1
|
Domergue J, Guinard P, Douillard M, Pécaut J, Hostachy S, Proux O, Lebrun C, Le Goff A, Maldivi P, Duboc C, Delangle P. A Series of Ni Complexes Based on a Versatile ATCUN-Like Tripeptide Scaffold to Decipher Key Parameters for Superoxide Dismutase Activity. Inorg Chem 2023. [PMID: 37247425 DOI: 10.1021/acs.inorgchem.3c00766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The cellular level of reactive oxygen species (ROS) has to be controlled to avoid some pathologies, especially those linked to oxidative stress. One strategy for designing antioxidants consists of modeling natural enzymes involved in ROS degradation. Among them, nickel superoxide dismutase (NiSOD) catalyzes the dismutation of the superoxide radical anion, O2•-, into O2 and H2O2. We report here Ni complexes with tripeptides derived from the amino-terminal CuII- and NiII-binding (ATCUN) motif that mimics some structural features found in the active site of the NiSOD. A series of six mononuclear NiII complexes were investigated in water at physiological pH with different first coordination spheres, from compounds with a N3S to N2S2 set, and also complexes that are in equilibrium between the N-coordination (N3S) and S-coordination (N2S2). They were fully characterized by a combination of spectroscopic techniques, including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations and their redox properties studied by cyclic voltammetry. They all display SOD-like activity, with a kcat ranging between 0.5 and 2.0 × 106 M-1 s-1. The complexes in which the two coordination modes are in equilibrium are the most efficient, suggesting a beneficial effect of a nearby proton relay.
Collapse
Affiliation(s)
- Jérémy Domergue
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Pawel Guinard
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Magali Douillard
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Jacques Pécaut
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Sarah Hostachy
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Olivier Proux
- CNRS, OSUG, Université Grenoble Alpes, 38000 Grenoble, France
| | - Colette Lebrun
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Pascale Maldivi
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Pascale Delangle
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| |
Collapse
|
2
|
Pal N, Naskar T, Majumdar A. Synthesis, structural diversity and redox reactions in 1, 2- Bis(diphenylphopshinoethane)Nickel(II)-Thiolate complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Domergue J, Guinard P, Douillard M, Pécaut J, Proux O, Lebrun C, Le Goff A, Maldivi P, Delangle P, Duboc C. A Bioinspired Ni II Superoxide Dismutase Catalyst Designed on an ATCUN-like Binding Motif. Inorg Chem 2021; 60:12772-12780. [PMID: 34416109 DOI: 10.1021/acs.inorgchem.1c00899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nickel superoxide dismutase (NiSOD) is an enzyme that protects cells against O2·-. While the structure of its active site is known, the mechanism of the catalytic cycle is still not elucidated. Its active site displays a square planar NiII center with two thiolates, the terminal amine and an amidate. We report here a bioinspired NiII complex built on an ATCUN-like binding motif modulated with one cysteine, which demonstrates catalytic SOD activity in water (kcat = 8.4(2) × 105 M-1 s-1 at pH = 8.1). Its reactivity with O2·- was also studied in acetonitrile allowing trapping two different short-lived species that were characterized by electron paramagnetic resonance or spectroelectrochemistry and a combination of density functional theory (DFT) and time-dependent DFT calculations. Based on these observations, we propose that O2·- interacts first with the complex outer sphere through a H-bond with the peptide scaffold in a [NiIIO2·-] species. This first species could then evolve into a NiIII hydroperoxo inner sphere species through a reaction driven by protonation that is thermodynamically highly favored according to DFT calculations.
Collapse
Affiliation(s)
- Jérémy Domergue
- Universite Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.,Universite Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble 38000, France
| | - Pawel Guinard
- Universite Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.,Universite Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble 38000, France
| | - Magali Douillard
- Universite Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.,Universite Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble 38000, France
| | - Jacques Pécaut
- Universite Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble 38000, France
| | - Olivier Proux
- Universite Grenoble Alpes, CNRS, OSUG, Grenoble 38000, France
| | - Colette Lebrun
- Universite Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble 38000, France
| | - Alan Le Goff
- Universite Grenoble Alpes, CNRS, DCM, Grenoble 38000, France
| | - Pascale Maldivi
- Universite Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble 38000, France
| | - Pascale Delangle
- Universite Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble 38000, France
| | - Carole Duboc
- Universite Grenoble Alpes, CNRS, DCM, Grenoble 38000, France
| |
Collapse
|
4
|
Yang X, DeLaney CR, Burns KT, Elrod LC, Mo W, Naumann H, Bhuvanesh N, Hall MB, Darensbourg MY. Self-Assembled Nickel-4 Supramolecular Squares and Assays for HER Electrocatalysts Derived Therefrom. Inorg Chem 2021; 60:7051-7061. [PMID: 33891813 DOI: 10.1021/acs.inorgchem.0c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-state structures find a self-assembled tetrameric nickel cage with carboxylate linkages, [Ni(N2S'O)I(CH3CN)]4 ([Ni-I]40), resulting from sulfur acetylation by sodium iodoacetate of an [NiN2S]22+ dimer in acetonitrile. Various synthetic routes to the tetramer, best described from XRD as a molecular square, were discovered to generate the hexacoordinate nickel units ligated by N2Sthioether, iodide, and two carboxylate oxygens, one of which is the bridge from the adjacent nickel unit in [Ni-I]40. Removal of the four iodides by silver ion precipitation yields an analogous species but with an additional vacant coordination site, [Ni-Solv]+, a cation but with coordinated solvent molecules. This also recrystallizes as the tetramer [Ni-Solv]44+. In solution, dissociation into the (presumed) monomer occurs, with coordinating solvents occupying the vacant site [Ni(N2S'O)I(solv)]0, ([Ni-I]0). Hydrodynamic radii determined from 1H DOSY NMR data suggest that monomeric units are present as well in CD2Cl2. Evans method magnetism values are consistent with triplet spin states in polar solvents; however, in CD2Cl2 solutions no paramagnetism is evident. The abilities of [Ni-I]40 and [Ni-Solv]44+ to serve as sources of electrocatalysts, or precatalysts, for the hydrogen evolution reaction (HER) were explored. Cyclic voltammetry responses and bulk coulometry with gas chromatographic analysis demonstrated that a stronger acid, trifluoroacetic acid, as a proton source resulted in H2 production from both electroprecatalysts; however, electrocatalysis developed primarily from uncharacterized deposits on the electrode. With acetic acid as a proton source, the major contribution to the HER is from homogeneous electrocatalysis. Overpotentials of 490 mV were obtained for both the solution-phase [Ni-I]0 and [Ni-Solv]+. While the electrocatalyst derived from [Ni-Solv]+ has a substantially higher TOF (102 s-1) than [Ni-I]0 (19 s-1), it has a shorter catalytically active lifespan (4 h) in comparison to [Ni-I]0 (>18 h).
Collapse
Affiliation(s)
- Xuemei Yang
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Christopher R DeLaney
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Kyle T Burns
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Lindy C Elrod
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Wenting Mo
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Haley Naumann
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Michael B Hall
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Marcetta Y Darensbourg
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Miyake R, Suganuma E, Kimura S, Mori H, Okabayashi J, Kusamoto T. Cyclic Heterometallic Interactions formed from a Flexible Tripeptide Complex Showing Effective Antiferromagnetic Spin Coupling. Angew Chem Int Ed Engl 2021; 60:5179-5183. [PMID: 33207016 DOI: 10.1002/anie.202013373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 11/09/2022]
Abstract
Developing tunable motifs for heterometallic interactions should be beneficial for fabricating functional materials based on cooperative electronic communications between metal centers. Reported here is the efficient formation of cyclic heterometallic interactions from a complex containing an artificial tripeptide with metal binding sites on its main chain and side chains. X-ray structural analysis and X-ray absorption spectroscopy revealed that the cyclic metal-metal arrangements arise from the amide groups connecting four square-planar CuII centers and four octahedral NiII centers in a cyclic manner. UV/Vis spectral studies suggested that this efficient formation was achieved by the selective formation of the square-planar CuII centers and a crystallization process. Magnetic measurements using SQUID clarified that the cyclic complex represented the S=2 spin state at low temperatures due to effective antiferromagnetic interactions between the NiII and CuII centers.
Collapse
Affiliation(s)
- Ryosuke Miyake
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Eri Suganuma
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Shun Kimura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Hirotoshi Mori
- Department of Applied Chemistry, Faculty of Science & Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-Ku, Tokyo, 112-8551, Japan
| | - Jun Okabayashi
- Research Center for Spectrochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuro Kusamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| |
Collapse
|
6
|
Miyake R, Suganuma E, Kimura S, Mori H, Okabayashi J, Kusamoto T. Cyclic Heterometallic Interactions formed from a Flexible Tripeptide Complex Showing Effective Antiferromagnetic Spin Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ryosuke Miyake
- Department of Chemistry and Biochemistry Graduate School of Humanities and Sciences Ochanomizu University 2-1-1, Otsuka, Bunkyo-ku Tokyo 112-8610 Japan
- JST-PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Eri Suganuma
- Department of Chemistry and Biochemistry Graduate School of Humanities and Sciences Ochanomizu University 2-1-1, Otsuka, Bunkyo-ku Tokyo 112-8610 Japan
| | - Shun Kimura
- Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Department of Life and Coordination-Complex Molecular Science Institute for Molecular Science 5-1 Higashiyama Myodaiji, Okazaki 444-8787 Japan
| | - Hirotoshi Mori
- Department of Applied Chemistry, Faculty of Science & Engineering Chuo University 1-13-27 Kasuga, Bunkyo-Ku Tokyo 112-8551 Japan
| | - Jun Okabayashi
- Research Center for Spectrochemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Tetsuro Kusamoto
- Department of Life and Coordination-Complex Molecular Science Institute for Molecular Science 5-1 Higashiyama Myodaiji, Okazaki 444-8787 Japan
| |
Collapse
|
7
|
Das A, Ganguly T, Majumdar A. Thiolate Coordination vs C-S Bond Cleavage of Thiolates in Dinickel(II) Complexes. Inorg Chem 2021; 60:944-958. [PMID: 33405907 DOI: 10.1021/acs.inorgchem.0c03068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A detailed study for the synthesis of dinickel(II)-thiolate and dinickel(II)-hydrosulfide complexes and the complete characterization of the relevant intermediates involved in the C-S bond cleavage of thiolates are presented. Hydrated Ni(II) salts mediate the hydrolytic C-S bond cleavage of thiolates (NaSR/RSH; R = Me, Et, nBu, tBu), albeit inefficiently, to yield a mixture of a dinickel(II)-hydrosulfide complex, [Ni2(BPMP)(μ-SH)(DMF)2]2+ (1), and the corresponding dinickel(II)-thiolate complexes, such as [Ni2(BPMP)(μ-SEt)(ClO4)]1+ (2) (HBPMP is 2,6-bis[[bis(2-pyridylmethyl)amino]methyl]-4-methylphenol). A systematic study for the reactivity of thiolates with Ni(II) was therefore pursued which finally yielded 1 as a pure product which has been characterized in comparison with the dinickel(II)-dichloride complex, [Ni2(BPMP)(Cl)2(MeOH)2]1+ (3). While the reaction of thiolates with anhydrous Ni(OTf)2 in dry conditions could only yield [Ni2(BPMP)(OTf)2]1+ (5) instead of the expected dinickel(II)-thiolate compound, the C-S bond cleavage could be suppressed by the use of a chelating thiol, such as PhCOSH, to yield [Ni2(BPMP)(SCOPh)2]1+ (6). Finally, with the suitable choice of a monodentate thiol, a dinickel(II)-monothiolate complex, [Ni2(BPMP)(SPh)(DMF)(MeOH)(H2O)]2+ (7), was isolated as a pure product within 1 h of reaction, which after a longer time of reaction yielded 1 and PhOH. Complex 7 may thus be regarded as the intermediate that precedes the C-S bond cleavage and is generated by the reaction of a thiolate with an initially formed dinickel(II)-solvento complex, [Ni2(BPMP)(MeOH)2(H2O)2]3+(4). Selected dinickel(II) complexes were explored further for the scope of substitution reactions, and the results include the isolation of a dinickel(II)-bis(thiolate) complex, [Ni2(BPMP)(μ-SPh)2]1+ (8).
Collapse
Affiliation(s)
- Ayan Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Tuhin Ganguly
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
8
|
Tuning the catecholase activity of bis(pyrazolyl)methane-based copper(II) complexes by substitutions of the ligand core: unraveling a dual O2/H2O2 oxidation mechanism. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Domergue J, Pécaut J, Proux O, Lebrun C, Gateau C, Le Goff A, Maldivi P, Duboc C, Delangle P. Mononuclear Ni(II) Complexes with a S3O Coordination Sphere Based on a Tripodal Cysteine-Rich Ligand: pH Tuning of the Superoxide Dismutase Activity. Inorg Chem 2019; 58:12775-12785. [PMID: 31545024 DOI: 10.1021/acs.inorgchem.9b01686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The superoxide dismutase (SOD) activity of mononuclear NiII complexes, whose structures are inspired by the NiSOD, has been investigated. They have been designed with a sulfur-rich pseudopeptide ligand, derived from nitrilotriacetic acid (NTA), where the three acid functions are grafted with cysteines (L3S). Two mononuclear complexes, which exist in pH-dependent proportions, have been fully characterized by a combination of spectroscopic techniques including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations. They display similar square-planar S3O coordination, with the three thiolates of the three cysteine moieties from L3S coordinated to the NiII ion, together with either a water molecule at physiological pH, as [NiL3S(OH2)]-, or a hydroxo ion in more basic conditions, as [NiL3S(OH)]2-. The 1H NMR study has revealed that contrary to the hydroxo ligand, the bound water molecule is labile. The cyclic voltammogram of both complexes displays an irreversible one-electron oxidation process assigned to the NiII/NiIII redox system with Epa = 0.48 and 0.31 V versus SCE for NiL3S(OH2) and NiL3S(OH), respectively. The SOD activity of both complexes has been tested. On the basis of the xanthine oxidase assay, an IC50 of about 1 μM has been measured at pH 7.4, where NiL3S(OH2) is mainly present (93% of the NiII species), while the IC50 is larger than 100 μM at pH 9.6, where NiL3S(OH) is the major species (92% of the NiII species). Interestingly, only NiL3S(OH2) displays SOD activity, suggesting that the presence of a labile ligand is required. The SOD activity has been also evaluated under catalytic conditions at pH 7.75, where the ratio between NiL3S(OH2)/ NiL3S(OH) is about (86:14), and a rate constant, kcat = 1.8 × 105 M-1 s-1, has been measured. NiL3S(OH2) is thus the first low-molecular weight, synthetic, bioinspired Ni complex that displays catalytic SOD activity in water at physiological pH, although it does not contain any N-donor ligand in its first coordination sphere, as in the NiSOD. Overall, the data show that a key structural feature is the presence of a labile ligand in the coordination sphere of the NiII ion.
Collapse
Affiliation(s)
- Jérémy Domergue
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France.,Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Olivier Proux
- Univ. Grenoble Alpes, CNRS, OSUG , 38000 Grenoble , France
| | - Colette Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Christelle Gateau
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| |
Collapse
|
10
|
Truong PT, Broering EP, Dzul SP, Chakraborty I, Stemmler TL, Harrop TC. Simultaneous nitrosylation and N-nitrosation of a Ni-thiolate model complex of Ni-containing SOD. Chem Sci 2018; 9:8567-8574. [PMID: 30568781 PMCID: PMC6253683 DOI: 10.1039/c8sc03321h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) is used as a substrate analogue/spectroscopic probe of metal sites that bind and activate oxygen and its derivatives. To assess the interaction of superoxide with the Ni center in Ni-containing superoxide dismutase (NiSOD), we studied the reaction of NO+ and NO with the model complex, Et4N[Ni(nmp)(SPh-o-NH2-p-CF3)] (1; nmp2- = dianion of N-(2-mercaptoethyl)picolinamide; -SPh-o-NH2-p-CF3 = 2-amino-4-(trifluoromethyl)benzenethiolate) and its oxidized analogue 1ox , respectively. The ultimate products of these reactions are the disulfide of -SPh-o-NH2-p-CF3 and the S,S-bridged tetrameric complex [Ni4(nmp)4], a result of S-based redox activity. However, introduction of NO to 1 affords the green dimeric {NiNO}10 complex (Et4N)2[{Ni(κ2-SPh-o-NNO-p-CF3)(NO)}2] (2) via NO-induced loss of nmp2- as the disulfide and N-nitrosation of the aromatic thiolate. Complex 2 was characterized by X-ray crystallography and several spectroscopies. These measurements are in-line with other tetrahedral complexes in the {NiNO}10 classification. In contrast to the established stability of this metal-nitrosyl class, the Ni-NO bond of 2 is labile and release of NO from this unit was quantified by trapping the NO with a CoII-porphyrin (70-80% yield). In the process, the Ni ends up coordinated by two o-nitrosaminobenzenethiolato ligands to result in the structurally characterized trans-(Et4N)2[Ni(SPh-o-NNO-p-CF3)2] (3), likely by a disproportionation mechanism. The isolation and characterization of 2 and 3 suggest that: (i) the strongly donating thiolates dominate the electronic structure of Ni-nitrosyls that result in less covalent Ni-NO bonds, and (ii) superoxide undergoes disproportionation via an outer-sphere mechanism in NiSOD as complexes in the {NiNO}9/8 state have yet to be isolated.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| | - Ellen P Broering
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, Biochemistry, and Molecular Biology , Wayne State University , Detroit , Michigan 48201 , USA
| | - Indranil Chakraborty
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , USA
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, Biochemistry, and Molecular Biology , Wayne State University , Detroit , Michigan 48201 , USA
| | - Todd C Harrop
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| |
Collapse
|
11
|
Yang X, Elrod LC, Reibenspies JH, Hall MB, Darensbourg MY. Oxygen uptake in complexes related to [NiFeS]- and [NiFeSe]-hydrogenase active sites. Chem Sci 2018; 10:1368-1373. [PMID: 30809352 PMCID: PMC6354737 DOI: 10.1039/c8sc04436h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/04/2018] [Indexed: 12/19/2022] Open
Abstract
The NiFe hydrogenase biomimetics are protected from oxygen invaders by sulfur and selenium castle guards.
A biomimetic study for S/Se oxygenation in Ni(μ-EPh)(μ-SN2)Fe, (E = S or Se; SN2 = Me-diazacycloheptane-CH2CH2S); Fe = (η5-C5H5)FeII(CO) complexes related to the oxygen-damaged active sites of [NiFeS]/[NiFeSe]-H2ases is described. Mono- and di-oxygenates (major and minor species, respectively) of the chalcogens result from exposure of the heterobimetallics to O2; one was isolated and structurally characterized to have Ni–O–SePh–Fe–S connectivity within a 5-membered ring. A compositionally analogous mono-oxy species was implicated by ν(CO) IR spectroscopy to be the corresponding Ni–O–SPh–Fe–S complex; treatment with O-abstraction agents such as P(o-tolyl)3 or PMe3 remediated the O damage. Computational studies (DFT) found that the lowest energy isomers of mono-oxygen derivatives of Ni(μ-EPh)(μ-SN2)Fe complexes were those with O attachment to Ni rather than Fe, a result consonant with experimental findings, but at odds with oxygenates found in oxygen-damaged [NiFeS]/[NiFeSe]-H2ase structures. A computer-generated model based on substituting –SMe for the N-CH2CH2S– sulfur donor of the N2S suggested that constraint within the chelate hindered O-atom uptake at that sulfur site.
Collapse
Affiliation(s)
- Xuemei Yang
- Texas A&M University , Department of Chemistry , College Station , TX 77843 , USA .
| | - Lindy C Elrod
- Texas A&M University , Department of Chemistry , College Station , TX 77843 , USA .
| | - Joseph H Reibenspies
- Texas A&M University , Department of Chemistry , College Station , TX 77843 , USA .
| | - Michael B Hall
- Texas A&M University , Department of Chemistry , College Station , TX 77843 , USA .
| | | |
Collapse
|
12
|
Ni complexes of N 2 S ligands with amine/imine and amine/amide donors with relevance to the active site of Ni superoxide dismutase. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Truong PT, Gale EM, Dzul SP, Stemmler TL, Harrop TC. Steric Enforcement about One Thiolate Donor Leads to New Oxidation Chemistry in a NiSOD Model Complex. Inorg Chem 2017; 56:7761-7780. [PMID: 28459242 DOI: 10.1021/acs.inorgchem.7b00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ni-containing superoxide dismutase (NiSOD) represents an unusual member of the SOD family due to the presence of oxygen-sensitive Ni-SCys bonds at its active site. Reported in this account is the synthesis and properties of the NiII complex of the N3S2 ligand [N3S2Me2]3- ([N3S2Me2]3- = deprotonated form of 2-((2-mercapto-2-methylpropyl)(pyridin-2-ylmethyl)amino)-N-(2-mercaptoethyl)acetamide), namely Na[Ni(N3S2Me2)] (2), as a NiSOD model that features sterically robust gem-(CH3)2 groups on the thiolate α-C positioned trans to the carboxamide. The crystal structure of 2, coupled with spectroscopic measurements from 1H NMR, X-ray absorption, IR, UV-vis, and mass spectrometry (MS), reveal a planar NiII (S = 0) ion coordinated by only the N2S2 basal donors of the N3S2 ligand. While the structure and spectroscopic properties of 2 resemble those of NiSODred and other models, the asymmetric S ligands open up new reaction paths upon chemical oxidation. One unusual oxidation product is the planar NiII-N3S complex [Ni(Lox)] (5; Lox = 2-(5,5-dimethyl-2-(pyridin-2-yl)thiazolidin-3-yl)-N-(2-mercaptoethyl)acetamide), where two-electron oxidation takes place at the substituted thiolate and py-CH2 carbon to generate a thiazolidine heterocycle. Electrochemical measurements of 2 reveal irreversible events wholly consistent with thiolate redox, which were identified by comparison to the ZnII complex Na[Zn(N3S2Me2)] (3). Although no reaction is observed between 2 and azide, reaction of 2 with superoxide produces multiple products on the basis of UV-vis and MS data, one of which is 5. Density functional theory (DFT) computations suggest that the HOMO in 2 is π* with primary contributions from Ni-dπ/S-pπ orbitals. These contributions can be modulated and biased toward Ni when electron-withdrawing groups are placed on the thiolate α-C. Analysis of the oxidized five-coordinate species 2ox* by DFT reveal a singly occupied spin-up (α) MO that is largely thiolate based, which supports the proposed NiIII-thiolate/NiII-thiyl radical intermediates that ultimately yield 5 and other products.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| | - Eric M Gale
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Todd C Harrop
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
14
|
Steiner RA, Dzul SP, Stemmler TL, Harrop TC. Synthesis and Speciation-Dependent Properties of a Multimetallic Model Complex of NiSOD That Exhibits Unique Hydrogen-Bonding. Inorg Chem 2017; 56:2849-2862. [PMID: 28212040 DOI: 10.1021/acs.inorgchem.6b02997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The complex Na3[{NiII(nmp)}3S3BTAalk)] (1) (nmp2- = deprotonated form of N-(2-mercaptoethyl)picolinamide; H3S3BTAalk = N1,N3,N5-tris(2-mercaptoethyl)benzene-1,3,5-tricarboxamide, where H = dissociable protons), supported by the thiolate-benzenetricarboxamide scaffold (S3BTAalk), has been synthesized as a trimetallic model of nickel-containing superoxide dismutase (NiSOD). X-ray absorption spectroscopy (XAS) and 1H NMR measurements on 1 indicate that the NiII centers are square-planar with N2S2 coordination, and Ni-N and Ni-S distances of 1.95 and 2.16 Å, respectively. Additional evidence from IR indicates the presence of H-bonds in 1 from the approximately -200 cm-1 shift in νNH from free ligand. The presence of H-bonds allows for speciation that is temperature-, concentration-, and solvent-dependent. In unbuffered water and at low temperature, a dimeric complex (1A; λ = 410 nm) that aggregates through intermolecular NH···O═C bonds of BTA units is observed. Dissolution of 1 in pH 7.4 buffer or in unbuffered water at temperatures above 50 °C results in monomeric complex (1M; λ = 367 nm) linked through intramolecular NH···S bonds. DFT computations indicate a low energy barrier between 1A and 1M with nearly identical frontier MOs and Ni-ligand metrics. Notably, 1A and 1M exhibit remarkable stability in protic solvents such as MeOH and H2O, in stark contrast to monometallic [NiII(nmp)(SR)]- complexes. The reactivity of 1 with excess O2, H2O2, and O2•- is species-dependent. IR and UV-vis reveal that 1A in MeOH reacts with excess O2 to yield an S-bound sulfinate, but does not react with O2•-. In contrast, 1M is stable to O2 in pH 7.4 buffer, but reacts with O2•- to yield a putative [NiII(nmp)(O2)]- complex from release of the BTA-thiolate based on EPR.
Collapse
Affiliation(s)
- Ramsey A Steiner
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar St, Athens, Georgia 30602, United States
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, and Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, and Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Todd C Harrop
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar St, Athens, Georgia 30602, United States
| |
Collapse
|
15
|
Patel RN, Singh Y, Singh YP, Butcher RJ. Synthesis, crystal structure and DFT calculations of octahedral nickel(II) complexes derived from N′-[(E)-phenyl(pyridin-2-yl)methylidene]benzohydrazide. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1189543] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ram N. Patel
- Department of Chemistry, A.P.S. University, Rewa, India
| | | | | | - Raymond J. Butcher
- Department of Inorganic & Structural Chemistry, Howard University, Washington, DC, USA
| |
Collapse
|
16
|
Pladzyk A, Ozarowski A, Ponikiewski Ł. Crystal and electronic structures of Ni(II) silanethiolates containing flexible diamine ligands. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Yadav S, Kumar S, Gupta R. Manganese Complexes of Pyrrole‐ and Indolecarboxamide Ligands: Synthesis, Structure, Electrochemistry, and Applications in Oxidative and Lewis‐Acid‐Assisted Catalysis. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sunil Yadav
- Department of Chemistry, University of Delhi, Delhi 110007, India, http://people.du.ac.in/~rgupta/
| | - Sushil Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India, http://people.du.ac.in/~rgupta/
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India, http://people.du.ac.in/~rgupta/
| |
Collapse
|
18
|
Denny JA, Darensbourg MY. Metallodithiolates as ligands in coordination, bioinorganic, and organometallic chemistry. Chem Rev 2015; 115:5248-73. [PMID: 25948147 DOI: 10.1021/cr500659u] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Broering EP, Dillon S, Gale EM, Steiner RA, Telser J, Brunold TC, Harrop TC. Accessing Ni(III)-thiolate versus Ni(II)-thiyl bonding in a family of Ni-N2S2 synthetic models of NiSOD. Inorg Chem 2015; 54:3815-28. [PMID: 25835183 PMCID: PMC4630978 DOI: 10.1021/ic503124f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Superoxide dismutase (SOD) catalyzes the disproportionation of superoxide (O2(• -)) into H2O2 and O2(g) by toggling through different oxidation states of a first-row transition metal ion at its active site. Ni-containing SODs (NiSODs) are a distinct class of this family of metalloenzymes due to the unusual coordination sphere that is comprised of mixed N/S-ligands from peptide-N and cysteine-S donor atoms. A central goal of our research is to understand the factors that govern reactive oxygen species (ROS) stability of the Ni-S(Cys) bond in NiSOD utilizing a synthetic model approach. In light of the reactivity of metal-coordinated thiolates to ROS, several hypotheses have been proffered and include the coordination of His1-Nδ to the Ni(II) and Ni(III) forms of NiSOD, as well as hydrogen bonding or full protonation of a coordinated S(Cys). In this work, we present NiSOD analogues of the general formula [Ni(N2S)(SR')](-), providing a variable location (SR' = aryl thiolate) in the N2S2 basal plane coordination sphere where we have introduced o-amino and/or electron-withdrawing groups to intercept an oxidized Ni species. The synthesis, structure, and properties of the NiSOD model complexes (Et4N)[Ni(nmp)(SPh-o-NH2)] (2), (Et4N)[Ni(nmp)(SPh-o-NH2-p-CF3)] (3), (Et4N)[Ni(nmp)(SPh-p-NH2)] (4), and (Et4N)[Ni(nmp)(SPh-p-CF3)] (5) (nmp(2-) = dianion of N-(2-mercaptoethyl)picolinamide) are reported. NiSOD model complexes with amino groups positioned ortho to the aryl-S in SR' (2 and 3) afford oxidized species (2(ox) and 3(ox)) that are best described as a resonance hybrid between Ni(III)-SR and Ni(II)-(•)SR based on ultraviolet-visible (UV-vis), magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) spectroscopies, as well as density functional theory (DFT) calculations. The results presented here, demonstrating the high percentage of S(3p) character in the highest occupied molecular orbital (HOMO) of the four-coordinate reduced form of NiSOD (NiSODred), suggest that the transition from NiSODred to the five-coordinate oxidized form of NiSOD (NiSODox) may go through a four-coordinate Ni-(•)S(Cys) (NiSODox-Hisoff) that is stabilized by coordination to Ni(II).
Collapse
Affiliation(s)
- Ellen P. Broering
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| | - Stephanie Dillon
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Eric M. Gale
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| | - Ramsey A. Steiner
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, 430 South Michigan Avenue, Chicago, Illinois 60605, United States
| | - Thomas C. Brunold
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Todd C. Harrop
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Chatterjee SK, Maji RC, Barman SK, Olmstead MM, Patra AK. Hexacoordinate nickel(II)/(III) complexes that mimic the catalytic cycle of nickel superoxide dismutase. Angew Chem Int Ed Engl 2014; 53:10184-9. [PMID: 25056843 DOI: 10.1002/anie.201404133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/03/2014] [Indexed: 11/07/2022]
Abstract
A functional model complex of nickel superoxide dismutase (NiSOD) with a non-peptide ligand which mimics the full catalytic cycle of NiSOD is unknown. Similarly, it has not been fully elucidated whether NiSOD activity is a result of an outer- or inner-sphere electron-transfer mechanism. With this in mind, two octahedral nickel(II)/(III) complexes of a bis-tridentate N2 S donor carboxamide ligand, N-2-phenylthiophenyl-2'-pyridinecarboxamide (HL(Ph)), have been synthesized, structurally characterized, and their SOD activities examined. These complexes mimic the full catalytic cycle of NiSOD. Electrochemical experiments support an outer-sphere electron-transfer mechanism for their SOD activity.
Collapse
Affiliation(s)
- Sudip K Chatterjee
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209 (WB) (India)
| | | | | | | | | |
Collapse
|
21
|
Chatterjee SK, Maji RC, Barman SK, Olmstead MM, Patra AK. Hexacoordinate Nickel(II)/(III) Complexes that Mimic the Catalytic Cycle of Nickel Superoxide Dismutase. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Nakane D, Wasada-Tsutsui Y, Funahashi Y, Hatanaka T, Ozawa T, Masuda H. A Novel Square-Planar Ni(II) Complex with an Amino—Carboxamido—Dithiolato-Type Ligand as an Active-Site Model of NiSOD. Inorg Chem 2014; 53:6512-23. [DOI: 10.1021/ic402574d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Daisuke Nakane
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Yuko Wasada-Tsutsui
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Yasuhiro Funahashi
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tsubasa Hatanaka
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tomohiro Ozawa
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
23
|
Discrete trigonal prism nickel clusters: Syntheses, crystal structures and characterizations. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2013.09.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Gale EM, Zhu J, Caravan P. Direct measurement of the Mn(II) hydration state in metal complexes and metalloproteins through 17O NMR line widths. J Am Chem Soc 2013; 135:18600-8. [PMID: 24088013 DOI: 10.1021/ja4094132] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here we describe a simple method to estimate the inner-sphere hydration state of the Mn(II) ion in coordination complexes and metalloproteins. The line width of bulk H2(17)O is measured in the presence and absence of Mn(II) as a function of temperature, and transverse (17)O relaxivities are calculated. It is demonstrated that the maximum (17)O relaxivity is directly proportional to the number of inner-sphere water ligands (q). Using a combination of literature data and experimental data for 12 Mn(II) complexes, we show that this method provides accurate estimates of q with an uncertainty of ±0.2 water molecules. The method can be implemented on commercial NMR spectrometers working at fields of 7 T and higher. The hydration number can be obtained for micromolar Mn(II) concentrations. We show that the technique can be extended to metalloproteins or complex:protein interactions. For example, Mn(II) binds to the multimetal binding site A on human serum albumin with two inner-sphere water ligands that undergo rapid exchange (1.06 × 10(8) s(-1) at 37 °C). The possibility of extending this technique to other metal ions such as Gd(III) is discussed.
Collapse
Affiliation(s)
- Eric M Gale
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Harvard Medical School , 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | | | | |
Collapse
|
25
|
Jiang H, Sheng T, Bai S, Hu S, Wang X, Fu R, Yu P, Wu X. Unusual C–S Bond Cleavage in Hydro(solvo)thermal Reaction That Induces Two Novel Nickel Thiolates: The Crown [Ni16(edt)8S9(S2)]4– with an Unprecedented 12-Membered Ring System and the Cagelike [Ni13(edt)8S4(S2)2]2– with Two Distorted Cores. Inorg Chem 2013; 52:12305-7. [DOI: 10.1021/ic400824f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Jiang
- State Key
Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Tianlu Sheng
- State Key
Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Songyan Bai
- State Key
Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Shengmin Hu
- State Key
Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xin Wang
- State Key
Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ruibiao Fu
- State Key
Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Peng Yu
- State Key
Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xintao Wu
- State Key
Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
26
|
Broering EP, Truong PT, Gale EM, Harrop TC. Synthetic Analogues of Nickel Superoxide Dismutase: A New Role for Nickel in Biology. Biochemistry 2012; 52:4-18. [DOI: 10.1021/bi3014533] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ellen P. Broering
- Department
of Chemistry and Center for Metalloenzyme
Studies, The University of Georgia, 1001
Cedar Street, Athens, Georgia 30602, United States
| | - Phan T. Truong
- Department
of Chemistry and Center for Metalloenzyme
Studies, The University of Georgia, 1001
Cedar Street, Athens, Georgia 30602, United States
| | - Eric M. Gale
- Department
of Chemistry and Center for Metalloenzyme
Studies, The University of Georgia, 1001
Cedar Street, Athens, Georgia 30602, United States
| | - Todd C. Harrop
- Department
of Chemistry and Center for Metalloenzyme
Studies, The University of Georgia, 1001
Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
27
|
Krause ME, Glass AM, Jackson TA, Laurence JS. Embedding the Ni-SOD mimetic Ni-NCC within a polypeptide sequence alters the specificity of the reaction pathway. Inorg Chem 2012; 52:77-83. [PMID: 23214928 DOI: 10.1021/ic301175f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unique metal abstracting peptide asparagine-cysteine-cysteine (NCC) binds nickel in a square planar 2N:2S geometry and acts as a mimic of the enzyme nickel superoxide dismutase (Ni-SOD). The Ni-NCC tripeptide complex undergoes rapid, site-specific chiral inversion to dld-NCC in the presence of oxygen. Superoxide scavenging activity increases proportionally with the degree of chiral inversion. Characterization of the NCC sequence within longer peptides with absorption, circular dichroism (CD), and magnetic CD (MCD) spectroscopies and mass spectrometry (MS) shows that the geometry of metal coordination is maintained, though the electronic properties of the complex are varied to a small extent because of bis-amide, rather than amine/amide, coordination. In addition, both Ni-tripeptide and Ni-pentapeptide complexes have charges of -2. This study demonstrates that the chiral inversion chemistry does not occur when NCC is embedded in a longer polypeptide sequence. Nonetheless, the superoxide scavenging reactivity of the embedded Ni-NCC module is similar to that of the chirally inverted tripeptide complex, which is consistent with a minor change in the reduction potential for the Ni-pentapeptide complex. Together, this suggests that the charge of the complex could affect the SOD activity as much as a change in the primary coordination sphere. In Ni-NCC and other Ni-SOD mimics, changes in chirality, superoxide scavenging activity, and oxidation of the peptide itself all depend on the presence of dioxygen or its reduced derivatives (e.g., superoxide), and the extent to which each of these distinct reactions occurs is ruled by electronic and steric effects that emenate from the organization of ligands around the metal center.
Collapse
Affiliation(s)
- Mary E Krause
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | | | | | | |
Collapse
|
28
|
Glass AM, Krause ME, Laurence JS, Jackson TA. Controlling the chiral inversion reaction of the metallopeptide Ni-asparagine-cysteine-cysteine with dioxygen. Inorg Chem 2012; 51:10055-63. [PMID: 22928993 DOI: 10.1021/ic301717q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetically generated metallopeptides have the potential to serve a variety of roles in biotechnology applications, but the use of such systems is often hampered by the inability to control secondary reactions. We have previously reported that the Ni(II) complex of the tripeptide LLL-asparagine-cysteine-cysteine, LLL-Ni(II)-NCC, undergoes metal-facilitated chiral inversion to dld-Ni(II)-NCC, which increases the observed superoxide scavenging activity. However, the mechanism for this process remained unexplored. Electronic absorption and circular dichroism studies of the chiral inversion reaction of Ni(II)-NCC reveal a unique dependence on dioxygen. Specifically, in the absence of dioxygen, the chiral inversion is not observed, even at elevated pH, whereas the addition of O(2) initiates this reactivity and concomitantly generates superoxide. Scavenging experiments using acetaldehyde are indicative of the formation of carbanion intermediates, demonstrating that inversion takes place by deprotonation of the alpha carbons of Asn1 and Cys3. Together, these data are consistent with the chiral inversion being dependent on the formation of a Ni(III)-NCC intermediate from Ni(II)-NCC and O(2). The data further suggest that the anionic thiolate and amide ligands in Ni(II)-NCC inhibit Cα-H deprotonation for the Ni(II) oxidation state, leading to a stable complex in the absence of O(2). Together, these results offer insights into the factors controlling reactivity in synthetic metallopeptides.
Collapse
Affiliation(s)
- Amanda M Glass
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | |
Collapse
|
29
|
Dutta A, Hamilton GA, Hartnett HE, Jones AK. Construction of heterometallic clusters in a small peptide scaffold as [NiFe]-hydrogenase models: development of a synthetic methodology. Inorg Chem 2012; 51:9580-8. [PMID: 22924594 DOI: 10.1021/ic2026818] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[NiFe]-hydrogenases are enzymes that catalyze the reversible interconversion of protons and hydrogen at a heterobimetallic site containing Ni and Fe. This organometallic site has served as an inspiration for the synthesis of a number of biomimetic complexes, but, unfortunately, most close structural mimics have shown little to no reactivity with either of the substrates for hydrogenases. This suggests that interactions between the metallo-active site and the protein scaffold are crucial in tuning reactivity. As a first step toward development of peptide-based models, in this paper we demonstrate a synthetic strategy for construction of peptide coordinated, cysteinyl thiolate bridged Ni-M complexes in which M is a hetero-organometallic fragment. We utilize the seven amino acid peptide ACDLPCG as a scaffold for construction of these peptide-coordinated metallocenters. This peptide binds Ni in an N(2)S(2) environment consisting of the amino terminus, an amide nitrogen, and the two cysteinyl thiolates. We show that these thiolates serve as reactive sites for formation of heterometallic complexes in which they serve as bridging ligands. The method is general, and a number of heterometallic fragments including Ru(η(6)-arene)(2+), M(CO)(4)(piperidine) for M = Mo and W, and Fe(2)(CO)(6) were successfully incorporated, and the resulting metallopeptides characterized via a range of spectroscopic techniques. This methodology serves as the first step to construction of hydrogenase peptidomimetics that incorporate defined outer coordination sphere interactions intended to tune reactivity.
Collapse
Affiliation(s)
- Arnab Dutta
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | |
Collapse
|
30
|
Tan C, Jin M, Ma X, Zhu Q, Huang Y, Wang Y, Hu S, Sheng T, Wu X. In situ synthesis of nickel tiara-like clusters with two different thiolate bridges. Dalton Trans 2012; 41:8472-6. [DOI: 10.1039/c2dt30524k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Guillet GL, Sloane FT, Dumont MF, Abboud KA, Murray LJ. Synthesis and characterization of a tris(2-hydroxyphenyl)methane-based cryptand and its triiron(iii) complex. Dalton Trans 2012; 41:7866-9. [DOI: 10.1039/c2dt30312d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|