1
|
Lafuerza S, Retegan M, Detlefs B, Chatterjee R, Yachandra V, Yano J, Glatzel P. New reflections on hard X-ray photon-in/photon-out spectroscopy. NANOSCALE 2020; 12:16270-16284. [PMID: 32760987 PMCID: PMC7808884 DOI: 10.1039/d0nr01983f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Analysis of the electronic structure and local coordination of an element is an important aspect in the study of the chemical and physical properties of materials. This is particularly relevant at the nanoscale where new phases of matter may emerge below a critical size. X-ray emission spectroscopy (XES) at synchrotron radiation sources and free electron lasers has enriched the field of X-ray spectroscopy. The spectroscopic techniques derived from the combination of X-ray absorption and emission spectroscopy (XAS-XES), such as resonant inelastic X-ray scattering (RIXS) and high energy resolution fluorescence detected (HERFD) XAS, are an ideal tool for the study of nanomaterials. New installations and beamline upgrades now often include wavelength dispersive instruments for the analysis of the emitted X-rays. With the growing use of XAS-XES, scientists are learning about the possibilities and pitfalls. We discuss some experimental aspects, assess the feasibility of measuring weak fluorescence lines in dilute, radiation sensitive samples, and present new experimental approaches for studying magnetic properties of colloidal nanoparticles directly in the liquid phase.
Collapse
Affiliation(s)
- Sara Lafuerza
- European Synchrotron Radiation Facility, 71 Avenue des Martyres, 38000 Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
2
|
Chen WT, Hsu CW, Lee JF, Pao CW, Hsu IJ. Theoretical Analysis of Fe K-Edge XANES on Iron Pentacarbonyl. ACS OMEGA 2020; 5:4991-5000. [PMID: 32201785 PMCID: PMC7081404 DOI: 10.1021/acsomega.9b03887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/21/2020] [Indexed: 05/21/2023]
Abstract
Iron pentacarbonyl (Fe(CO)5) is a versatile material that is utilized as an inhibitor of flame, shows soot suppressibility, and is used as a precursor for focused electron-beam-induced deposition (FEBID). X-ray absorption near-edge structure (XANES) of the K edge, which is a powerful technique for monitoring the oxidation states and coordination environment of metal sites, can be used to gain insight into Fe(CO)5-related reaction mechanisms in in situ experiments. We use a finite difference method (FDM) and molecular-orbital-based time-dependent density functional theory (TDDFT) calculations to clarify the Fe K-edge XANES features of Fe(CO)5. The two pre-edge peaks P1 and P2 are mainly the Fe(1s) → Fe-C(σ*) and Fe(1s) → Fe-C(π*) transitions, respectively. When the geometry transformed from D 3h to C 4v symmetry, a ∼30% decrease of the pre-edge P2 intensity was observed in the simulated spectra. This implies that the π bonding of Fe and CO is sensitive to changes in geometry. The following rising edge and white line regions are assigned to the Fe(1s) → Fe(4p)(mixing C(2p)) transitions. Our results may provide useful information to interpret XANES spectra variations of in situ reactions of metal-CO or similar compounds with π acceptor ligandlike metal-CN complexes.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Che-Wei Hsu
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Jyh-Fu Lee
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - I-Jui Hsu
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
- Research
and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
- E-mail: .
Tel: +886-2-27712171#2420
| |
Collapse
|
3
|
Ardiccioni C, Arcovito A, Della Longa S, van der Linden P, Bourgeois D, Weik M, Montemiglio LC, Savino C, Avella G, Exertier C, Carpentier P, Prangé T, Brunori M, Colloc’h N, Vallone B. Ligand pathways in neuroglobin revealed by low-temperature photodissociation and docking experiments. IUCRJ 2019; 6:832-842. [PMID: 31576217 PMCID: PMC6760443 DOI: 10.1107/s2052252519008157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
A combined biophysical approach was applied to map gas-docking sites within murine neuroglobin (Ngb), revealing snapshots of events that might govern activity and dynamics in this unique hexacoordinate globin, which is most likely to be involved in gas-sensing in the central nervous system and for which a precise mechanism of action remains to be elucidated. The application of UV-visible microspectroscopy in crystallo, solution X-ray absorption near-edge spectroscopy and X-ray diffraction experiments at 15-40 K provided the structural characterization of an Ngb photolytic intermediate by cryo-trapping and allowed direct observation of the relocation of carbon monoxide within the distal heme pocket after photodissociation. Moreover, X-ray diffraction at 100 K under a high pressure of dioxygen, a physiological ligand of Ngb, unravelled the existence of a storage site for O2 in Ngb which coincides with Xe-III, a previously described docking site for xenon or krypton. Notably, no other secondary sites were observed under our experimental conditions.
Collapse
Affiliation(s)
- Chiara Ardiccioni
- Department of Life and Environmental Sciences, New York–Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Alessandro Arcovito
- Istituto di Biochimica e Biochimica Clinica, Universitá Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli–IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Stefano Della Longa
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Peter van der Linden
- European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France
- Partnership for Soft Condensed Matter (PSCM), 38043 Grenoble, France
| | | | - Martin Weik
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Linda Celeste Montemiglio
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Istituto Pasteur–Fondazione Cenci Bolognetti, Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giovanna Avella
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Chemistry Department, Merck Serono S.p.A., Via Casilina 125, 00176 Rome, Italy
| | - Cécile Exertier
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Philippe Carpentier
- European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France
- CEA/DRF/BIG/CBM/BioCat LCBM CNRS UMR 5249, Université Grenoble Alpes, 38000 Grenoble, France
| | - Thierry Prangé
- CiTeCoM UMR 8038 CNRS, Université Paris Descartes, Paris, France
| | - Maurizio Brunori
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Nathalie Colloc’h
- ISTCT UMR 6030 CNRS Université de Caen Normandie CEA, CERVOxy Team, Centre Cyceron, Caen, France
| | - Beatrice Vallone
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Istituto Pasteur–Fondazione Cenci Bolognetti, Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Schuth N, Mebs S, Huwald D, Wrzolek P, Schwalbe M, Hemschemeier A, Haumann M. Effective intermediate-spin iron in O 2-transporting heme proteins. Proc Natl Acad Sci U S A 2017; 114:8556-8561. [PMID: 28739893 PMCID: PMC5559043 DOI: 10.1073/pnas.1706527114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteins carrying an iron-porphyrin (heme) cofactor are essential for biological O2 management. The nature of Fe-O2 bonding in hemoproteins is debated for decades. We used energy-sampling and rapid-scan X-ray Kβ emission and K-edge absorption spectroscopy as well as quantum chemistry to determine molecular and electronic structures of unligated (deoxy), CO-inhibited (carboxy), and O2-bound (oxy) hemes in myoglobin (MB) and hemoglobin (HB) solutions and in porphyrin compounds at 20-260 K. Similar metrical and spectral features revealed analogous heme sites in MB and HB and the absence of low-spin (LS) to high-spin (HS) conversion. Amplitudes of Kβ main-line emission spectra were directly related to the formal unpaired Fe(d) spin count, indicating HS Fe(II) in deoxy and LS Fe(II) in carboxy. For oxy, two unpaired Fe(d) spins and, thus by definition, an intermediate-spin iron center, were revealed by our static and kinetic X-ray data, as supported by (time-dependent) density functional theory and complete-active-space self-consistent-field calculations. The emerging Fe-O2 bonding situation includes in essence a ferrous iron center, minor superoxide character of the noninnocent ligand, significant double-bond properties of the interaction, and three-center electron delocalization as in ozone. It resolves the apparently contradictory classical models of Pauling, Weiss, and McClure/Goddard into a unifying view of O2 bonding, tuned toward reversible oxygen transport.
Collapse
Affiliation(s)
- Nils Schuth
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Stefan Mebs
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Dennis Huwald
- Department of Plant Biochemistry, Section of Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Pierre Wrzolek
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Matthias Schwalbe
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Anja Hemschemeier
- Department of Plant Biochemistry, Section of Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
6
|
Lima FA, Penfold TJ, van der Veen RM, Reinhard M, Abela R, Tavernelli I, Rothlisberger U, Benfatto M, Milne CJ, Chergui M. Probing the electronic and geometric structure of ferric and ferrous myoglobins in physiological solutions by Fe K-edge absorption spectroscopy. Phys Chem Chem Phys 2014; 16:1617-31. [PMID: 24317683 DOI: 10.1039/c3cp53683a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an iron K-edge X-ray absorption study of carboxymyoglobin (MbCO), nitrosylmyoglobin (MbNO), oxymyoglobin (MbO2), cyanomyoglobin (MbCN), aquomet myoglobin (metMb) and unligated myoglobin (deoxyMb) in physiological media. The analysis of the XANES region is performed using the full-multiple scattering formalism, implemented within the MXAN package. This reveals trends within the heme structure, absent from previous crystallographic and X-ray absorption analysis. In particular, the iron-nitrogen bond lengths in the porphyrin ring converge to a common value of about 2 Å, except for deoxyMb whose bigger value is due to the doming of the heme. The trends of the Fe-Nε (His93) bond length is found to be consistent with the effect of ligand binding to the iron, with the exception of MbNO, which is explained in terms of the repulsive trans effect. We derive a high resolution description of the relative geometry of the ligands with respect to the heme and quantify the magnitude of the heme doming in the deoxyMb form. Finally, time-dependent density functional theory is used to simulate the pre-edge spectra and is found to be in good agreement with the experiment. The XAS spectra typically exhibit one pre-edge feature which arises from transitions into the unoccupied dσ and dπ - πligand* orbitals. 1s → dπ transitions contribute weakly for MbO2, metMb and deoxyMb. However, despite this strong Fe d contribution these transitions are found to be dominated by the dipole (1s → 4p) moment due to the low symmetry of the heme environment.
Collapse
Affiliation(s)
- Frederico A Lima
- École Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, CH, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Arcovito A, della Longa S. Local structure and dynamics of hemeproteins by X-ray absorption near edge structure spectroscopy. J Inorg Biochem 2012; 112:93-9. [PMID: 22541673 DOI: 10.1016/j.jinorgbio.2012.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/19/2022]
Abstract
X-ray absorption near edge structure (XANES) spectroscopy is a synchrotron radiation technique sensitive to the local structure and dynamics around the metal site of a heme containing protein. Advances in detection techniques and theoretical/computational platforms in the last 15 years allowed the use of XANES as a quantitative probe of the key structural determinants driving functional changes, both in a concerted way with protein crystallography and EXAFS (extended X-ray absorption fine structure), or as a stand-alone method to apply in the crystal state as well as in solution. Moreover, the local dynamics of the heme site has been deeply investigated, on one hand, coupling XANES to classical photolysis experiments at cryogenic temperatures; on the other hand, the intrinsic property of the synchrotron radiation to induce radiolysis events, has been exploited to investigate specific cryotrapped intermediates, using X-rays both as a pump and a probe. Insights on the XANES method and some specific examples are presented to illustrate these topics.
Collapse
Affiliation(s)
- Alessandro Arcovito
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy.
| | | |
Collapse
|
8
|
Arcovito A, Longa SD. Ligand Binding Intermediates of Nitrosylated Human Hemoglobin Induced at Low Temperature by X-ray Irradiation. Inorg Chem 2011; 50:9423-9. [DOI: 10.1021/ic201086u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Arcovito
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1,00168, Roma, Italy
| | - Stefano Della Longa
- Dipartimento di Medicina Sperimentale, Università dell’ Aquila via Vetoio, loc. Coppito II 67100 L'Aquila, Italy
| |
Collapse
|