1
|
Schlachter A, Karsenti PL, Harvey PD, Langlois A. The Excited-State N-H Tautomerization Rate in Free-Base Corroles. Chemistry 2024; 30:e202401709. [PMID: 38925567 DOI: 10.1002/chem.202401709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Corrole is a tetrapyrrolic dye with a structure that resembles porphyrin, apart from a single missing carbon. The absence of this carbon results in the re-arrangement of the double bonds within the macrocycle, and the presence of three pyrrolic protons in the central cavity in its free-base form. These protons lead to the existence of two distinct tautomeric structures that exist in a dynamic equilibrium. Although the ground-state energies of the tautomers are similar, the excited states show a significant difference in energy which unbalances the equilibrium between the tautomers and results in rapid excited-state tautomerization, favouring one tautomeric species over the other. Although the excited-state tautomerization process has been known for a long time, very few studies have been performed on it, leaving many key aspects of the process poorly understood. Herein we show how ultrafast photoluminescence can be used to experimentally determine the rates of excited-state tautomerization and activation energies of three free-base corrole derivatives thus allowing us to completely describe the excited-state dynamics of the unusual excited state of free-base corrole and opening the door to the development of new materials that can exploit its unique characteristics.
Collapse
Affiliation(s)
- Adrien Schlachter
- Département de Chimie, Université de Sherbrooke, 2550 Boulevard Université, Sherbrooke, J1K 2R1, PQ Canada
| | - Paul-Ludovic Karsenti
- Département de Chimie, Université de Sherbrooke, 2550 Boulevard Université, Sherbrooke, J1K 2R1, PQ Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, 2550 Boulevard Université, Sherbrooke, J1K 2R1, PQ Canada
| | - Adam Langlois
- Département de Chimie, Université de Sherbrooke, 2550 Boulevard Université, Sherbrooke, J1K 2R1, PQ Canada
| |
Collapse
|
2
|
Sautour M, Pacquelet S, Gros CP, Desbois N. Evaluation of carboxylic acid-derivatized corroles as novel gram-positive antibacterial agents under non-photodynamic inactivation conditions. Bioorg Med Chem Lett 2023; 82:129167. [PMID: 36736706 DOI: 10.1016/j.bmcl.2023.129167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Herein, we report the synthesis and evaluation of carboxylic acid corroles bearing either one, two, three of four carboxylic groups as gram-positive antibacterial agents against two strains of S. aureus, one methicillin-sensible (MSSA) and the other methicillin-resistant (MRSA). Lead compounds 5 and 6 show low minimum inhibitory concentrations (MICs) of 0.78 μg/mL against both MSSA and MRSA. These molecules, previously underexplored as antibacterial agents, can now serve as a new scaffold for antimicrobial development.
Collapse
Affiliation(s)
- Marc Sautour
- Parasitology-Mycology Laboratory, University Hospital Biology Platform, Dijon University Hospital Center (CHU), 21000 Dijon, France; UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université Bourgogne Franche-Comté, AgroSup Dijon, 21000 Dijon, France
| | - Sandrine Pacquelet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR CNRS 6302), Université Bourgogne Franche-Comté, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Claude P Gros
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR CNRS 6302), Université Bourgogne Franche-Comté, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Nicolas Desbois
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR CNRS 6302), Université Bourgogne Franche-Comté, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
| |
Collapse
|
3
|
Pain T, Mondal S, Jena S, Dutta Gupta D, Biswal HS, Kar S. Synthesis, Characterization, and the N Atom Transfer Reactivity of a Nitridochromium(V) Complex Stabilized by a Corrolato Ligand. ACS OMEGA 2022; 7:28138-28147. [PMID: 35990448 PMCID: PMC9386825 DOI: 10.1021/acsomega.2c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Metal complexes bearing nitrido ligands (M≡N) are at the forefront of current scientific research due to their resemblances with the metal complexes involved in the nitrogen fixation reactions. An oxo(corrolato)chromium(V) complex was used as a precursor complex for the facile synthesis of a new nitrido(corrolato)chromium(V) complex. The nitrido(corrolato)chromium(V) complex was characterized by various spectroscopic techniques. Density functional theory (DFT) calculations were performed on the nitrido(corrolato)chromium(V) complex to assign the vibrational and electronic transitions of this complex. The chromium-nitrogen (nitrido) bond distance obtained in the DFT-optimized structure is 1.530 Å and matches well with the earlier reported authentic Cr≡N bond distances obtained from the single-crystal X-ray diffraction data. This nitrido(corrolato)chromium(V) compound exhibited a sharp Soret band at 438 nm and a Q band at 608 nm. DFT calculations deliver that the origin of the bands at 438 and 608 nm is due to the intraligand charge transfer transitions. The nitrido(corrolato)chromium(V) complex showed one reversible oxidation and one reversible reduction couple at +0.53 and -0.06 V, respectively, vs the Ag/AgCl reference electrode. The simulation of the electron paramagnetic resonance data of the nitrido(corrolato)chromium(V) compound provided the following parameters: g iso = 1.987, A 53Cr = 26 G, and A 14N = 2.71 G. From all these analyses, we can conclude that the electronic configuration in the native state of nitrido(corrolato)chromium(V) can be best described as [(cor3-)CrV(N3-)]-. Reactions of nitrido(corrolato)chromium(V) with the chloro(porphyrinato)chromium(III) complex resulted in a complete intermetal N atom transfer reaction between chromium corrole and chromium porphyrin complexes. A second-order rate constant of 4.29 ± 0.10 M-1 s-1 was obtained for this reaction. It was also proposed that this reaction proceeds via a bimetallic μ-nitrido intermediate.
Collapse
Affiliation(s)
- Tanmoy Pain
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar 752050, India
- Homi
Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sruti Mondal
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar 752050, India
- Homi
Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Subhrakant Jena
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar 752050, India
- Homi
Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dwaipayan Dutta Gupta
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar 752050, India
- Homi
Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Himansu S. Biswal
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar 752050, India
- Homi
Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sanjib Kar
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar 752050, India
- Homi
Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
4
|
G Jafari M, Fehn D, Reinholdt A, Hernández-Prieto C, Patel P, Gau MR, Carroll PJ, Krzystek J, Liu C, Ozarowski A, Telser J, Delferro M, Meyer K, Mindiola DJ. Tale of Three Molecular Nitrides: Mononuclear Vanadium (V) and (IV) Nitrides As Well As a Mixed-Valence Trivanadium Nitride Having a V 3N 4 Double-Diamond Core. J Am Chem Soc 2022; 144:10201-10219. [PMID: 35652694 DOI: 10.1021/jacs.2c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transmetallation of [VCl3(THF)3] and [TlTptBu,Me] afforded [(TptBu,Me)VCl2] (1, TptBu,Me = hydro-tris(3-tert-butyl-5-methylpyrazol-1-yl)borate), which was reduced with KC8 to form a C3v symmetric VII complex, [(TptBu,Me)VCl] (2). Complex 1 has a high-spin (S = 1) ground state and displays rhombic high-frequency and -field electron paramagnetic resonance (HFEPR) spectra, while complex 2 has an S = 3/2 4A2 ground state observable by conventional EPR spectroscopy. Complex 1 reacts with NaN3 to form the VV nitride-azide complex [(TptBu,Me)V≡N(N3)] (3). A likely VIII azide intermediate en route to 3, [(TptBu,Me)VCl(N3)] (4), was isolated by reacting 1 with N3SiMe3. Complex 4 is thermally stable but reacts with NaN3 to form 3, implying a bis-azide intermediate, [(TptBu,Me)V(N3)2] (A), leading to 3. Reduction of 3 with KC8 furnishes a trinuclear and mixed-valent nitride, [{(TptBu,Me)V}2(μ4-VN4)] (5), conforming to a Robin-Day class I description. Complex 5 features a central vanadium ion supported only by bridging nitride ligands. Contrary to 1, complex 2 reacts with NaN3 to produce an azide-bridged dimer, [{(TptBu,Me)V}2(1,3-μ2-N3)2] (6), with two antiferromagnetically coupled high-spin VII ions. Complex 5 could be independently produced along with [(κ2-TptBu,Me)2V] upon photolysis of 6 in arene solvents. The putative {VIV≡N} intermediate, [(TptBu,Me)V≡N] (B), was intercepted by photolyzing 6 in a coordinating solvent, such as tetrahydrofuran (THF), yielding [(TptBu,Me)V≡N(THF)] (B-THF). In arene solvents, B-THF expels THF to afford 5 and [(κ2-TptBu,Me)2V]. A more stable adduct (B-OPPh3) was prepared by reacting B-THF with OPPh3. These adducts of B are the first neutral and mononuclear VIV nitride complexes to be isolated.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dominik Fehn
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cristina Hernández-Prieto
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Prajay Patel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Karsten Meyer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Mondal S, Naik PK, Adha JK, Kar S. Synthesis, characterization, and reactivities of high valent metal–corrole (M = Cr, Mn, and Fe) complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Langlois A, Xu HJ, Karsenti PL, Gros CP, Harvey PD. Excited State N−H Tautomer Selectivity in the Singlet Energy Transfer of a Zinc(II)-Porphyrin-Truxene-Corrole Assembly. Chemistry 2017; 23:5010-5022. [DOI: 10.1002/chem.201605909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Langlois
- Département de Chimie; Université de Sherbrooke; Sherbrooke PQ J1K 2R1 Canada
| | - Hai-Jun Xu
- Université de Bourgogne Franche-Comté UBFC ICMUB; UMR CNRS 6302; 9 Avenue Alain Savary BP 47870 21078 Dijon Cedex France
- Present address: College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P.R. China
| | | | - Claude P. Gros
- Université de Bourgogne Franche-Comté UBFC ICMUB; UMR CNRS 6302; 9 Avenue Alain Savary BP 47870 21078 Dijon Cedex France
| | - Pierre D. Harvey
- Département de Chimie; Université de Sherbrooke; Sherbrooke PQ J1K 2R1 Canada
| |
Collapse
|
7
|
Ivanova YB, Savva VA, Mamardashvili NZ, Starukhin AS, Ngo TH, Dehaen W, Maes W, Kruk MM. Corrole NH tautomers: spectral features and individual protonation. J Phys Chem A 2012; 116:10683-94. [PMID: 22985133 DOI: 10.1021/jp305325e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protonation of a free-base meso-pyrimidinyl-substituted AB(2)-corrole (H(3)AB(2)) in ethanol solution by stepwise addition of sulfuric acid has been studied in the temperature range from 293 to 333 K. The formation rate of protonated species was found to depend profoundly on the temperature at which the titration was undertaken. Two steps in the titration curve were identified at temperatures around 293-298 K, whereas one-step formation of protonated species was found to occur at temperatures above 308 K. The protonation product was the same in both cases, i.e., H(4)AB(2)(+) corrole, protonated at the macrocycle core nitrogen atoms. The two steps in the protonation kinetics at lower temperatures were attributed to protonation of individual tautomers of the free-base H(3)AB(2) corrole. To the best of our knowledge, this is the first well-illustrated (spectrophotometric) observation of individual properties of corrole NH tautomers in fluid solution. Concomitant increase in the NH tautomerization rate with increasing temperature is proposed to account for the one-step protonation. Evidences for the role of individual corrole NH tautomers in the protonation process as well as their optical features are discussed based on spectroscopic results and simulation data.
Collapse
Affiliation(s)
- Yulia B Ivanova
- Institute of Solution Chemistry of Russian Academy of Sciences, 153045, Ivanovo, Academicheskaya str. 1, Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ngo TH, Nastasi F, Puntoriero F, Campagna S, Dehaen W, Maes W. Corrole-Porphyrin Conjugates with Interchangeable Metal Centers. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200836] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Nigel-Etinger I, Goldberg I, Gross Z. 5d early-transition-metal corroles: a trioxo-bridged binuclear tungsten(VI) derivative. Inorg Chem 2012; 51:1983-5. [PMID: 22300417 DOI: 10.1021/ic202325h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and full characterization of the first tungsten corrole reveal that it is a binuclear trioxo-bridged complex of tungsten(VI), a coordination motif without precedence for tungsten chelated by other ligands.
Collapse
Affiliation(s)
- Izana Nigel-Etinger
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | |
Collapse
|