, Krause JA, Ho DM, Zavalij PY, Shaw R, Mandal SK. Unprecedented anticancer activities of organorhenium sulfonato and carboxylato complexes against hormone-dependent MCF-7 and hormone-independent triple-negative MDA-MB-231 breast cancer cells. Mol Cell Biochem 2017; 441:151-163. [PMID: 28913709 DOI: 10.1007/s11010-017-3181-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/01/2017] [Indexed: 01/23/2023]
Abstract
Cisplatin and other metal-based drugs often display side effects and tumor resistance after prolonged use. Because rhenium-based anticancer complexes are often less toxic, a novel series of organorhenium complexes were synthesized of the types: XRe(CO)3Z (X = α-diimines and Z = p-toluenesulfonate, 1-naphthalenesulfonate, 2-naphthalenesulfonate, picolinate, nicotinate, aspirinate, naproxenate, flufenamate, ibuprofenate, mefenamate, tolfenamate, N-acetyl-tryptophanate), and their biological properties were examined. Specifically, in hormone-dependent MCF-7 and hormone-independent triple-negative MDA-MB-231 breast cancer cells, the p-toluenesulfonato, 1-naphthalenesulfonato, 2-naphthalenesulfonato, picolinato, nicotinato, acetylsalicylato, flufenamato, ibuprofenato, mefenamato, and N-acetyl-tryptophanato complexes were found to be far more potent than conventional drug cisplatin. DNA-binding studies were performed in each case via UV-Vis titrations, cyclic voltammetry, gel electrophoresis, and viscosity, which suggest DNA partial intercalation interaction, and the structure-activity relationship studies suggest that the anticancer activities increase with the increasing lipophilicities of the compounds, roughly consistent with their DNA-binding activities.
Collapse
Affiliation(s)
- Paul T Wilder
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics & Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Weber
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics & Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Angela Winstead
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Sabreea Parnell
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Tiara V Hinton
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Monet Stevenson
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Dipak Giri
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Samira Azemati
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Pola Olczak
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Brent V Powell
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | | | - Solomon Tadesse
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Yongchao Zhang
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Saroj K Pramanik
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - James M Wachira
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Sujan Ghimire
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | | | - Alexis Barfield
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University - University of North Carolina, Elizabeth City, NC, USA
| | - Hirendra N Banerjee
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University - University of North Carolina, Elizabeth City, NC, USA
| | - Chao Chen
- Department of Chemistry, University of California, San Diego, CA, USA
| | - James A Golen
- Department of Chemistry, University of California, San Diego, CA, USA
| | | | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Douglas M Ho
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Roosevelt Shaw
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Santosh K Mandal
- Department of Chemistry, Morgan State University, Baltimore, MD, USA.
| |
Collapse
|
36
|
Shen F, Ou ZB, Liu YJ, Liu W, Wang BF, Mao ZW, Le XY. Two Cu(II) complexes containing 2,4-diamino-6-(2-pyridyl)-1,3,5-triazine and amino acids: Synthesis, crystal structures, DNA/HSA binding, molecular docking, and in vitro cytotoxicity studies. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
dos Santos ER, Corrêa RS, Pozzi LV, Graminha AE, Selistre-de-Araújo HS, Pavan FR, Batista AA. Antitumor and anti-Mycobacterium tuberculosis agents based on cationic ruthenium complexes with amino acids. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Veeralakshmi S, Sabapathi G, Nehru S, Venuvanalingam P, Arunachalam S. Surfactant–cobalt(III) complexes: The impact of hydrophobicity on interaction with HSA and DNA – insights from experimental and theoretical approach. Colloids Surf B Biointerfaces 2017; 153:85-94. [DOI: 10.1016/j.colsurfb.2017.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 02/06/2017] [Accepted: 02/11/2017] [Indexed: 12/19/2022]
|
39
|
Photophysical and bioactivity behavior of fac- rhenium(I) derivatives containing ditopic sulfurpyridine ligands. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.07.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Ismail MB, Booysen IN, Akerman MP. Rhenium(I) complexes with aliphatic Schiff bases appended to bio-active moieties. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Ismail MB, Booysen IN, Akerman MP, Grimmer C. Rhenium(I) complexes with bidentate carbohydrazide Schiff bases: Synthesis, characterization, computational and DNA interaction studies. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Ismail MB, Booysen IN, Hosten E, Akerman MP. Synthesis, characterization and DNA interaction studies of tricarbonyl rhenium(I) compounds containing terpyridine Schiff base chelates. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Shen F, Liu YX, Li SM, Jiang CK, Wang BF, Xiong YH, Mao ZW, Le XY. Synthesis, crystal structures, molecular docking and in vitro cytotoxicity studies of two new copper(ii) complexes: special emphasis on their binding to HSA. NEW J CHEM 2017. [DOI: 10.1039/c7nj02351k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two new copper(ii) complexes bound efficiently to Sudlow's site I of HSA, and exhibited prominent cytotoxicity against Eca-109 through the apoptosis pathway.
Collapse
Affiliation(s)
- Fang Shen
- Department of Applied Chemistry
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Ya-Xian Liu
- Department of Applied Chemistry
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Shu-Min Li
- Department of Applied Chemistry
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Chi-Kun Jiang
- Department of Applied Chemistry
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Bing-Feng Wang
- Department of Applied Chemistry
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Ya-Hong Xiong
- Department of Applied Chemistry
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Zong-Wan Mao
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Xue-Yi Le
- Department of Applied Chemistry
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| |
Collapse
|
44
|
Notaro A, Gasser G. Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(ii) polypyridyl complexes as anticancer drug candidates. Chem Soc Rev 2017; 46:7317-7337. [DOI: 10.1039/c7cs00356k] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(ii) polypyridyl complexes with anticancer properties are reviewed.
Collapse
Affiliation(s)
- Anna Notaro
- Chimie ParisTech
- PSL Research University
- Laboratory for Inorganic Chemical Biology
- F-75005 Paris
- France
| | - Gilles Gasser
- Chimie ParisTech
- PSL Research University
- Laboratory for Inorganic Chemical Biology
- F-75005 Paris
- France
| |
Collapse
|
45
|
Coordination behaviours of perimidine ligands incorporating fused N-donor heterocyclics towards rhenium(I) and -(V). Polyhedron 2016. [DOI: 10.1016/j.poly.2016.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Studies on Photocleavage, DNA Binding, Cytotoxicity, and Docking Studies of Ruthenium(II) Mixed Ligand Complexes. J Fluoresc 2016; 26:2119-2132. [DOI: 10.1007/s10895-016-1908-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023]
|
47
|
Ejidike IP, Ajibade PA. Ruthenium(III) Complexes of Heterocyclic Tridentate (ONN) Schiff Base: Synthesis, Characterization and its Biological Properties as an Antiradical and Antiproliferative Agent. Int J Mol Sci 2016; 17:ijms17010060. [PMID: 26742030 PMCID: PMC4730305 DOI: 10.3390/ijms17010060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 02/04/2023] Open
Abstract
The current work reports the synthesis, spectroscopic studies, antiradical and antiproliferative properties of four ruthenium(III) complexes of heterocyclic tridentate Schiff base bearing a simple 2′,4′-dihydroxyacetophenone functionality and ethylenediamine as the bridging ligand with RCHO moiety. The reaction of the tridentate ligands with RuCl3·3H2O lead to the formation of neutral complexes of the type [Ru(L)Cl2(H2O)] (where L = tridentate NNO ligands). The compounds were characterized by elemental analysis, UV-vis, conductivity measurements, FTIR spectroscopy and confirmed the proposed octahedral geometry around the Ru ion. The Ru(III) compounds showed antiradical potentials against 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, with DPPH scavenging capability in the order: [(PAEBOD)RuCl2] > [(BZEBOD)RuCl2] > [(MOABOD)RuCl2] > [Vit. C] > [rutin] > [(METBOD)RuCl2], and ABTS radical in the order: [(PAEBOD)RuCl2] < [(MOABOD)RuCl2] < [(BZEBOD)RuCl2] < [(METBOD)RuCl2]. Furthermore, in vitro anti-proliferative activity was investigated against three human cancer cell lines: renal cancer cell (TK-10), melanoma cancer cell (UACC-62) and breast cancer cell (MCF-7) by SRB assay.
Collapse
Affiliation(s)
- Ikechukwu P Ejidike
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P.B. X1314, Alice 5700, South Africa.
| | - Peter A Ajibade
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P.B. X1314, Alice 5700, South Africa.
| |
Collapse
|
48
|
Correa RS, de Oliveira KM, Delolo FG, Alvarez A, Mocelo R, Plutin AM, Cominetti MR, Castellano EE, Batista AA. Ru(II)-based complexes with N-(acyl)-N′,N′-(disubstituted)thiourea ligands: Synthesis, characterization, BSA- and DNA-binding studies of new cytotoxic agents against lung and prostate tumour cells. J Inorg Biochem 2015; 150:63-71. [DOI: 10.1016/j.jinorgbio.2015.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 11/26/2022]
|
49
|
Balakrishnan G, Rajendran T, Senthil Murugan K, Sathish Kumar M, Sivasubramanian VK, Ganesan M, Mahesh A, Thirunalasundari T, Rajagopal S. Interaction of rhenium(I) complex carrying long alkyl chain with Calf Thymus DNA: Cytotoxic and cell imaging studies. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.04.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Fu XB, Liu DD, Lin Y, Hu W, Mao ZW, Le XY. Water-soluble DNA minor groove binders as potential chemotherapeutic agents: synthesis, characterization, DNA binding and cleavage, antioxidation, cytotoxicity and HSA interactions. Dalton Trans 2015; 43:8721-37. [PMID: 24770345 DOI: 10.1039/c3dt53577k] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two new water-soluble copper(ii)-dipeptide complexes: [Cu(glygly)(PyTA)]ClO4·1.5H2O (1) and [Cu(glygly)(PzTA)]ClO4·1.5H2O (2) (glygly = glycylglycine anion, PyTA = 2,4-diamino-6-(2'-pyridyl)-1,3,5-triazine and PzTA = 2,4-diamino-6-(2'-pyrazino)-1,3,5-triazine), utilizing two interrelated DNA base-like ligands (PyTA and PzTA), have been synthesized and characterized. The structure elucidation for 1 performed by single crystal X-ray diffraction showed a one dimensional chain conformation in which the central copper ions arrange in a five-coordinate distorted square-pyramidal geometry. Spectroscopic titration, viscosity and electrophoresis measurements revealed that the complexes bound to DNA via an outside groove binding mode, and cleaved pBR322 DNA efficiently in the presence of ascorbate, probably via an oxidative mechanism with the involvement of ˙OH and ˙O2(-). Notably, the complexes exhibited considerable in vitro cytotoxicity against four human carcinoma cell lines (HepG2, HeLa, A549 and U87) with IC50 values ranging from 41.68 to 159.17 μM, in addition to their excellent SOD mimics (IC50 ~ 0.091 and 0.114 μM). Besides, multispectroscopic evidence suggested their HSA-binding at the cavity containing Trp-214 in subdomain IIA with moderate affinity, mainly via hydrophobic interaction. Further, the molecular docking technique utilized for ascertaining the mechanism and mode of action towards DNA and HSA theoretically verified the experimental results.
Collapse
Affiliation(s)
- Xia-Bing Fu
- Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642, PR China.
| | | | | | | | | | | |
Collapse
|