1
|
Diversification of copper complexes with 2,2′-bipyridyl ligand bearing benzylthio groups due to the different gas atmosphere. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Rahman AB, Okamoto H, Miyazawa Y, Aoki S. Design and Synthesis of Supramolecular Phosphatases Formed from a Bis(Zn
2+
‐Cyclen) Complex, Barbital‐Crown‐K
+
Conjugate and Cu
2+
for the Catalytic Hydrolysis of Phosphate Monoester. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Akib Bin Rahman
- Faculty of Pharmaceutical Science Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Hirokazu Okamoto
- Faculty of Pharmaceutical Science Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Yuya Miyazawa
- Faculty of Pharmaceutical Science Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Science Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
- Research Institute for Science and Technology Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
- Research Institute for Biomedical Sciences Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| |
Collapse
|
3
|
Pramanik SK, Das A. Small luminescent molecular probe for developing as assay for alkaline phosphatase. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Development of metallosupramolecular phosphatases based on the combinatorial self-assembly of metal complexes and organic building blocks for the catalytic hydrolysis of phosphate monoesters. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Zhu X, Xu G, Chamoreau L, Zhang Y, Mouriès‐Mansuy V, Fensterbank L, Bistri‐Aslanoff O, Roland S, Sollogoub M. Permethylated NHC‐Capped α‐ and β‐Cyclodextrins (ICyD
Me
) Regioselective and Enantioselective Gold‐Catalysis in Pure Water. Chemistry 2020; 26:15901-15909. [DOI: 10.1002/chem.202001990] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/29/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Xiaolei Zhu
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Guangcan Xu
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Lise‐Marie Chamoreau
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Yongmin Zhang
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Virginie Mouriès‐Mansuy
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Louis Fensterbank
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Olivia Bistri‐Aslanoff
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Sylvain Roland
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Matthieu Sollogoub
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| |
Collapse
|
6
|
Miyazawa Y, Rahman AB, Saga Y, Imafuku H, Hisamatsu Y, Aoki S. Catalytic Hydrolysis of Phosphate Monoester by Supramolecular Complexes Formed by the Self-Assembly of a Hydrophobic Bis(Zn 2+-cyclen) Complex, Copper, and Barbital Units That Are Functionalized with Amino Acids in a Two-Phase Solvent System. MICROMACHINES 2019; 10:mi10070452. [PMID: 31277494 PMCID: PMC6680849 DOI: 10.3390/mi10070452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/02/2022]
Abstract
We previously reported on the preparation of supramolecular complexes by the 2:2:2 assembly of a dinuclear Zn2+-cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) complex having a 2,2′-bipyridyl linker equipped with 0~2 long alkyl chains (Zn2L1~Zn2L3), 5,5-diethylbarbituric acid (Bar) derivatives, and a copper(II) ion (Cu2+) in aqueous solution and two-phase solvent systems and their phosphatase activities for the hydrolysis of mono(4-nitrophenyl) phosphate (MNP). These supermolecules contain Cu2(μ-OH)2 core that mimics the active site of alkaline phosphatase (AP), and one of the ethyl groups of the barbital moiety is located in close proximity to the Cu2(μ-OH)2 core. The generally accepted knowledge that the amino acids around the metal center in the active site of AP play important roles in its hydrolytic activity inspired us to modify the side chain of Bar with various functional groups in an attempt to mimic the active site of AP in the artificial system, especially in two-phase solvent system. In this paper, we report on the design and synthesis of new supramolecular complexes that are prepared by the combined use of bis(Zn2+-cyclen) complexes (Zn2L1, Zn2L2, and Zn2L3), Cu2+, and Bar derivatives containing amino acid residues. We present successful formation of these artificial AP mimics with respect to the kinetics of the MNP hydrolysis obeying Michaelis–Menten scheme in aqueous solution and a two-phase solvent system and to the mode of the product inhibition by inorganic phosphate.
Collapse
Affiliation(s)
- Yuya Miyazawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akib Bin Rahman
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yutaka Saga
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroki Imafuku
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
7
|
Rahman AB, Imafuku H, Miyazawa Y, Kafle A, Sakai H, Saga Y, Aoki S. Catalytic Hydrolysis of Phosphate Monoester by Supramolecular Phosphatases Formed from a Monoalkylated Dizinc(II) Complex, Cyclic Diimide Units, and Copper(II) in Two-Phase Solvent System. Inorg Chem 2019; 58:5603-5616. [PMID: 30969761 DOI: 10.1021/acs.inorgchem.8b03586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Design and synthesis of enzyme mimic with programmed molecular interaction among several building blocks including metal complexes and metal chelators is of intellectual and practical significance. The preparation of artificial enzymes that mimic the natural enzymes such as hydrolases, phosphatases, etc. remains a great challenge in the field of supramolecular chemistry. Herein we report on the design and synthesis of asymmetric (nonsymmetric) supermolecules by the 2:2:2 self-assembly of an amphiphilic zinc(II)-cyclen complex containing a 2,2'-bipyridyl linker and one long alkyl chain (Zn2L3), barbital analogues, and Cu2+ as model compounds of an enzyme alkaline phosphatase that catalyzes the hydrolysis of phosphate monoesters such as mono(4-nitrophenyl)phosphate at neutral pH in two-phase solvent system (H2O/CHCl3) in pH 7.4 and 37 °C. Hydrolytic activity of these complexes was found to be catalytic, and their catalytic turnover numbers are 3-4. The mechanistic studies based on the UV/vis and emission spectra of the H2O and CHCl3 phases of the reaction mixtures suggest that the hydrophilicity/hydrophobicity balance of the supramolecular catalysts is an important factor for catalytic activity.
Collapse
|
8
|
Schattschneider C, Doniz Kettenmann S, Hinojosa S, Heinrich J, Kulak N. Biological activity of amphiphilic metal complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Al Ansari YF, Baulin VE. 1,5-Bis[2-(Dioxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and Its Analogs: Acidity and Complexation in Aqueous Media Containing Copper(II) Cation. RUSS J INORG CHEM+ 2019. [DOI: 10.1134/s0036023619040028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Tamura Y, Hisamatsu Y, Kumar S, Itoh T, Sato K, Kuroda R, Aoki S. Efficient Synthesis of Tris-Heteroleptic Iridium(III) Complexes Based on the Zn2+-Promoted Degradation of Tris-Cyclometalated Iridium(III) Complexes and Their Photophysical Properties. Inorg Chem 2016; 56:812-833. [DOI: 10.1021/acs.inorgchem.6b02270] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuichi Tamura
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sarvendra Kumar
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Taiki Itoh
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kyouhei Sato
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Reiko Kuroda
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
11
|
Pyrazole bridged dinuclear Cu(II) and Zn(II) complexes as phosphatase models: Synthesis and activity. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.07.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Hisamatsu Y. Design and Synthesis of Functional Molecules Based on Complexation and Their Biological Applications. YAKUGAKU ZASSHI 2016; 136:1601-1611. [DOI: 10.1248/yakushi.16-00196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Tanaka T, Nishiura Y, Araki R, Saido T, Abe R, Aoki S. 11B NMR Probes of Copper(II): Finding and Implications of the Cu2+-Promoted Decomposition ofortho-Carborane Derivatives. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Bhattacharya S, Roy S, Chattopadhyay S. Tetrazolate bridged dinuclear photo-luminescent zinc(II) Schiff base complex prepared via 1,3-dipolar cycloaddition at ambient condition. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1153078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Sumit Roy
- Department of Chemistry, Jadavpur University, Kolkata, India
| | | |
Collapse
|
15
|
Xue SS, Zhao M, Ke ZF, Cheng BC, Su H, Cao Q, Cao ZK, Wang J, Ji LN, Mao ZW. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes. Sci Rep 2016; 6:22080. [PMID: 26916830 PMCID: PMC4768151 DOI: 10.1038/srep22080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/05/2016] [Indexed: 11/30/2022] Open
Abstract
It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1–S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.
Collapse
Affiliation(s)
- Shan-Shan Xue
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Meng Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuo-Feng Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Bei-Chen Cheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hua Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhen-Kun Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jun Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
16
|
Hisamatsu Y, Miyazawa Y, Yoneda K, Miyauchi M, Zulkefeli M, Aoki S. Supramolecular Complexes Formed by the Self-assembly of Hydrophobic Bis(Zn 2+-cyclen) Complexes, Copper, and Di- or Triimide Units for the Hydrolysis of Phosphate Mono- and Diesters in Two-Phase Solvent Systems (Cyclen=1,4,7,10-Tetraazacyclododecane). Chem Pharm Bull (Tokyo) 2016; 64:451-64. [DOI: 10.1248/cpb.c15-01014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yuya Miyazawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kakeru Yoneda
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Miki Miyauchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
17
|
Tirel EY, Williams NH. Enhancing Phosphate Diester Cleavage by a Zinc Complex through Controlling Nucleophile Coordination. Chemistry 2015; 21:7053-6. [PMID: 25787696 DOI: 10.1002/chem.201500619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/11/2022]
Abstract
Metal-ion complexes are the most effective artificial catalysts capable of cleaving phosphate diesters under mild aqueous conditions. A central strategy for making these complexes highly reactive has been to use ligand-based alcohols that are coordinated to the ion, providing an ionised nucleophile under neutral conditions but at the expense of deactivating it. We have created a highly reactive Zn complex that is 350-fold more reactive than an alcohol analogue by preventing the nucleophile binding to the metal ion. This strategy successfully delivers the benefits of efficient nucleophile delivery without strongly deactivating the metal ion Lewis acidity nor the oxyanion nucleophilicity. Varying the leaving group reveals that the transition state of the reaction is much further advanced than the reaction with hydroxide.
Collapse
Affiliation(s)
- Emmanuel Y Tirel
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF (UK)
| | | |
Collapse
|
18
|
Zulkefeli M, Hisamatsu Y, Suzuki A, Miyazawa Y, Shiro M, Aoki S. Supramolecular Phosphatases Formed by the Self-Assembly of the Bis(Zn2+-Cyclen) Complex, Copper(II), and Barbital Derivatives in Water. Chem Asian J 2014; 9:2831-41. [DOI: 10.1002/asia.201402513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/05/2014] [Indexed: 01/19/2023]
|
19
|
Zhamoitina AI, Sauerwein Y, König B, Arslanov VV, Kalinina MA. A binary catalytic system based on mixed monolayers of a phospholipid and amphiphilic bis(Zn2+-cyclen). COLLOID JOURNAL 2014. [DOI: 10.1134/s1061933x14010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Zhang X, Zhu Y, Zheng X, Phillips DL, Zhao C. Mechanismic Investigation on the Cleavage of Phosphate Monoester Catalyzed by Unsymmetrical Macrocyclic Dinuclear Complexes: The Selection of Metal Centers and the Intrinsic Flexibility of the Ligand. Inorg Chem 2014; 53:3354-61. [DOI: 10.1021/ic402717x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xuepeng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI
of Environment and Energy Chemistry, School of Chemistry and Chemical
Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Yajie Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI
of Environment and Energy Chemistry, School of Chemistry and Chemical
Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Xiaowei Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI
of Environment and Energy Chemistry, School of Chemistry and Chemical
Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - David Lee Phillips
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI
of Environment and Energy Chemistry, School of Chemistry and Chemical
Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| |
Collapse
|
21
|
Ariyasu S, Hanaya K, Watanabe E, Suzuki T, Horie K, Hayase M, Abe R, Aoki S. Selective capture and collection of live target cells using a photoreactive silicon wafer device modified with antibodies via a photocleavable linker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13118-13126. [PMID: 22889078 DOI: 10.1021/la302393p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A device for the capture and recollection of live target cells is described. The platform was a silicon (Si) wafer modified with an anti-HEL antibody (anti-HEL-IgG, HEL = hen egg lysozyme) through a photocleavable 3-amino-3-(2-nitrophenyl)propionic acid (ANP) linker. The modification processes of the Si wafer surface were monitored by Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and fast-scanning atomic force microscopy (FS-AFM). The attachment of IgG and its release reaction on the Si surface via the photochemical cleavage of the ANP linker were observed directly by FS-AFM. The results of an enzyme-linked immunosorbent assay (ELISA) indicated that the photorelease of the complex of anti-HEL-IgG with the secondary antibody-alkaline phosphatase hybrid (secondary IgG-AP) from the Si surface occurs with minimum damage. Furthermore, it was possible to collect SP2/O cells selectively that express HEL on their cell membranes (SP2/O-HEL) on the Si wafer device. Photochemical cleavage of the ANP linker facilitated the effective release of living SP2/O cells whose viability was verified by staining experiments using tripan blue. Moreover, it was possible to reculture the recovered cells. This methodology represents an effective strategy for isolating intact target cells in the biological and medicinal sciences and related fields.
Collapse
Affiliation(s)
- Shinya Ariyasu
- Center for Technologies against Cancer, Tokyo University of Science, 2641 Yamazaki, Noda, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Der BS, Edwards DR, Kuhlman B. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering. Biochemistry 2012; 51:3933-40. [PMID: 22510088 PMCID: PMC3348550 DOI: 10.1021/bi201881p] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here we show that a recent computationally designed zinc-mediated protein interface is serendipitously capable of catalyzing carboxyester and phosphoester hydrolysis. Although the original motivation was to design a de novo zinc-mediated protein-protein interaction (called MID1-zinc), we observed in the homodimer crystal structure a small cleft and open zinc coordination site. We investigated if the cleft and zinc site at the designed interface were sufficient for formation of a primitive active site that can perform hydrolysis. MID1-zinc hydrolyzes 4-nitrophenyl acetate with a rate acceleration of 10(5) and a k(cat)/K(M) of 630 M(-1) s(-1) and 4-nitrophenyl phosphate with a rate acceleration of 10(4) and a k(cat)/K(M) of 14 M(-1) s(-1). These rate accelerations by an unoptimized active site highlight the catalytic power of zinc and suggest that the clefts formed by protein-protein interactions are well-suited for creating enzyme active sites. This discovery has implications for protein evolution and engineering: from an evolutionary perspective, three-coordinated zinc at a homodimer interface cleft represents a simple evolutionary path to nascent enzymatic activity; from a protein engineering perspective, future efforts in de novo design of enzyme active sites may benefit from exploring clefts at protein interfaces for active site placement.
Collapse
Affiliation(s)
- Bryan S. Der
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, United States
| | - David R. Edwards
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, United States
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, United States
| |
Collapse
|
23
|
Aoki S, Suzuki S, Kitamura M, Haino T, Shiro M, Zulkefeli M, Kimura E. Molecular recognition of hydrocarbon guests by a supramolecular capsule formed by the 4:4 self-assembly of tris(Zn(2+)-cyclen) and trithiocyanurate in aqueous solution. Chem Asian J 2012; 7:944-56. [PMID: 22311622 DOI: 10.1002/asia.201100871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Indexed: 11/05/2022]
Abstract
We have previously reported that the trimeric Zn(2+)-cyclen complex (tris(Zn(2+)-cyclen), [Zn(3)L(1)](6+)) and the trianion of trithiocyanuric acid (TCA(3-)) assembled in a 4:4 ratio to form a cuboctahedral supramolecular cage, [(Zn(3)L(1))(4)(TCA(3-))(4)](12+) (hereafter referred to as a Zn-cage), in neutral aqueous solution (cyclen=1,4,7,10-tetraazacyclododecane). Herein, we examined the molecular recognition of C(1)-C(12) hydrocarbons (C(n)H((2n+2)) (n≈1-12)), cyclopentane, cyclododecane, cis-decalin, and trans-decalin by the Zn-cage under normal atmospheric pressure. This cage complex was also able to encapsulate guest molecules that had larger volumes than that of the inner cavity of the Zn-cage, thereby suggesting that the inner shape of the Zn-cage was flexible. Computational simulations of Zn-cage-guest complexes provided support for this conclusion. Moreover, the solvent-accessible surface areas (SASA) of the Zn-cage host, guest molecules, and the Zn-cage-guest complexes were calculated and the data were used to explain the order of stability determined by the guest-replacement experiments. The storage of volatile molecules in aqueous solution by the Zn-cage is also discussed.
Collapse
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Gruber B, Kataev E, Aschenbrenner J, Stadlbauer S, König B. Vesicles and micelles from amphiphilic zinc(II)-cyclen complexes as highly potent promoters of hydrolytic DNA cleavage. J Am Chem Soc 2011; 133:20704-7. [PMID: 22121825 DOI: 10.1021/ja209247w] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphate esters are essential to any living organism and their specific hydrolysis plays an important role in many metabolic processes. As phosphodiester bonds can be extraordinary stable, as in DNA, great effort has been put into mimicking the active sites of hydrolytic enzymes which can easily cleave these linkages and were often found to contain one or more coordinated metal ions. With this in mind, we report micellar and vesicular Zn(II)-cyclen complexes which considerably promote the hydrolytic cleavage of native DNA and the activated model substrate bis(4-nitrophenyl)phosphate (BNPP). They are formed by self-assembly from amphiphilic derivatives of previously employed complexes in aqueous solution and therefore allow a simple and rapid connection of multiple active metal sites without great synthetic effort. Considering the hydrolytic cleavage of BNPP at 25 °C and pH 8, the micellar and vesicular metal catalysts show an increase of second-order rate constants (k(2)) by 4-7 orders of magnitude compared to the unimolecular complexes under identical conditions. At neutral pH, they produce the highest k(2) values reported so far. For pBR322 plasmid DNA, both a conversion of the supercoiled to the relaxed and linear form, and also a further degradation into smaller fragments by double strand cleavages could be observed after incubation with the vesicular Zn(II)-complexes. Finally, even the cleavage of nonactivated single-stranded oligonucleotides could be considerably promoted compared to background reaction.
Collapse
Affiliation(s)
- Benjamin Gruber
- Institut für Organische Chemie, Universität Regensburg, D-93040 Regensburg, Germany
| | | | | | | | | |
Collapse
|