• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4612468)   Today's Articles (46)   Subscriber (49385)
For: Rosa A, Ricciardi G, Baerends EJ. Is [FeO]2+ the Active Center Also in Iron Containing Zeolites? A Density Functional Theory Study of Methane Hydroxylation Catalysis by Fe-ZSM-5 Zeolite. Inorg Chem 2010;49:3866-80. [DOI: 10.1021/ic1000073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Number Cited by Other Article(s)
1
Cheng Q, Li G, Yao X, Zheng L, Wang J, Emwas AH, Castaño P, Ruiz-Martínez J, Han Y. Maximizing Active Fe Species in ZSM-5 Zeolite Using Organic-Template-Free Synthesis for Efficient Selective Methane Oxidation. J Am Chem Soc 2023;145:5888-5898. [PMID: 36786783 PMCID: PMC10021013 DOI: 10.1021/jacs.2c13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
2
Yang WL, Zhang SD, Zhang MY. Theoretical Study of the Natural Active Structure of the Fe-SSZ-13 Zeolite and its Reactivity toward the Methane to Methanol Oxidation Reaction. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
3
Wang Y, Wang J, Wei J, Wang C, Wang H, Yang X. Catalytic Mechanisms and Active Species of Benzene Hydroxylation Reaction System Based on Fe-Based Enzyme-Mimetic Structure. Catal Letters 2022. [DOI: 10.1007/s10562-022-04238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
4
Extremely low barrier activation of methane on spin-polarized ferryl ion [FeO]2+ at the four-membered ring of zeolite. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
5
Oda A, Aono K, Murata N, Murata K, Yasumoto M, Tsunoji N, Sawabe K, Satsuma A. Rational design of ZSM-5 zeolite containing a high concentration of single Fe sites capable of catalyzing the partial oxidation of methane with high turnover frequency. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01987b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
6
Saiz F, Bernasconi L. Catalytic properties of the ferryl ion in the solid state: a computational review. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
7
Krisnandi YK, Nurani DA, Alfian DV, Sofyani U, Faisal M, Saragi IR, Pamungkas AZ, Pratama AP. The new challenge of partial oxidation of methane over Fe2O3/NaY and Fe3O4/NaY heterogeneous catalysts. Heliyon 2021;7:e08305. [PMID: 34805565 PMCID: PMC8586754 DOI: 10.1016/j.heliyon.2021.e08305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]  Open
8
Sánchez-López P, Kotolevich Y, Yocupicio-Gaxiola RI, Antúnez-García J, Chowdari RK, Petranovskii V, Fuentes-Moyado S. Recent Advances in Catalysis Based on Transition Metals Supported on Zeolites. Front Chem 2021;9:716745. [PMID: 34434919 PMCID: PMC8380812 DOI: 10.3389/fchem.2021.716745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022]  Open
9
Influence of extra-framework Al in Fe-MOR catalysts for the direct conversion of methane to oxygenates by nitrous oxide. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
10
Wang L, Li Z, Wang Z, Chen X, Song W, Zhao Z, Wei Y, Zhang X. Hetero-Metallic Active Sites in Omega (MAZ) Zeolite-Catalyzed Methane Partial Oxidation: A DFT Study. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
11
Hong S, Mpourmpakis G. Mechanistic understanding of methane-to-methanol conversion on graphene-stabilized single-atom iron centers. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00826a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
12
Panov GI, Starokon EV, Ivanov DP, Pirutko LV, Kharitonov AS. Active and super active oxygen on metals in comparison with metal oxides. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1778389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
13
Barona M, Gaggioli CA, Gagliardi L, Snurr RQ. DFT Study on the Catalytic Activity of ALD-Grown Diiron Oxide Nanoclusters for Partial Oxidation of Methane to Methanol. J Phys Chem A 2020;124:1580-1592. [PMID: 32017850 DOI: 10.1021/acs.jpca.9b11835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
14
Approaches for Selective Oxidation of Methane to Methanol. Catalysts 2020. [DOI: 10.3390/catal10020194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
15
Bols ML, Rhoda HM, Snyder BER, Solomon EI, Pierloot K, Schoonheydt RA, Sels BF. Advances in the synthesis, characterisation, and mechanistic understanding of active sites in Fe-zeolites for redox catalysts. Dalton Trans 2020;49:14749-14757. [PMID: 33140781 DOI: 10.1039/d0dt01857k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
16
Vorontsov AV. Advancing Fenton and photo-Fenton water treatment through the catalyst design. JOURNAL OF HAZARDOUS MATERIALS 2019;372:103-112. [PMID: 29709242 DOI: 10.1016/j.jhazmat.2018.04.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 05/29/2023]
17
Mahyuddin MH, Shiota Y, Yoshizawa K. Methane selective oxidation to methanol by metal-exchanged zeolites: a review of active sites and their reactivity. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02414f] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
18
Li S, Wang Y, Wu T, Schneider WF. First-Principles Analysis of Site- and Condition-Dependent Fe Speciation in SSZ-13 and Implications for Catalyst Optimization. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02107] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
19
Hydrogen abstraction from methane on cristobalite supported W and Mn oxo complexes: A DFT study. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Mahyuddin MH, Yoshizawa K. DFT exploration of active site motifs in methane hydroxylation by Ni-ZSM-5 zeolite. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01441h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
21
Snyder BER, Bols ML, Schoonheydt RA, Sels BF, Solomon EI. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Chem Rev 2017;118:2718-2768. [DOI: 10.1021/acs.chemrev.7b00344] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
22
Starokon EV, Malykhin SE, Parfenov MV, Zhidomirov GM, Kharitonov AS. Oxidation of lower alkenes by α-oxygen (FeIII–O•−)α on the FeZSM-5 surface: The epoxidation or the allylic oxidation? MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
23
Vogiatzis KD, Li G, Hensen EJM, Gagliardi L, Pidko EA. Electronic Structure of the [Cu3(μ-O)3]2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017;121:22295-22302. [PMID: 29051794 PMCID: PMC5641944 DOI: 10.1021/acs.jpcc.7b08714] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 05/25/2023]
24
Mahyuddin MH, Shiota Y, Staykov A, Yoshizawa K. Theoretical Investigation of Methane Hydroxylation over Isoelectronic [FeO]2+- and [MnO]+-Exchanged Zeolites Activated by N2O. Inorg Chem 2017;56:10370-10380. [DOI: 10.1021/acs.inorgchem.7b01284] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
25
Göltl F, Michel C, Andrikopoulos PC, Love AM, Hafner J, Hermans I, Sautet P. Computationally Exploring Confinement Effects in the Methane-to-Methanol Conversion Over Iron-Oxo Centers in Zeolites. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02640] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
26
Snyder BER, Vanelderen P, Bols ML, Hallaert SD, Böttger LH, Ungur L, Pierloot K, Schoonheydt RA, Sels BF, Solomon EI. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 2016;536:317-21. [PMID: 27535535 DOI: 10.1038/nature19059] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
27
Panov GI, Starokon EV, Parfenov MV, Pirutko LV. Single Turnover Epoxidation of Propylene by α-Complexes (FeIII–O•)α on the Surface of FeZSM-5 Zeolite. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
28
Distinct activity of the oxyl FeIIIO group in the methane dissociation by activated iron hydroxide: DFT predictions. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
29
Kazaryan A, Baerends EJ. Ligand Field Effects and the High Spin–High Reactivity Correlation in the H Abstraction by Non-Heme Iron(IV)–Oxo Complexes: A DFT Frontier Orbital Perspective. ACS Catal 2015. [DOI: 10.1021/cs501721y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
30
Hydrogen abstraction reactions of the [FeO]2+ moiety: The role of the electronic state. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
31
Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite. J Catal 2014. [DOI: 10.1016/j.jcat.2014.07.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
32
On the ferryl catalyst: Electronic structure and optimized ab initio geometry. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.01.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
33
Liu K, Li Y, Su J, Wang B. The reliability of DFT methods to predict electronic structures and minimum energy crossing point for [Fe IV O](OH) 2 models: A comparison study with MCQDPT method. J Comput Chem 2014;35:703-10. [PMID: 24497373 DOI: 10.1002/jcc.23535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 11/10/2022]
34
Starokon EV, Parfenov MV, Pirutko LV, Soshnikov IE, Panov GI. Epoxidation of ethylene by anion radicals of α-oxygen on the surface of FeZSM-5 zeolite. J Catal 2014. [DOI: 10.1016/j.jcat.2013.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
35
Starokon EV, Parfenov MV, Arzumanov SS, Pirutko LV, Stepanov AG, Panov GI. Oxidation of methane to methanol on the surface of FeZSM-5 zeolite. J Catal 2013. [DOI: 10.1016/j.jcat.2012.12.030] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
36
McMullin CL, Pierpont AW, Cundari TR. Complete methane-to-methanol catalytic cycle: A DFT study of oxygen atom transfer from N2O to late-row (MNi, Cu, Zn) β-diketiminate CH activation catalysts. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
37
Rosa A, Ricciardi G. Reactivity of compound II: electronic structure analysis of methane hydroxylation by oxoiron(IV) porphyrin complexes. Inorg Chem 2012;51:9833-45. [PMID: 22946694 DOI: 10.1021/ic301232r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
38
Hammond C, Forde MM, Ab Rahim MH, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM, Carley AF, Taylor SH, Willock DJ, Stangland EE, Kang J, Hagen H, Kiely CJ, Hutchings GJ. Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copper-Promoted Fe-ZSM-5. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108706] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
39
Hammond C, Forde MM, Ab Rahim MH, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM, Carley AF, Taylor SH, Willock DJ, Stangland EE, Kang J, Hagen H, Kiely CJ, Hutchings GJ. Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copper-Promoted Fe-ZSM-5. Angew Chem Int Ed Engl 2012;51:5129-33. [DOI: 10.1002/anie.201108706] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/02/2012] [Indexed: 11/06/2022]
40
Dietl N, Schlangen M, Schwarz H. Thermal Hydrogen-Atom Transfer from Methane: The Role of Radicals and Spin States in Oxo-Cluster Chemistry. Angew Chem Int Ed Engl 2012;51:5544-55. [DOI: 10.1002/anie.201108363] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Indexed: 11/11/2022]
41
Dietl N, Schlangen M, Schwarz H. Thermische Wasserstoffabstraktion aus Methan - zur Rolle von Radikalen und Spinzuständen in der Chemie von Oxoclustern. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108363] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
42
Gopakumar G, Belanzoni P, Baerends EJ. Hydroxylation catalysis by mononuclear and dinuclear iron oxo catalysts: a methane monooxygenase model system versus the Fenton reagent Fe(IV)O(H2O)5(2+). Inorg Chem 2011;51:63-75. [PMID: 22221279 DOI: 10.1021/ic200754w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA