1
|
Zhang F, Woods TJ, Rauchfuss TB. Hybrids of [FeFe]- and [NiFe]-H 2ase Active Site Models. Organometallics 2023; 42:1607-1614. [PMID: 37928214 PMCID: PMC10624399 DOI: 10.1021/acs.organomet.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Complexes of the type (diphosphine)Ni(μ-SR)2Fe(CO)3 are investigated with azadithiolate (adt, HN(CH2S-)2) as the dithiolate. The resulting complexes are hybrid models for the active sites of the [NiFe]- and [FeFe]-hydrogenases. The key complex (dppv)Ni(μ-adt)Fe(CO)3 (3) was prepared from the complex Ni[(SCH2)2NCbz](dppv), which contains a Cbz-protected adt ligand (Cbz = C(O)OCH2Ph, dppv = cis-1,2-(Ph2P)2C2H2). This complex combines with Fe2(CO)9 to give (dppv)Ni[(μ-SCH2)2NCbz]Fe(CO)3, which is readily deprotected to give 3. Complex 3 undergoes protonation at both Fe and N to give successively [(dppv)Ni(μ-adt)FeH(CO)3]+ ([H3]+) and [(dppv)Ni(μ-adtH)FeH(CO)3]2+ ([H3H]2+). The redox properties and dynamics of these complexes resemble previously reported analogues with propanedithiolate. Solutions of [H3]+ readily degrade to [(dppv)Ni[(μ-SCH2)2NCH2]Fe(CO)3]+ ([4]+), which features a methylene group linking N and Fe. Complex [4]+ can be made in high yield by reaction of [H3]+ with CH2O, and this conversion was also demonstrated with 13CH2O. Complex [4]+ undergoes hydrogenolysis by photochemical reaction with H2 to give [(dppv)Ni[(μ-SCH2)2NMe]FeH(CO)3]+, the N-methylated analogue of [H3]+. Upon treatment ith Me3O+, [4]+ undergoes quaternization, giving [(dppv)Ni[(μ-SCH2)2N(Me)CH2]Fe(CO)3]2+. In contrast with the lability of [H3]+, the phosphine-substituted derivative [(dppv)Ni(μ-adt)FeH(CO)2(PPh3)]+ did not degrade. Most complexes were characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Fanjun Zhang
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States; Present Address: School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China (F.Z.)
| | - Toby J Woods
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Song LC, Wang YP, Dong YX, Yang XY. Functionalized nickel(II)-iron(II) dithiolates as biomimetic models of [NiFe]-H 2ases. Dalton Trans 2023; 52:3755-3768. [PMID: 36857705 DOI: 10.1039/d3dt00039g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
To develop the structural and functional modeling chemistry of [NiFe]-H2ases, a series of new biomimetics for the active site of [NiFe]-H2ases have been prepared by various synthetic methods. Treatment of the mononuclear Ni complex (pnp)NiCl2 (pnp = (Ph2PCH2)2NPh) with (dppv)Fe(CO)2(pdt) (dppv = 1,2-(Ph2P)2C2H2, pdt = 1,3-propanedithiolate) and KPF6 gave the dicarbonyl complex [(pnp)Ni(pdt)Fe(CO)2(dppv)](PF6)2 ([1](PF6)2). Further treatment of [1](PF6)2 and [(dppe)Ni(pdt)Fe(CO)2(dppv)](BF4)2 (dppe = 1,2-(Ph2P)2C2H4) with the decarbonylation agent Me3NO and pyridine afforded the novel sp3 C-Fe bond-containing complexes [(pnp)Ni(SCH2CH2CHS)Fe(CO)(dppv)]PF6 ([2]PF6) and [(dppe)Ni(SCH2CH2CHS)Fe(CO)(dppv)]BF4 ([3]BF4). More interestingly, the first t-carboxylato complexes [(pnp)Ni(pdt)Fe(CO)(t-O2CR)(dppv)]PF6 ([4]PF6, R = H; [5]PF6, R = Me; [6]PF6, R = Ph) could be prepared by reactions of [1]PF6 with the corresponding carboxylic acids RCO2H in the presence of Me3NO, whereas further reactions of [4]PF6-[6]PF6 with aqueous HPF6 and 1.5 MPa H2 gave rise to the μ-hydride complex [(pnp)Ni(pdt)Fe(CO)(μ-H)(dppv)]PF6 ([7]PF6). Except for H2 activation by t-carboxylato complexes [4]PF6-[6]PF6 to give a μ-hydride complex ([7]PF6), the sp3 C-Fe bond-containing complex [2]PF6 was found to be a catalyst for proton reduction to H2 under CV conditions. Furthermore, the chemical reactivity of the μ-hydride complex [7]PF6 displayed in the e- transfer reaction with FcPF6 in the presence of CO, the H2 evolution reaction with the protonic acid HCl, and the H- transfer reaction with N-methylacridinium hexafluorophosphate ([NMA]PF6) was systematically studied. As a result, a series of the expected products such as H2, ferrocene, the dicarbonyl complex [1](PF6)2, the μ-chloro complex [(pnp)Ni(pdt)Fe(CO)(μ-Cl)(dppv)]PF6 ([8]PF6), the t-MeCN-coordinated complex [(pnp)Ni(pdt)Fe(CO)(t-MeCN)(dppv)](PF6)2 ([9](PF6)2) and the H- transfer product AcrH2 were produced. While all the newly prepared model complexes were structurally characterized by spectroscopic methods, the molecular structures of some of their representatives were confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yin-Peng Wang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yi-Xiong Dong
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xi-Yue Yang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Tang HM, Fan WY. Transition Metal Pyrithione Complexes (Ni, Mn, Fe, and Co) as Electrocatalysts for Proton Reduction of Acetic Acid. ACS OMEGA 2023; 8:7234-7241. [PMID: 36844539 PMCID: PMC9948554 DOI: 10.1021/acsomega.3c00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/01/2023]
Abstract
A series of mononuclear first-row transition metal pyrithione M(pyr) n complexes (M = Ni(II), Mn(II), n = 2; M = Co(III), Fe(III), n = 3) have been prepared from the reaction of the corresponding metal salt with the sodium salt of pyrithione. Using cyclic voltammetry, the complexes have been shown to behave as proton reduction electrocatalysts albeit with varying efficiencies in the presence of acetic acid as the proton source in acetonitrile. The nickel complex displays the optimal overall catalytic performance with an overpotential of 0.44 V. An ECEC mechanism is suggested for the nickel-catalyzed system based on the experimental data and supported by density functional theory calculations.
Collapse
|
4
|
Sun L, Duboc C, Shen K. Bioinspired Molecular Electrocatalysts for H 2 Production: Chemical Strategies. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lili Sun
- Université Grenoble Alpes, CNRS, UMR 5250 DCM, F-38000 Grenoble, France
| | - Carole Duboc
- Université Grenoble Alpes, CNRS, UMR 5250 DCM, F-38000 Grenoble, France
| | - Kaiji Shen
- Université Grenoble Alpes, CNRS, UMR 5250 DCM, F-38000 Grenoble, France
| |
Collapse
|
5
|
Xu Z, Cui Y, Guo B, Li H, Li H. Boosting Visible‐Light‐Driven H
2
Evolution of Covalent Triazine Framework from Water by Modifying Ni(II) Pyrimidine‐2‐thiolate Cocatalyst. ChemCatChem 2020. [DOI: 10.1002/cctc.202001631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ze Xu
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P.R. China
| | - Yao Cui
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P.R. China
| | - Bin Guo
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P.R. China
| | - Hai‐Yan Li
- Analysis and Testing Center Soochow University Soochow University 215123 Suzhou P.R. China
| | - Hong‐Xi Li
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P.R. China
| |
Collapse
|
6
|
Wang XZ, Meng SL, Xiao H, Feng K, Wang Y, Jian JX, Li XB, Tung CH, Wu LZ. Identifying a Real Catalyst of [NiFe]-Hydrogenase Mimic for Exceptional H 2 Photogeneration. Angew Chem Int Ed Engl 2020; 59:18400-18404. [PMID: 32667116 DOI: 10.1002/anie.202006593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Indexed: 11/09/2022]
Abstract
Inspired by the natural [NiFe]-H2 ase, we designed mimic 1, (dppe)Ni(μ-pdt)(μ-Cl)Ru(CO)2 Cl to realize effective H2 evolution under photocatalytic conditions. However, a new species 2 was captured in the course of photo-, electro-, and chemo- one-electron reduction. Experimental studies of in situ IR spectroscopy, EPR, NMR, X-ray absorption spectroscopy, and DFT calculations corroborated a dimeric structure of 2 as a closed-shell, symmetric structure with a RuI center. The isolated dimer 2 showed the real catalytic role in photocatalysis with a benchmark turnover frequency (TOF) of 1936 h-1 for H2 evolution, while mimic 1 worked as a pre-catalyst and evolved H2 only after being reduced to 2. The remarkably catalytic activity and unique dimer structure of 2 operated in photocatalysis unveiled a broad research prospect in hydrogenases mimics for advanced H2 evolution.
Collapse
Affiliation(s)
- Xu-Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu-Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Xin Jian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Song LC, Liu BB, Liu WB, Tan ZL. Heterodinuclear nickel(ii)-iron(ii) azadithiolates as structural and functional models for the active site of [NiFe]-hydrogenases. RSC Adv 2020; 10:32069-32077. [PMID: 35518169 PMCID: PMC9056516 DOI: 10.1039/d0ra04344c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/20/2020] [Indexed: 11/30/2022] Open
Abstract
To develop the biomimetic chemistry of [NiFe]-H2ases, the first azadithiolato-bridged NiFe model complexes [CpNi{(μ-SCH2)2NR}Fe(CO)(diphos)]BF4 (5, R = Ph, diphos = dppv; 6, 4-ClC6H4, dppv; 7, 4-MeC6H4, dppv; 8, CO2CH2Ph, dppe; 9, H, dppe) have been synthesized via well-designed synthetic routes. Thus, treatment of RN[CH2S(O)CMe]2 with t-BuONa followed by reaction of the resulting intermediates RN(CH2SNa)2 with (dppv)Fe(CO)2Cl2 or (dppe)Fe(CO)2Cl2 gave the N-substituted azadithiolato-chelated Fe complexes [RN(CH2S)2]Fe(CO)2(diphos) (1, R = Ph, diphos = dppv; 2, 4-ClC6H4, dppv; 3, 4-MeC6H4, dppv; 4, CO2CH2Ph, dppe). Further treatment of 1–4 with nickelocene in the presence of HBF4·Et2O afforded the corresponding N-substituted azadithiolato-bridged NiFe model complexes 5–8, while treatment of 8 with HBF4·Et2O resulted in formation of the parent azadithiolato-bridged model complex 9. While all the new complexes 1–9 were characterized by elemental analysis and spectroscopy, the molecular structures of model complexes 6–8 were confirmed by X-ray crystallographic study. In addition, model complexes 7 and 9 were found to be catalysts for H2 production with moderate icat/ip and overpotential values from TFA under CV conditions. The first azadithiolato-bridged NiFe model complexes with a general formula [CpNi{(μ-SCH2)2NR}Fe(CO)(diphos)]BF4 have been synthesized, characterized, and for some of them found to be catalysts for proton reduction to H2 under CV conditions.![]()
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Bei-Bei Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Wen-Bo Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Zheng-Lei Tan
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Wang X, Meng S, Xiao H, Feng K, Wang Y, Jian J, Li X, Tung C, Wu L. Identifying a Real Catalyst of [NiFe]‐Hydrogenase Mimic for Exceptional H
2
Photogeneration. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xu‐Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing‐Xin Jian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Xu‐Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Song LC, Liu WB, Liu BB. Nickel(II)–Nickel(II) Azadithiolates: Synthesis, Structural Characterization, and Electrocatalytic H 2 Production. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People’s Republic of China
| | - Wen-Bo Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Bei-Bei Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
10
|
Song LC, Chen W, Feng L. Two heterodinuclear NiFe-based sulfenate complexes mimicking an S-oxygenated intermediate of an O 2-tolerant [NiFe]-H 2ase: synthesis, structures, and reactivity. NEW J CHEM 2020. [DOI: 10.1039/d0nj02586k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two biomimetic models for an O2-tolerant [NiFe]-H2ase are successfully prepared by reactions of sulfenate complex 2 with Fe2(CO)9 and CpFe(CO)2BF4.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University
- Tianjin 300071
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
| | - Wei Chen
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University
- Tianjin 300071
- China
| | - Li Feng
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University
- Tianjin 300071
- China
| |
Collapse
|
11
|
Biswal BP, Vignolo-González HA, Banerjee T, Grunenberg L, Savasci G, Gottschling K, Nuss J, Ochsenfeld C, Lotsch BV. Sustained Solar H 2 Evolution from a Thiazolo[5,4- d]thiazole-Bridged Covalent Organic Framework and Nickel-Thiolate Cluster in Water. J Am Chem Soc 2019; 141:11082-11092. [PMID: 31260279 PMCID: PMC6646957 DOI: 10.1021/jacs.9b03243] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solar hydrogen (H2) evolution
from water utilizing covalent
organic frameworks (COFs) as heterogeneous photosensitizers has gathered
significant momentum by virtue of the COFs’ predictive structural
design, long-range ordering, tunable porosity, and excellent light-harvesting
ability. However, most photocatalytic systems involve rare and expensive
platinum as the co-catalyst for water reduction, which appears to
be the bottleneck in the development of economical and environmentally
benign solar H2 production systems. Herein, we report a
simple, efficient, and low-cost all-in-one photocatalytic H2 evolution system composed of a thiazolo[5,4-d]thiazole-linked
COF (TpDTz) as the photoabsorber and an earth-abundant,
noble-metal-free nickel-thiolate hexameric cluster co-catalyst assembled in situ in water, together with triethanolamine (TEoA)
as the sacrificial electron donor. The high crystallinity, porosity,
photochemical stability, and light absorption ability of the TpDTz COF enables excellent long-term H2 production
over 70 h with a maximum rate of 941 μmol h–1 g–1, turnover number TONNi > 103,
and
total projected TONNi > 443 until complete catalyst
depletion.
The high H2 evolution rate and TON, coupled with long-term
photocatalytic operation of this hybrid system in water, surpass those
of many previously known organic dyes, carbon nitride, and COF-sensitized
photocatalytic H2O reduction systems. Furthermore, we gather
unique insights into the reaction mechanism, enabled by a specifically
designed continuous-flow system for non-invasive, direct H2 production rate monitoring, providing higher accuracy in quantification
compared to the existing batch measurement methods. Overall, the results
presented here open the door toward the rational design of robust
and efficient earth-abundant COF–molecular co-catalyst hybrid
systems for sustainable solar H2 production in water.
Collapse
Affiliation(s)
- Bishnu P Biswal
- Max Planck Institute for Solid State Research , Heisenbergstraße 1 , 70569 Stuttgart , Germany
| | - Hugo A Vignolo-González
- Max Planck Institute for Solid State Research , Heisenbergstraße 1 , 70569 Stuttgart , Germany.,Department of Chemistry , University of Munich (LMU) , Butenandtstraße 5-13 , 81377 München , Germany
| | - Tanmay Banerjee
- Max Planck Institute for Solid State Research , Heisenbergstraße 1 , 70569 Stuttgart , Germany
| | - Lars Grunenberg
- Max Planck Institute for Solid State Research , Heisenbergstraße 1 , 70569 Stuttgart , Germany.,Department of Chemistry , University of Munich (LMU) , Butenandtstraße 5-13 , 81377 München , Germany
| | - Gökcen Savasci
- Max Planck Institute for Solid State Research , Heisenbergstraße 1 , 70569 Stuttgart , Germany.,Department of Chemistry , University of Munich (LMU) , Butenandtstraße 5-13 , 81377 München , Germany
| | - Kerstin Gottschling
- Max Planck Institute for Solid State Research , Heisenbergstraße 1 , 70569 Stuttgart , Germany.,Department of Chemistry , University of Munich (LMU) , Butenandtstraße 5-13 , 81377 München , Germany
| | - Jürgen Nuss
- Max Planck Institute for Solid State Research , Heisenbergstraße 1 , 70569 Stuttgart , Germany
| | - Christian Ochsenfeld
- Department of Chemistry , University of Munich (LMU) , Butenandtstraße 5-13 , 81377 München , Germany.,Center for Nanoscience , Schellingstraße 4 , 80799 München , Germany
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research , Heisenbergstraße 1 , 70569 Stuttgart , Germany.,Department of Chemistry , University of Munich (LMU) , Butenandtstraße 5-13 , 81377 München , Germany.,Center for Nanoscience , Schellingstraße 4 , 80799 München , Germany.,Nanosystems Initiative Munich (NIM) , Schellingstraße 4 , 80799 München , Germany
| |
Collapse
|
12
|
Qiu S, Li Q, Xu Y, Shen S, Sun C. Learning from nature: Understanding hydrogenase enzyme using computational approach. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siyao Qiu
- Science & Technology Innovation Institute Dongguan University of Technology Dongguan China
| | - Qinye Li
- School of Chemical Engineering Monash University Clayton Victoria Australia
| | - Yongjun Xu
- Science & Technology Innovation Institute Dongguan University of Technology Dongguan China
| | - Shaohua Shen
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Shaanxi China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials Swinburne University of Technology Hawthorn Victoria Australia
| |
Collapse
|
13
|
Sutthirat N, Ziller JW, Yang JY, Thammavongsy Z. Crystal structure of NiFe(CO) 5[tris(pyridyl-meth-yl)aza-phosphatrane]: a synthetic mimic of the NiFe hydrogenase active site incorporating a pendant pyridine base. Acta Crystallogr E Crystallogr Commun 2019; 75:438-442. [PMID: 31161052 PMCID: PMC6509684 DOI: 10.1107/s2056989019003256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 11/22/2022]
Abstract
The reaction of Ni(TPAP)(COD) {where TPAP = [(NC5H4)CH2]3P(NC2H4)3N} with Fe(CO)5 resulted in the isolation of the title heterobimetallic NiFe(TPAP)(CO)5 complex di-μ-carbonyl-tricarbon-yl[2,8,9-tris-(pyridin-2-yl-meth-yl)-2,5,8,9-tetra-aza-1-phosphabi-cyclo-[3.3.3]undeca-ne]ironnickel, [FeNi(C24H30N7P)(CO)5]. Characterization of the complex by 1H and 31P NMR as well as IR spectroscopy are presented. The structure of NiFe(TPAP)(CO)5 reveals three terminally bound CO mol-ecules on Fe0, two bridging CO mol-ecules between Ni0 and Fe0, and TPAP coordinated to Ni0. The Ni-Fe bond length is 2.4828 (4) Å, similar to that of the reduced form of the active site of NiFe hydrogenase (∼2.5 Å). Additionally, a proximal pendant base from one of the non-coordinating pyridine groups of TPAP is also present. Although involvement of a pendant base has been cited in the mechanism of NiFe hydrogenase, this moiety has yet to be incorporated in a structurally characterized synthetic mimic with key structural motifs (terminally bound CO or CN ligands on Fe). Thus, the title complex NiFe(TPAP)(CO)5 is an unique synthetic model for NiFe hydrogenase. In the crystal, the complex mol-ecules are linked by C-H⋯O hydrogen bonds, forming undulating layers parallel to (100). Within the layers, there are offset π-π [inter-centroid distance = 3.2739 (5) Å] and C-H⋯π inter-actions present. The layers are linked by further C-H⋯π inter-actions, forming a supra-molecular framework.
Collapse
Affiliation(s)
- Natwara Sutthirat
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| | - Zachary Thammavongsy
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Basu D, Bailey TS, Lalaoui N, Richers CP, Woods TJ, Rauchfuss TB, Arrigoni F, Zampella G. Synthetic Designs and Structural Investigations of Biomimetic Ni-Fe Thiolates. Inorg Chem 2019; 58:2430-2443. [PMID: 30707014 DOI: 10.1021/acs.inorgchem.8b02991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Described are the syntheses of several Ni(μ-SR)2Fe complexes, including hydride derivatives, in a search for improved models for the active site of [NiFe]-hydrogenases. The nickel(II) precursors include (i) nickel with tripodal ligands: Ni(PS3)- and Ni(NS3)- (PS33- = tris(phenyl-2-thiolato)phosphine, NS33- = tris(benzyl-2-thiolato)amine), (ii) traditional diphosphine-dithiolates, including chiral diphosphine R,R-DIPAMP, (iii) cationic Ni(phosphine-imine/amine) complexes, and (iv) organonickel precursors Ni( o-tolyl)Cl(tmeda) and Ni(C6F5)2. The following new nickel precursor complexes were characterized: PPh4[Ni(NS3)] and the dimeric imino/amino-phosphine complexes [NiCl2(PCH═NAn)]2 and [NiCl2(PCH2NHAn)]2 (P = Ph2PC6H4-2-). The iron(II) reagents include [CpFe(CO)2(thf)]BF4, [Cp*Fe(CO)(MeCN)2]BF4, FeI2(CO)4, FeCl2(diphos)(CO)2, and Fe(pdt)(CO)2(diphos) (diphos = chelating diphosphines). Reactions of the nickel and iron complexes gave the following new Ni-Fe compounds: Cp*Fe(CO)Ni(NS3), [Cp(CO)Fe(μ-pdt)Ni(dppbz)]BF4, [( R,R-DIPAMP)Ni(μ-pdt)(H)Fe(CO)3]BArF4, [(PCH═NAn)Ni(μ-pdt)(Cl)Fe(dppbz)(CO)]BF4, [(PCH2NHAn)Ni(μ-pdt)(Cl)Fe(dppbz)(CO)]BF4, [(PCH═NAn)Ni(μ-pdt)(H)Fe(dppbz)(CO)]BF4, [(dppv)(CO)Fe(μ-pdt)]2Ni, {H[(dppv)(CO)Fe(μ-pdt)]2Ni]}BF4, and (C6F5)2Ni(μ-pdt)Fe(CO)2(dppv) (DIPAMP = (CH2P(C6H4-2-OMe)2)2; BArF4- = [B(C6H3-3,5-(CF3)2]4-)) Within the context of Ni-(SR)2-Fe complexes, these new complexes feature new microenvironments for the nickel center: tetrahedral Ni, chirality, imine, and amine coligands, and Ni-C bonds. In the case of {H[(dppv)(CO)Fe(μ-pdt)]2Ni}+, four low-energy isomers are separated by ≤3 kcal/mol, one of which features a biomimetic HNi(SR)4 site, as supported by density functional theory calculations.
Collapse
Affiliation(s)
- Debashis Basu
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - T Spencer Bailey
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Noémie Lalaoui
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Casseday P Richers
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Toby J Woods
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 20126 Milan , Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 20126 Milan , Italy
| |
Collapse
|
15
|
Pembere AMS, Cui C, Anumula R, Wu H, An P, Liang T, Luo Z. A hexagonal Ni6 cluster protected by 2-phenylethanethiol for catalytic conversion of toluene to benzaldehyde. Phys Chem Chem Phys 2019; 21:17933-17938. [DOI: 10.1039/c9cp02964h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hexagonal Ni6 cluster protected by 2-phenylethanethiol was synthesized and achieved a high performance for catalytic conversion of toluene to benzaldehyde.
Collapse
Affiliation(s)
- Anthony M. S. Pembere
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences; and University of Chinese Academy of Sciences Beijing
- China
| | - Chaonan Cui
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences; and University of Chinese Academy of Sciences Beijing
- China
| | - Rajini Anumula
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences; and University of Chinese Academy of Sciences Beijing
- China
| | - Haiming Wu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences; and University of Chinese Academy of Sciences Beijing
- China
| | - Pan An
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences; and University of Chinese Academy of Sciences Beijing
- China
| | - Tongling Liang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences; and University of Chinese Academy of Sciences Beijing
- China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences; and University of Chinese Academy of Sciences Beijing
- China
| |
Collapse
|
16
|
Slater JW, Marguet SC, Monaco HA, Shafaat HS. Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases. J Am Chem Soc 2018; 140:10250-10262. [PMID: 30016865 DOI: 10.1021/jacs.8b05194] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jeffrey W. Slater
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sean C. Marguet
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Haleigh A. Monaco
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S. Shafaat
- The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Chu KT, Liu YC, Chung MW, Poerwoprajitno AR, Lee GH, Chiang MH. Energy-Efficient Hydrogen Evolution by Fe-S Electrocatalysts: Mechanistic Investigations. Inorg Chem 2018; 57:7620-7630. [PMID: 29893554 DOI: 10.1021/acs.inorgchem.8b00543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intrinsic catalytic property of a Fe-S complex toward H2 evolution was investigated in a wide range of acids. The title complex exhibited catalytic events at -1.16 and -1.57 V (vs Fc+/Fc) in the presence of trifluoromethanesulfonic acid (HOTf) and trifluoroacetic acid (TFA), respectively. The processes corresponded to the single reduction of the Fe-hydride-S-proton and Fe-hydride species, respectively. When anilinium acid was used, the catalysis occurred at -1.16 V, identical with the working potential of the HOTf catalysis, although the employment of anilinium acid was only capable of achieving the Fe-hydride state on the basis of the spectral and calculated results. The thermodynamics and kinetics of individual steps of the catalysis were analyzed by density functional theory (DFT) calculations and electroanalytical simulations. The stepwise CCE or CE (C, chemical; E, electrochemical) mechanism was operative from the HOTf or TFA source, respectively. In contrast, the involvement of anilinium acid most likely initiated a proton-coupled electron transfer (PCET) pathway that avoided the disfavored intermediate after the initial protonation. Via the PCET pathway, the heterogeneous electron transfer rate was increased and the overpotential was decreased by 0.4 V in comparison with the stepwise pathways. The results showed that the PCET-involved catalysis exhibited substantial kinetic and thermodynamic advantages in comparison to the stepwise pathway; thus, an efficient catalytic system for proton reduction was established.
Collapse
Affiliation(s)
- Kai-Ti Chu
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 115 , Taiwan
| | - Yu-Chiao Liu
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 115 , Taiwan
| | - Min-Wen Chung
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 115 , Taiwan
| | | | - Gene-Hsiang Lee
- Instrumentation Center , National Taiwan University , Taipei 106 , Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 115 , Taiwan
| |
Collapse
|
18
|
Fukuzumi S, Lee YM, Nam W. Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.07.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Wojnar MK, Ziller JW, Heyduk AF. Heterobimetallic and Heterotrimetallic Clusters Containing a Redox‐Active Metalloligand. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M. K. Wojnar
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 92697‐2025 Irvine California U.S.A
| | - Joseph W. Ziller
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 92697‐2025 Irvine California U.S.A
| | - Alan F. Heyduk
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 92697‐2025 Irvine California U.S.A
| |
Collapse
|
20
|
Eady SC, MacInnes MM, Lehnert N. Immobilized Cobalt Bis(benzenedithiolate) Complexes: Exceptionally Active Heterogeneous Electrocatalysts for Dihydrogen Production from Mildly Acidic Aqueous Solutions. Inorg Chem 2017; 56:11654-11667. [DOI: 10.1021/acs.inorgchem.7b01589] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shawn C. Eady
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Molly M. MacInnes
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Nicolai Lehnert
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Kure B, Sano M, Watanabe N, Nakajima T, Tanase T. Synthesis and Reactivity of Thiolate‐Bridged Ni
II
M
I
Heterodinuclear Complexes (M = Rh, Ir) with an S‐Bidentate NiP
2
S
2
Metalloligand. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bunsho Kure
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| | - Mikie Sano
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| | - Natsuki Watanabe
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| | - Takayuki Nakajima
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| | - Tomoaki Tanase
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| |
Collapse
|
22
|
Schilter D, Gray DL, Fuller AL, Rauchfuss TB. Synthetic Models for Nickel-Iron Hydrogenase Featuring Redox-Active Ligands. Aust J Chem 2017; 70:505-515. [PMID: 28819328 PMCID: PMC5555595 DOI: 10.1071/ch16614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nickel-iron hydrogenase enzymes efficiently and reversibly interconvert protons, electrons, and dihydrogen. These redox proteins feature iron-sulfur clusters that relay electrons to and from their active sites. Reported here are synthetic models for nickel-iron hydrogenase featuring redox-active auxiliaries that mimic the iron-sulfur cofactors. The complexes prepared are NiII(μ-H)FeIIFeII species of formula [(diphosphine)Ni(dithiolate)(μ-H)Fe(CO)2(ferrocenylphosphine)]+ or NiIIFeIFeII complexes [(diphosphine)Ni(dithiolate)Fe(CO)2(ferrocenylphosphine)]+ (diphosphine = Ph2P(CH2)2PPh2 or Cy2P(CH2)2PCy2; dithiolate = -S(CH2)3S-; ferrocenylphosphine = diphenylphosphinoferrocene, diphenylphosphinomethyl(nonamethylferrocene) or 1,1'-bis(diphenylphosphino)ferrocene). The hydride species is a catalyst for hydrogen evolution, while the latter hydride-free complexes can exist in four redox states - a feature made possible by the incorporation of the ferrocenyl groups. Mixed-valent complexes of 1,1'-bis(diphenylphosphino)ferrocene have one of the phosphine groups unbound, with these species representing advanced structural models with both a redox-active moiety (the ferrocene group) and a potential proton relay (the free phosphine) proximal to a nickel-iron dithiolate.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919, Republic of Korea
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Danielle L. Gray
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Amy L. Fuller
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
23
|
Siek S, Dixon NA, Papish ET. Electrochemical reduction of Ttz copper(II) complexes in the presence and absence of protons: Processes relevant to enzymatic nitrite reduction (TtzR,R′= tris(3-R, 5-R′-1, 2, 4-triazolyl)borate). Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Song LC, Lu Y, Zhu L, Li QL. Dithiolato- and Diselenolato-Bridged Nickel–Iron Biomimetics for the Active Site of [NiFe]Hydrogenases. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00942] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li-Cheng Song
- Department
of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, People’s Republic of China
| | - Yu Lu
- Department
of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, People’s Republic of China
| | - Liang Zhu
- Department
of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, People’s Republic of China
| | - Qian-Li Li
- Department
of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
25
|
Song LC, Han XF, Chen W, Li JP, Wang XY. Dithiolato- and halogenido-bridged nickel–iron complexes related to the active site of [NiFe]-H2ases: preparation, structures, and electrocatalytic H2 production. Dalton Trans 2017; 46:10003-10013. [DOI: 10.1039/c7dt02203d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of [NiFe]-H2ase mimics (5a,b–7a,b) has been prepared and structurally characterized; particularly, they have been found to be pre-catalysts for H2 production from Cl2CHCO2H under CV conditions.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xiao-Feng Han
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wei Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Jia-Peng Li
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xu-Yong Wang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
26
|
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016; 116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James M. Camara
- Department of Chemistry, Yeshiva University, 500 West 185th Street, New York, New York 10033, United States
| | - Mioy T. Huynh
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
27
|
Affiliation(s)
- Nathan A. Eberhardt
- Department
of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Hairong Guan
- Department
of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
28
|
Ulloa OA, Huynh MT, Richers CP, Bertke JA, Nilges MJ, Hammes-Schiffer S, Rauchfuss TB. Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides. J Am Chem Soc 2016; 138:9234-45. [PMID: 27328053 DOI: 10.1021/jacs.6b04579] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intermediacy of a reduced nickel-iron hydride in hydrogen evolution catalyzed by Ni-Fe complexes was verified experimentally and computationally. In addition to catalyzing hydrogen evolution, the highly basic and bulky (dppv)Ni(μ-pdt)Fe(CO)(dppv) ([1](0); dppv = cis-C2H2(PPh2)2) and its hydride derivatives have yielded to detailed characterization in terms of spectroscopy, bonding, and reactivity. The protonation of [1](0) initially produces unsym-[H1](+), which converts by a first-order pathway to sym-[H1](+). These species have C1 (unsym) and Cs (sym) symmetries, respectively, depending on the stereochemistry of the octahedral Fe site. Both experimental and computational studies show that [H1](+) protonates at sulfur. The S = 1/2 hydride [H1](0) was generated by reduction of [H1](+) with Cp*2Co. Density functional theory (DFT) calculations indicate that [H1](0) is best described as a Ni(I)-Fe(II) derivative with significant spin density on Ni and some delocalization on S and Fe. EPR spectroscopy reveals both kinetic and thermodynamic isomers of [H1](0). Whereas [H1](+) does not evolve H2 upon protonation, treatment of [H1](0) with acids gives H2. The redox state of the "remote" metal (Ni) modulates the hydridic character of the Fe(II)-H center. As supported by DFT calculations, H2 evolution proceeds either directly from [H1](0) and external acid or from protonation of the Fe-H bond in [H1](0) to give a labile dihydrogen complex. Stoichiometric tests indicate that protonation-induced hydrogen evolution from [H1](0) initially produces [1](+), which is reduced by [H1](0). Our results reconcile the required reductive activation of a metal hydride and the resistance of metal hydrides toward reduction. This dichotomy is resolved by reduction of the remote (non-hydride) metal of the bimetallic unit.
Collapse
Affiliation(s)
- Olbelina A Ulloa
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Mioy T Huynh
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Casseday P Richers
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jeffery A Bertke
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Mark J Nilges
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Rosenkoetter KE, Ziller JW, Heyduk AF. A Heterobimetallic W-Ni Complex Containing a Redox-Active W[SNS]2 Metalloligand. Inorg Chem 2016; 55:6794-8. [PMID: 27300501 DOI: 10.1021/acs.inorgchem.6b01164] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tungsten complex W[SNS]2 ([SNS]H3 = bis(2-mercapto-4-methylphenyl)amine) was bound to a Ni(dppe) [dppe = 1,2-bis(diphenylphosphino)ethane] fragment to form the new heterobimetallic complex W[SNS]2Ni(dppe). Characterization of the complex by single-crystal X-ray diffraction revealed the presence of a short W-Ni bond, which renders the complex diamagnetic despite formal tungsten(V) and nickel(I) oxidation states. The W[SNS]2 unit acts as a redox-active metalloligand in the bimetallic complex, which displays four one-electron redox processes by cyclic voltammetry. In the presence of the organic acid 4-cyanoanilinium tetrafluoroborate, W[SNS]2Ni(dppe) catalyzes the electrochemical reduction of protons to hydrogen coincident with the first reduction of the complex.
Collapse
Affiliation(s)
- Kyle E Rosenkoetter
- Department of Chemistry, University of California , 1102 Natural Sciences 2, Irvine, California 92677, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California , 1102 Natural Sciences 2, Irvine, California 92677, United States
| | - Alan F Heyduk
- Department of Chemistry, University of California , 1102 Natural Sciences 2, Irvine, California 92677, United States
| |
Collapse
|
30
|
Maity A, Teets TS. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes. Chem Rev 2016; 116:8873-911. [DOI: 10.1021/acs.chemrev.6b00034] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ayan Maity
- Department of Chemistry, University of Houston, Lamar Fleming Jr. Building, 3585 Cullen Boulevard,
Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S. Teets
- Department of Chemistry, University of Houston, Lamar Fleming Jr. Building, 3585 Cullen Boulevard,
Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
31
|
Greene BL, Wu CH, Vansuch GE, Adams MWW, Dyer RB. Proton Inventory and Dynamics in the Nia-S to Nia-C Transition of a [NiFe] Hydrogenase. Biochemistry 2016; 55:1813-25. [DOI: 10.1021/acs.biochem.5b01348] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brandon L. Greene
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Chang-Hao Wu
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Gregory E. Vansuch
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Michael W. W. Adams
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - R. Brian Dyer
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
32
|
Chambers GM, Rauchfuss TB, Arrigoni F, Zampella G. Effect of Pyramidalization of the M2(SR)2 Center: The Case of (C5H5)2Ni2(SR)2. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Geoffrey M. Chambers
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Federica Arrigoni
- Department of Biotechnology
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126-Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126-Milan, Italy
| |
Collapse
|
33
|
Song LC, Lu Y, Cao M, Yang XY. Reactions of dinuclear Ni 2complexes [Ni(RN PyS 4)] 2(RN PyS 4= 2,6-bis(2-mercaptophenylthiomethyl)-4-R-pyridine) with Fe(CO) 3(BDA) (BDA = benzylidene acetone) leading to heterodinuclear NiFe and mononuclear Fe complexes related to the active sites of [NiFe]- and [Fe]-hydrogenases. RSC Adv 2016. [DOI: 10.1039/c6ra07488j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Eady SC, Breault T, Thompson L, Lehnert N. Highly functionalizable penta-coordinate iron hydrogen production catalysts with low overpotentials. Dalton Trans 2016; 45:1138-51. [DOI: 10.1039/c5dt03744a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Penta-coordinate iron complexes with ‘PNP’ diphosphine ligands, [Fe(S2C6H4)((C6H5)2PN(R)P(C6H5)2)CO], all air-stable FeII compounds, show electrocatalytic H2 production at low overpotentials (η = 0.09–0.21 V vs. Pt). These catalysts utilize an EC mechanism, where one-electron reduction triggers protonation by weak acids.
Collapse
Affiliation(s)
- Shawn C. Eady
- Department of Chemistry
- University of Michigan
- 930 North University Ave
- Ann Arbor
- USA
| | - Tanya Breault
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Levi Thompson
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Nicolai Lehnert
- Department of Chemistry
- University of Michigan
- 930 North University Ave
- Ann Arbor
- USA
| |
Collapse
|
35
|
Hugenbruch S, Shafaat HS, Krämer T, Delgado-Jaime MU, Weber K, Neese F, Lubitz W, DeBeer S. In search of metal hydrides: an X-ray absorption and emission study of [NiFe] hydrogenase model complexes. Phys Chem Chem Phys 2016; 18:10688-99. [DOI: 10.1039/c5cp07293j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Insight into the factors that favor metal–hydride interactions in NiFe-hydrogenase models is obtained through X-ray spectroscopic and quantum chemical studies.
Collapse
Affiliation(s)
| | - Hannah S. Shafaat
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
- The Ohio State University
- Department of Chemistry and Biochemistry
| | - Tobias Krämer
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
- Heriot-Watt University
- Institute of Chemical Sciences
| | - Mario Ulises Delgado-Jaime
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
- Inorganic Chemistry and Catalysis Group
- Debye Institute for Nanomaterials Science
| | - Katharina Weber
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion
- D-45470
- Germany
- Cornell University
- Department of Chemistry and Chemical Biology
| |
Collapse
|
36
|
Behnke SL, Shafaat HS. Heterobimetallic Models of the [NiFe] Hydrogenases: A Structural and Spectroscopic Comparison. COMMENT INORG CHEM 2015. [DOI: 10.1080/02603594.2015.1108914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Hwang SJ, Anderson BL, Powers DC, Maher AG, Hadt RG, Nocera DG. Halogen Photoelimination from Monomeric Nickel(III) Complexes Enabled by the Secondary Coordination Sphere. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00568] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seung Jun Hwang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Bryce L. Anderson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - David C. Powers
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Andrew G. Maher
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Ryan G. Hadt
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
38
|
Schilter D, Fuller AL, Gray DL. Nickel‐Molybdenum and Nickel‐Tungsten Dithiolates: Hybrid Models for Hydrogenases and Hydrodesulfurization. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- David Schilter
- IBS Center for Multidimensional Carbon Materials, Ulsan National Institute of Science and Technology 50 UNIST‐gil, Eonyang‐eup, Ulju‐gun, Ulsan 689‐798, South Korea, http://cmcm.ibs.re.kr
- Department of Chemistry, University of Illinois at Urbana‐Champaign 505 S. Mathews Ave., Urbana, Illinois 61801, USA
| | - Amy L. Fuller
- Department of Chemistry, University of Illinois at Urbana‐Champaign 505 S. Mathews Ave., Urbana, Illinois 61801, USA
| | - Danielle L. Gray
- Department of Chemistry, University of Illinois at Urbana‐Champaign 505 S. Mathews Ave., Urbana, Illinois 61801, USA
| |
Collapse
|
39
|
Abstract
This review summarizes three different approaches to engineering systems for the solar-driven evolution of hydrogen fuel from water: molecular, nanomaterials and biomolecular. Molecular systems have the advantage of being highly amenable to modification and detailed study and have provided great insight into photophysics, electron transfer and catalytic mechanism. However, they tend to display poor stability. Systems based on nanomaterials are more robust but also are more difficult to synthesize in a controlled manner and to modify and study in detail. Biomolecular systems share many properties with molecular systems and have the advantage of displaying inherently high efficiencies for light absorption, electron-hole separation and catalysis. However, biological systems must be engineered to couple modules that capture and convert solar photons to modules that produce hydrogen fuel. Furthermore, biological systems are prone to degradation when employed in vitro. Advances that use combinations of these three tactics also are described. Multidisciplinary approaches to this problem allow scientists to take advantage of the best features of biological, molecular and nanomaterials systems provided that the components can be coupled for efficient function.
Collapse
Affiliation(s)
- Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA
| |
Collapse
|
40
|
Yang D, Li Y, Su L, Wang B, Qu J. Versatile Reactivity of CH3CN-Coordinated Nickel-Iron Heterodimetallic Complexes with Cp* Ligand on Diazadithiolate (N2S2) or Dithiadithiolate (S4) Platforms. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Song LC, Cao M, Wang YX. Novel reactions of homodinuclear Ni2 complexes [Ni(RNPyS4)]2 with Fe3(CO)12 to give heterotrinuclear NiFe2 and mononuclear Fe complexes relevant to [NiFe]- and [Fe]-hydrogenases. Dalton Trans 2015; 44:6797-808. [PMID: 25747808 DOI: 10.1039/c5dt00067j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The homodinuclear complexes [Ni(RNPyS4)]2 (; RNPyS4 = 2,6-bis(2-mercaptophenylthiomethyl)-4-R-pyridine; R = H, MeO, Cl, Br, i-Pr) were found to be prepared by reactions of the in situ generated Li2[Ni(1,2-S2C6H4)2] with 2,6-bis[(tosyloxy)methyl]pyridine and its substituted derivatives 2,6-bis[(tosyloxy)methyl]-4-R-pyridine. Further reactions of with Fe3(CO)12 gave both heterotrinuclear complexes NiFe2(RNPyS4)(CO)5 () and mononuclear complexes Fe(RNPyS4)(CO) (), unexpectedly. Interestingly, complexes and could be regarded as models for the active sites of [NiFe]- and [Fe]-hydrogenases, respectively. All the prepared complexes were characterized by elemental analysis, spectroscopy, and particularly for some of them, by X-ray crystallography. In addition, the electrochemical properties of and as well as the electrocatalytic H2 production catalyzed by and were investigated by CV techniques.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| | | | | |
Collapse
|
42
|
Kochem A, Bill E, Neese F, van Gastel M. Mössbauer and computational investigation of a functional [NiFe] hydrogenase model complex. Chem Commun (Camb) 2015; 51:2099-102. [DOI: 10.1039/c4cc09035g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen splitting in a NiFe hydrogenase model has been investigated by Mössbauer spectroscopy to gain insight into the catalytic mechanism.
Collapse
Affiliation(s)
- A. Kochem
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - E. Bill
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - F. Neese
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - M. van Gastel
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|
43
|
Liu X, Cui S, Sun Z, Du P. Robust and highly active copper-based electrocatalyst for hydrogen production at low overpotential in neutral water. Chem Commun (Camb) 2015; 51:12954-7. [DOI: 10.1039/c5cc04965b] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu(0)-based catalyst free of noble metals was used as an electrocatalyst in the hydrogen evolution reaction in neutral water with an onset overpotential of only 70 mV.
Collapse
Affiliation(s)
- Xiang Liu
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- University of Science and Technology of China (USTC)
| | - Shengsheng Cui
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- University of Science and Technology of China (USTC)
| | - Zijun Sun
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- University of Science and Technology of China (USTC)
| | - Pingwu Du
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- University of Science and Technology of China (USTC)
| |
Collapse
|
44
|
Gan L, Jennings D, Laureanti J, Jones AK. Biomimetic Complexes for Production of Dihydrogen and Reduction of CO2. TOP ORGANOMETAL CHEM 2015. [DOI: 10.1007/3418_2015_146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Rao H, Wang ZY, Zheng HQ, Wang XB, Pan CM, Fan YT, Hou HW. Photocatalytic hydrogen evolution from a cobalt/nickel complex with dithiolene ligands under irradiation with visible light. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01574f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel cobalt/nickel dithiolene complexes displayed efficient hydrogen evolution in a noble-metal-free photocatalytic system under visible light.
Collapse
Affiliation(s)
- Heng Rao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- PR China
| | - Zhi-Yuan Wang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- PR China
| | - Hui-Qin Zheng
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- PR China
- Department of Chemistry
| | - Xiao-Bo Wang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- PR China
| | - Chun-Mei Pan
- Biotechnology Department
- Henan University of Animal Husbandry and Economy
- Zhengzhou 450011
- PR China
| | - Yao-Ting Fan
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- PR China
| | - Hong-Wei Hou
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- PR China
| |
Collapse
|
46
|
Liu XF. Condensation reactions of the mononuclear nickel(II) complexes [RN(PPh 2 ) 2 ]NiCl 2 with 1,2-ethanedithiol or 1,3-propanedithiol. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Huynh MT, Schilter D, Hammes-Schiffer S, Rauchfuss TB. Protonation of nickel-iron hydrogenase models proceeds after isomerization at nickel. J Am Chem Soc 2014; 136:12385-95. [PMID: 25094041 PMCID: PMC4156870 DOI: 10.1021/ja505783z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Theory
and experiment indicate that the protonation of reduced
NiFe dithiolates proceeds via a previously undetected isomer with
enhanced basicity. In particular, it is proposed that protonation
of (OC)3Fe(pdt)Ni(dppe) (1; pdt2– = –S(CH2)3S–; dppe = Ph2P(CH2)2PPh2) occurs at the Fe site of the two-electron mixed-valence Fe(0)Ni(II)
species, not the Fe(I)-Ni(I) bond for the homovalence isomer of 1. The new pathway, which may have implications for protonation
of other complexes and clusters, was uncovered through studies on
the homologous series L(OC)2Fe(pdt)M(dppe), where M = Ni,
Pd (2), and Pt (3) and L = CO, PCy3. Similar to 1, complexes 2 and 3 undergo both protonation and 1e– oxidation to
afford well-characterized hydrides ([2H]+ and
[3H]+) and mixed-valence derivatives ([2]+ and [3]+), respectively.
Whereas the Pd site is tetrahedral in 2, the Pt site
is square-planar in 3, indicating that this complex is
best described as Fe(0)Pt(II). In view of the results on 2 and 3, the potential energy surface of 1 was reinvestigated with density functional theory. These calculations
revealed the existence of an energetically accessible and more basic
Fe(0)Ni(II) isomer with a square-planar Ni site.
Collapse
Affiliation(s)
- Mioy T Huynh
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
48
|
Kure B, Sano M, Nakajima T, Tanase T. Systematic Heterodinuclear Complexes with MM′(μ-meppp) Centers That Tune the Properties of a Nesting Hydride (M = Ni, Pd, Pt; M′ = Rh, Ir; H2meppp = meso-1,3-Bis[(mercaptoethyl)phenylphosphino]propane). Organometallics 2014. [DOI: 10.1021/om500410f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bunsho Kure
- Department of Chemistry,
Faculty of Science, Nara Women’s University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Mikie Sano
- Department of Chemistry,
Faculty of Science, Nara Women’s University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Takayuki Nakajima
- Department of Chemistry,
Faculty of Science, Nara Women’s University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| | - Tomoaki Tanase
- Department of Chemistry,
Faculty of Science, Nara Women’s University, Kitauoya-nishi-machi, Nara 630-8506, Japan
| |
Collapse
|
49
|
Song LC, Sun XJ, Jia GJ, Wang MM, Song HB. Synthesis, structural characterization, and electrochemical properties of (diphosphine)Ni-bridged butterfly Fe2E2 (E = S, Se, Te) cluster complexes related to [NiFe]-hydrogenases. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|