1
|
Durigon DC, Glitz VA, Pimenta BF, Guedes AMV, Silva JVO, Bella Cruz CC, Andrade LM, Pereira-Maia EC, Mikcha JMG, Bella Cruz A, Xavier FR, Terenzi HF, Poneti G, Ribeiro RR, Nordlander E, Caramori GF, Bortoluzzi AJ, Peralta RA. The influence of thioether-substituted ligands in dicopper(II) complexes: Enhancing oxidation and biological activities. J Inorg Biochem 2024; 256:112573. [PMID: 38678913 DOI: 10.1016/j.jinorgbio.2024.112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
This paper describes the synthesis, structural analysis, as well as the magnetic and spectroscopic characterizations of three new dicopper(II) complexes with dinucleating phenol-based ligands containing different thioether donor substituents: aromatic (1), aliphatic (2) or thiophene (3). Temperature-dependent magnetometry reveals the presence of antiferromagnetic coupling for 1 and 3 (J = -2.27 cm-1 and -5.01 cm-1, respectively, H = -2JS1S2) and ferromagnetic coupling for 2 (J = 5.72 cm-1). Broken symmetry DFT calculations attribute this behavior to a major contribution from the dz2 orbitals for 1 and 3, and from the dx2-y2 orbitals for 2, along with the p orbitals of the oxygens. The bioinspired catalytic activities of these complexes related to catechol oxidase were studied using 3,5-di-tert-butylcatechol as substrate. The order of catalytic rates for the substrate oxidation follows the trend 1 > 2 > 3 with kcat of (90.79 ± 2.90) × 10-3 for 1, (64.21 ± 0.99) × 10-3 for 2 and (14.20 ± 0.32) × 10-3 s-1 for 3. The complexes also cleave DNA through an oxidative mechanism with minor-groove preference, as indicated by experimental and molecular docking assays. Antimicrobial potential of these highly active complexes has shown that 3 inhibits both Staphylococcus aureus bacterium and Epidermophyton floccosum fungus. Notably, the complexes were found to be nontoxic to normal cells but exhibited cytotoxicity against epidermoid carcinoma cells, surpassing the activity of the metallodrug cisplatin. This research shows the multifaceted properties of these complexes, making them promising candidates for various applications in catalysis, nucleic acids research, and antimicrobial activities.
Collapse
Affiliation(s)
- Daniele C Durigon
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil
| | - Vinícius A Glitz
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil
| | - Beatriz F Pimenta
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil
| | - Anderson M V Guedes
- Departamento de Química, Universidade Federal do Rio de Janeiro, UFRJ, CEP 21941-901 Rio de Janeiro, RJ, Brazil
| | - João V O Silva
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, UEM, CEP 87020-900 Maringá, PR, Brazil
| | - Catarina C Bella Cruz
- Centro de Ensino em Ciências da Saúde, Universidade do Vale do Itajaí, Univali, CEP 88302-901 Itajaí, SC, Brazil
| | - Lídia M Andrade
- Departamento de Genética, Ecologia e Evolução and Departamento de Física, Universidade Federal de Minas Gerais, UFMG, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Elene C Pereira-Maia
- Departamento de Química, Universidade Federal de Minas Gerais, UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Jane M G Mikcha
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, UEM, CEP 87020-900 Maringá, PR, Brazil
| | - Alexandre Bella Cruz
- Centro de Ensino em Ciências da Saúde, Universidade do Vale do Itajaí, Univali, CEP 88302-901 Itajaí, SC, Brazil
| | - Fernando R Xavier
- Departamento de Química, Universidade do Estado de Santa Catarina, UDESC, CEP 89219-710 Joinville, SC, Brazil
| | - Hernán F Terenzi
- Laboratório de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil
| | - Giordano Poneti
- Departamento de Química, Universidade Federal do Rio de Janeiro, UFRJ, CEP 21941-901 Rio de Janeiro, RJ, Brazil; Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Ronny R Ribeiro
- Departamento de Química, Universidade Federal do Paraná, UFPR, CEP 81531-980 Curitiba, PR, Brazil
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Giovanni F Caramori
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
Bouroumane N, El Boutaybi M, El Kodadi M, Touzani R, Oussaid A, Hammouti B, Abboud M. Synthesis of new heterocyclic ligands and study of the catecholase activity of catalysts based on copper(II). REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
de Oliveira JAF, Terra GG, Costa TG, Szpoganicz B, Silva-Caldeira PP, de Souza ÍP, Pereira-Maia EC, Bortoluzzi AJ. Synthesis, characterization and cytotoxicity of copper (II) complex containing a 2H-benzo[e][1,3]oxazin derivative. J Inorg Biochem 2023; 239:112087. [PMID: 36508973 DOI: 10.1016/j.jinorgbio.2022.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
A new cis-dihalo copper(II) complex, [CuII(HLbz)(Cl)2].CH3CN (1), where HLbz = (S)-2-(((2-(2-(pyridin-2-yl)-2H-benzo[e][1,3]oxazin-3(4H)-yl)ethyl)amino)methyl)phenol), was isolated by reacting copper(II) chloride dihydrate and the H2L ligand (H2L = 2,2'-((2-(pyridin-2-yl)imidazolidine-1,3-diyl)bis(methylene))diphenol) in a MeOH/CH3CN (1:3 v/v) mixture. The complex formation occurred via the ligand modification during complexation, producing a unique structure containing 2H-benzo[e][1,3]oxazin, as observed from the single crystal X-ray structure determination. The complex was characterized by elemental analysis, potentiometric titration, spectroscopic techniques (UV-Vis, FT-IR) and conductance measurements. Complex 1 inhibits the growth of myelogenous leukemia cells with an IC50 of 17.3 μmol L-1.
Collapse
Affiliation(s)
- José A F de Oliveira
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Geovana G Terra
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Thiago G Costa
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Bruno Szpoganicz
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | | - Ívina P de Souza
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Elene C Pereira-Maia
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
4
|
Durigon DC, Duarte L, Fonseca J, Tizziani T, R. S. Candela D, Braga AL, Bortoluzzi AJ, Neves A, Peralta RA. Synthesis, structure and properties of new triiron(III) complexes: Phosphodiester cleavage and antioxidant activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Tripathy RR, Singha S, Sarkar S. A review on bio-functional models of catechol oxidase probed by less explored first row transition metals. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2122053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Shuvendu Singha
- Department of Chemistry, SAS, KIIT University, Bhubaneswar, Odisha, India
| | - Sohini Sarkar
- Department of Chemistry, SAS, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Mono- and binuclear copper(II) complexes with different structural motifs and geometries: Synthesis, spectral characterization, DFT calculations and superoxide dismutase enzymatic activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
New copper(II) μ-Alkoxo-μ-carboxylato double-bridged complexes as models for the active site of catechol oxidase: Synthesis, spectral characterization and DFT calculations. Heliyon 2022; 8:e09373. [PMID: 35592663 PMCID: PMC9113650 DOI: 10.1016/j.heliyon.2022.e09373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
A series of four copper(II) μ-Alkoxo-μ-carboxylato double bridged complexes, [{Cu2(L)}2][(μ–O2C–CO2] 1, [{Cu2(L)}2(μ–O2C–(CH2)CO2] 2, [{Cu2(L)}2(μ–O2C–CH2–CO2] 3 and [{Cu2(L)}2(μ–O2C–C6H4–CO2] 4 (H3L = 4-bromo-2-((E)-((3-(((E)-5-chloro-2-hydroxybenzylidene) amino)-2-hydroxypropyl) imino) methyl)-6-methoxyphenol and μ-dicarboxylate ions = oxalate, malonate, succinate and terephthalate) have been synthesized and characterized using several physicochemical techniques. The tridentate nature of H3L is interpreted from IR spectra. The Epr spectra of these complexes are characteristic of the quintet state (S = 2) in central features and the triplet state (S = 1) of these tetranuclear complexes. The electrochemical potential of these complexes was investigated using CV (cyclic voltammetry) and DPV (differential pulse voltammetry). All complexes showed quasi reversible reduction peaks in the cathodic region. To explore the stability of these complexes, quantum chemical parameters like electronegativity, ionization potential, electron affinity, global hardness and softness, and electrophilicity were estimated and discussed. The synthesized complexes have been designed as structural and functional models of the catechol oxidase enzymes to investigate the catecholase activity. Additionally, superoxide dismutase activity data of all complexes have also been evaluated and compared with known SOD mimics.
Collapse
|
8
|
Neves A, Tomkowicz Z, Couto RA, Bombazar CC, Amorim SM, Bortoluzzi AJ, Peralta RA. Trinuclear CuII complex containing a new pentadentate ligand: Structure, magnetism, physicochemical properties and catecholase activity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Collaboration between 3d-4f metal centers of heterodimetallic Ni(II)-Gd(III) complex in catecholase activity and interaction with FS-DNA & BSA. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Structural diversity of copper(II) complexes with three dimensional network: Crystal structure, Hirshfeld surface analysis, DFT calculations and catalytic activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Jana NC, Ghorai P, Brandão P, Jagličić Z, Panja A. Proton controlled synthesis of two dicopper(II) complexes and their magnetic and biomimetic catalytic studies together with probing the binding mode of the substrate to the metal center. Dalton Trans 2021; 50:15233-15247. [PMID: 34623364 DOI: 10.1039/d1dt02369a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This paper describes the synthesis, and structural and spectroscopic characterizations of two doubly bridged dicopper(II) complexes, [Cu2(μ-H2L)(μ-OMe)](ClO4)4·2H2O (1) and [Cu2(μ-L)(μ-OH)](ClO4)2 (2), with a binucleating ligand (HL) derived from the Schiff base condensation of DFMP and N,N-dimethyldipropylenetriamine, and their biomimetic catalytic activities were related to CAO and phenoxazinone synthase using 3,5-di-tert-butylcatechol and o-aminophenol (OAPH), respectively, as model substrates. Structural studies reveal that the major differences in these structures appear to be from the distinct roles of the tertiary amine groups of the ligands, which are protonated in 1, whereas it coordinates the metal centers in 2. Magnetic studies disclose that two copper(II) centers are strongly antiferromagnetically coupled with slightly different J values, which is further interpreted and discussed. They exhibited very different biomimetic catalytic activities; whereas 2 is an efficient catalyst, complex 1 showed somewhat lower substrate oxidation. The higher reactivity in 2 is rationalized by the strong involvement of the tertiary amine group of the Schiff base ligand, where the substrate oxidation is favored because of the transfer of protons from the substrate to the tertiary amine group, showing the importance of the functional groups in proximity to the bimetallic active site. Emphasis was also given to probing the binding mode of the substrate using an electronically deficient tetrabromomocatechol (Br4CatH2) and the isolated compound [Cu6(μ-HL)2(μ-OH)2(Br4Cat)4](NO3)2·4H2O (3) which suggests that monodentate asymmetric binding of 3,5-di-tert-butylcatechol and OAPH occurs during the course of the catalytic reaction.
Collapse
Affiliation(s)
- Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, West Bengal 721152, India.
| | - Pravat Ghorai
- Department of Chemistry, Panskura Banamali College, Panskura RS, West Bengal 721152, India. .,Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Paula Brandão
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, West Bengal 721152, India. .,Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| |
Collapse
|
12
|
Ahmad MS, Khalid M, Khan MS, Shahid M, Ahmad M, Saeed H, Owais M, Ashafaq M. Tuning biological activity in dinuclear Cu (II) complexes derived from pyrazine ligands: Structure, magnetism, catecholase, antimicrobial, antibiofilm, and antibreast cancer activity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohammad Shahwaz Ahmad
- Functional Inorganic Materials Lab (FIML), Department of Chemistry Aligarh Muslim University Aligarh India
| | - Mohd Khalid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry Aligarh Muslim University Aligarh India
| | - Mohammad Shahnawaz Khan
- Functional Inorganic Materials Lab (FIML), Department of Chemistry Aligarh Muslim University Aligarh India
| | - Mohammad Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry Aligarh Muslim University Aligarh India
| | - Musheer Ahmad
- Department of Applied Chemistry Aligarh Muslim University Aligarh India
| | - Haris Saeed
- Interdisciplinary Biotechnology Unit Aligarh Muslim University Aligarh India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit Aligarh Muslim University Aligarh India
| | - Mo Ashafaq
- Functional Inorganic Materials Lab (FIML), Department of Chemistry Aligarh Muslim University Aligarh India
| |
Collapse
|
13
|
Mukherjee D, Nag P, Shteinman AA, Vennapusa SR, Mandal U, Mitra M. Catechol oxidation promoted by bridging phenoxo moieties in a bis(μ-phenoxo)-bridged dicopper(ii) complex. RSC Adv 2021; 11:22951-22959. [PMID: 35480461 PMCID: PMC9034335 DOI: 10.1039/d1ra02787e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
A dinuclear copper(ii) complex [Cu2(papy)2(CH3OH)2] has been synthesized by reaction of one equiv. of Cu(OAc)2·2H2O with one equiv. of the tetradentate tripodal ligand H2papy [N-(2-hydroxybenzyl)-N-(2-picolyl)glycine] and has been characterized by various spectroscopic techniques and its solid state structure has been confirmed by X-ray crystal structure analysis. The single-crystal structure of the complex reveals that the two copper centers are hexa-coordinated and bridged by two O-atoms of the phenoxo moieties. The variable temperature magnetic susceptibility measurement of the complex reveals weak ferromagnetic interactions among the Cu(ii) ions with a J value of 1.1 cm−1. The catecholase activity of the complex has been investigated spectrophotometrically using 3,5-di-tert-butyl catechol as a model substrate in methanol solvent under aerobic conditions. The Michaelis–Menten kinetic treatment has been applied using different excess substrate concentrations. The parameters obtained from the catecholase activity by the complex are KM 2.97 × 10−4 M, Vmax 2 × 10−4 M s−1, and kcat 7.2 × 103 h−1. A reaction mechanism has been proposed based on experimental findings and theoretical calculations. The catechol substrate binds to dicopper(ii) centers and subsequently two electrons are transferred to the metal centers from the substrate. The bridging phenoxo moieties participate as a Brønsted base by accepting protons from catechol during the catalytic cycle and thereby facilitating the catechol oxidation process. A bis(μ-phenoxo)-bridged dicopper(ii) complex capable of oxidizing catechol with the highest efficiency amongst any bis(μ-phenoxo)-bridged dicopper(ii) complexes is reported.![]()
Collapse
Affiliation(s)
- Debojyoti Mukherjee
- Department of Chemistry, University of Burdwan Golapbug Campus, Purba Bardhaman-713104 India
| | - Probal Nag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P. O., Vithura Thiruvananthapuram-695551 Kerala India
| | - Albert A Shteinman
- Institute of Problems of Chemical Physics 142432 Chernogolovka, Moscow district Russian Federation
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P. O., Vithura Thiruvananthapuram-695551 Kerala India
| | - Ujjwal Mandal
- Department of Chemistry, University of Burdwan Golapbug Campus, Purba Bardhaman-713104 India
| | - Mainak Mitra
- Department of Chemistry, Burdwan Raj College Aftab Avenue, Purba Bardhaman-713104 India
| |
Collapse
|
14
|
A novel single-pot synthesis of dinuclear and mononuclear copper(II) complexes with sterically demanding Schiff bases: Structural, spectral, magnetic, electrochemical, DNA binding and theoretical investigation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Homrich AM, Farias G, Amorim SM, Xavier FR, Gariani RA, Neves A, Terenzi H, Peralta RA. Effect of Chelate Ring Size of Binuclear Copper(II) Complexes on Catecholase Activity and DNA Cleavage. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alana M. Homrich
- Federal University of Santa Catarina 88040900 Florianópolis SC Brazil
| | - Giliandro Farias
- Federal University of Santa Catarina 88040900 Florianópolis SC Brazil
| | - Suélen M. Amorim
- Federal University of Santa Catarina 88040900 Florianópolis SC Brazil
| | - Fernando R. Xavier
- Department of Chemistry State University of Santa Catarina 89219-710 Joinville SC Brazil
| | - Rogério A. Gariani
- Department of Chemistry State University of Santa Catarina 89219-710 Joinville SC Brazil
| | - Ademir Neves
- Federal University of Santa Catarina 88040900 Florianópolis SC Brazil
| | - Hernán Terenzi
- Department of Biochemistry Federal University of Santa Catarina 88040900 Florianópolis SC Brazil
| | - Rosely A. Peralta
- Federal University of Santa Catarina 88040900 Florianópolis SC Brazil
| |
Collapse
|
16
|
Patel A, Jadeja R, Roy H, Patel R, Patel S, Butcher R, Cortijo M, Herrero S. Copper(II) hydrazone complexes with different nuclearities and geometries: Synthesis, structural characterization, antioxidant SOD activity and antiproliferative properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Chaves CC, Farias G, Formagio MD, Neves A, Peralta RM, Mikcha JM, de Souza B, Peralta RA. Three new dinuclear nickel(II) complexes with amine pendant-armed ligands: Characterization, DFT study, antibacterial and hydrolase-like activity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Dasgupta S, Mandal A, Samanta D, Zangrando E, Maity S, Das D. Catalytic promiscuity of a copper(II)-Mannich base complex having unprecedented radical pathway in catecholase activity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Ahmad MS, Khalid M, Khan MS, Shahid M, Ahmad M, Monika, Ansari A, Ashafaq M. Exploring catecholase activity in dinuclear Mn(ii) and Cu(ii) complexes: an experimental and theoretical approach. NEW J CHEM 2020. [DOI: 10.1039/d0nj00605j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two dinuclear Mn(ii) and Cu(ii) complexes were prepared, characterised and assessed for non-covalent interactions and catecholase oxidase properties. The catecholase activity of2is further corroborated by theoretical calculations using DFT.
Collapse
Affiliation(s)
- M. Shahwaz Ahmad
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Mohd Khalid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | | | - M. Shahid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Musheer Ahmad
- Department of Applied Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Monika
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Mo Ashafaq
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| |
Collapse
|
20
|
Durigon DC, Maragno Peterle M, Bortoluzzi AJ, Ribeiro RR, Braga AL, Peralta RA, Neves A. Cu(ii) complexes with tridentate sulfur and selenium ligands: catecholase and hydrolysis activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj02806a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two new copper(ii) mononuclear complexes (CSe and CS) were synthesized and characterized by the following techniques: X-ray crystallography, elemental analysis, IR, EPR and UV-vis spectroscopies, conductimetric analysis and mass spectrometry.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Luiz Braga
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | | | - Ademir Neves
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| |
Collapse
|
21
|
Du J, Qi S, Chen J, Yang Y, Fan T, Zhang P, Zhuo S, Zhu C. Fabrication of highly active phosphatase-like fluorescent cerium-doped carbon dots for in situ monitoring the hydrolysis of phosphate diesters. RSC Adv 2020; 10:41551-41559. [PMID: 35516543 PMCID: PMC9057792 DOI: 10.1039/d0ra07429b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022] Open
Abstract
The hydrolytic cleavage of BNPP was catalyzed and monitored by the fluorescent CeCDs.
Collapse
Affiliation(s)
- Jinyan Du
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shuangqing Qi
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Juan Chen
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ying Yang
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Tingting Fan
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ping Zhang
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shujuan Zhuo
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Changqing Zhu
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
22
|
Synthesis, structure, DFT study and catechol oxidase activity of Cu(II) complex with sterically constrained phenol based ligand. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Bhunia A, Vojtíšek P, Bertolasi V, Manna SC. Tridentate Schiff base coordinated trigonal bipyramidal / square pyramidal copper(II) complexes: Synthesis, crystal structure, DFT / TD-DFT calculation, catecholase activity and DNA binding. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Singh A, Raj P, Singh A, Dubowski JJ, Kaur N, Singh N. Metal-Organocatalyst for Detoxification of Phosphorothioate Pesticides: Demonstration of Acetylcholine Esterase Activity. Inorg Chem 2019; 58:9773-9784. [PMID: 31318533 DOI: 10.1021/acs.inorgchem.9b00770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In recent years, transition metal complexes have been developed for catalytical degradation of a phosphate ester bond, particularly in RNA and DNA; however, less consideration has been given for development of complexes for the degradation of a phosphorothioate bond, as they are the foremost used pesticides in the environment and are toxic to human beings. In this context, we have developed copper complexes of benzimidazolium based ligands for catalytical degradation of a series of organophosphates (parathion, paraoxon, methyl-parathion) at ambient conditions. The copper complexes (assigned as N1-N3) were characterized using single X-ray crystallography which revealed that all three complexes are mononuclear and distorted square planner in geometry. Further, the solution state studies of the prepared complexes were carried out using UV-visible absorption, fluorescence spectroscopy, and cyclic voltametry. The complexes N1 and N2 have benzimidazolium ionic liquid as base attached with two 2-mercapto-benzimidazole pods, whereas complex N3 contains a nonionic ligand. The synthesized copper complexes were evaluated for their catalytic activity for degradation of organophosphates. It is interesting that the complex containing the ionic ligand efficiently degrades phosphorothioate pesticides, whereas complex N3 was not found to be appropriate for degradation due to a weaker conversion rate. The organophosphate degradation studies were monitored by recording absorbance spectra of parathion in the presence of catalyst, i.e., copper complexes with respect to time. The parathion was hydrolyzed into para-nitrophenol and diethyl thiophosphate. Moreover, to analyze the inhibition activity of the pesticides toward acetylcholine esterase enzyme in the presence of prepared metal complexes, Ellman's assay was performed and revealed that, within 20 min, the inhibition of acetylcholine esterase enzyme decreases by up to 13%.
Collapse
Affiliation(s)
- Amanpreet Singh
- Department of Chemistry , Indian Institute of Technology Ropar , Punjab 140001 , India
| | - Pushap Raj
- Department of Chemistry , Indian Institute of Technology Ropar , Punjab 140001 , India
| | - Ajnesh Singh
- Department of Applied Sciences and Humanities , Jawaharlal Nehru Govt. Engineering College , Sundernagar , Mandi (H.P.) , 175018 , India
| | - Jan J Dubowski
- Laboratory for Quantum Semiconductors and Photo-based Biotechnology, Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Department of Electrical and Computer Engineering , Universite de Sherbrooke , 3000 Boulevard de l'Université , Sherbrooke , QC J1K 0A5 , Canada
| | - Navneet Kaur
- Department of Chemistry , Panjab University , Chandigarh , 160014 , India
| | - Narinder Singh
- Department of Chemistry , Indian Institute of Technology Ropar , Punjab 140001 , India
| |
Collapse
|
25
|
Di and tetranuclear Cu(II) complexes with simple 2-aminoethylpyridine: Magnetic properties, phosphodiester hydrolysis, DNA binding/cleavage, cytotoxicity and catecholase activity. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Heying RS, da Silva MP, Wecker GS, Peralta RA, Bortoluzzi AJ, Neves A. Unusual hydrolase-like activity of a mononuclear Fe(III) complex. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Cao S, Cheng R, Wang D, Zhao Y, Tang R, Yang X, Chen J. Dinuclear copper(II) complexes of “end-off” bicompartmental ligands: Alteration of the chelating arms on ligands to regulate the reactivity of the complexes towards DNA. J Inorg Biochem 2019; 192:126-139. [DOI: 10.1016/j.jinorgbio.2018.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 01/08/2023]
|
28
|
Dasgupta S, Aullón G, Zangrando E, Das D. Mapping the working route of phosphate monoester hydrolysis catalyzed by copper based models with special emphasis on the role of oxoanions by experimental and theoretical studies. NEW J CHEM 2019. [DOI: 10.1039/c8nj04018d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanistic pathway of phosphate-ester bond hydrolysis with special emphasis on the role of oxoanions was explored by experimental and theoretical study.
Collapse
Affiliation(s)
| | - Gabriel Aullón
- Departament de Química Inorgànica i Orgànica (Secció de Química Inorgànica) and Institut de QuímicaTeorica i Computacional
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences
- University of Trieste
- 34127 Trieste
- Italy
| | - Debasis Das
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
29
|
Castro KADF, Figueira F, Almeida Paz FA, Tomé JPC, da Silva RS, Nakagaki S, Neves MGPMS, Cavaleiro JAS, Simões MMQ. Copper-phthalocyanine coordination polymer as a reusable catechol oxidase biomimetic catalyst. Dalton Trans 2019; 48:8144-8152. [DOI: 10.1039/c9dt00378a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report the synthesis, characterization and catalytic activity of a new phthalocyanine coordination polymer (Cu4CuPcSPy).
Collapse
Affiliation(s)
- Kelly A. D. F. Castro
- QOPNA & LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Flávio Figueira
- QOPNA & LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | | | - João P. C. Tomé
- QOPNA & LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Roberto S. da Silva
- Faculty of Pharmaceutical Sciences
- University of São Paulo
- Ribeirão Preto
- Brazil
| | - Shirley Nakagaki
- Laboratory of Bioinorganic and Catalysis and Department of Chemistry
- Federal University of Paraná
- Curitiba
- Brazil
| | | | - José A. S. Cavaleiro
- QOPNA & LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Mário M. Q. Simões
- QOPNA & LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
30
|
Syntheses, crystal structures and Hirshfeld surface analysis of a coordination polymer of Cu(II) chlorido and a tris-octahedral complex of Ni(II) containing isonicotinoylhydrazone blockers. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Adhikary J, Majumdar I, Kundu P, Kornweitz H, Kara H, Das D. Role of Electronegative Atom Present on Ligand Backbone and Substrate Binding Mode on Catecholase- and Phosphatase-Like Activities of Dinuclear NiIIComplexes: A Theoretical Support. ChemistrySelect 2018. [DOI: 10.1002/slct.201702861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jaydeep Adhikary
- Department of Chemical Sciences; Ariel University; Ariel 40700 Israel
- Department of Chemistry; University of Calcutta; 92, A. P. C. Road Kolkata - 700009 India
| | - Ishani Majumdar
- Department of Chemistry; University of Calcutta; 92, A. P. C. Road Kolkata - 700009 India
| | - Priyanka Kundu
- Department of Chemistry; University of Calcutta; 92, A. P. C. Road Kolkata - 700009 India
| | - Haya Kornweitz
- Department of Chemical Sciences; Ariel University; Ariel 40700 Israel
| | - Hulya Kara
- Department of Physics; Faculty of Science and Art; Balikesir University; Balikesir Turkey
- Department of Physics; Faculty of Science; Mugla Sıtkı Koçman University; Mugla Turkey
| | - Debasis Das
- Department of Chemistry; University of Calcutta; 92, A. P. C. Road Kolkata - 700009 India
| |
Collapse
|
32
|
de Oliveira JAF, da Silva MP, de Souza B, Camargo TP, Szpoganicz B, Neves A, Bortoluzzi AJ. Dopamine polymerization promoted by a catecholase biomimetic Cu II(μ-OH)Cu II complex containing a triazine-based ligand. Dalton Trans 2018; 45:15294-15297. [PMID: 27722365 DOI: 10.1039/c6dt02032a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We describe herein the catecholase-like catalytic activity and dopamine polymerization by using a dinuclear [LCuII(μ-OH)2CuII](ClO4)2 (1) complex where L is the dinucleating triazine-based ligand 6-chloro-N2,N2,N4,N4-tetrakis(pyridin-2-ylmethyl)-1,3,5-triazine-2,4-diamine. The kinetic parameters (kcat = 0.318 s-1, KM = 1.6 × 10-3 mol L-1, and kcat/KM = 198.8 L s-1 mol-1), mechanistic insights into the oxidation of 3,5-di-tert-butyl catechol and early characterization of poly(dopamine) are presented.
Collapse
Affiliation(s)
- José A F de Oliveira
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil.
| | - Marcos P da Silva
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil.
| | - Bernardo de Souza
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil.
| | - Tiago P Camargo
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil.
| | - Bruno Szpoganicz
- Departamento de Química, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil
| | - Ademir Neves
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil.
| | - Adailton J Bortoluzzi
- Laboratório de Bioinorgânica e Cristalografia, Universidade Federal de Santa Catarina, Trindade Campus, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
33
|
Kumari B, Adhikari S, Matalobos JS, Das D. Cu(II) and Co(II) complexes of benzimidazole derivative: Structures, catecholase like activities and interaction studies with hydrogen peroxide. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Pereira MB, Fontana LA, Siqueira JD, Auras BL, da Silva MP, Neves A, Gabriel P, Terenzi H, Iglesias BA, Back DF. Pyridoxal derivatized copper(II) complexes: Evaluation of antioxidant, catecholase, and DNA cleavage activity. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Das M, Kumar Kundu B, Tiwari R, Mandal P, Nayak D, Ganguly R, Mukhopadhyay S. Investigation on chemical protease, nuclease and catecholase activity of two copper complexes with flexidentate Schiff base ligands. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Catalytic aspects of a nickel(II)–bipyridine complex towards phosphatase and catechol dioxygenase activity. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.03.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Adhikary J, Chakraborty P, Samanta S, Zangrando E, Ghosh S, Das D. Thiocyanate mediated structural diversity in phenol based "end-off" compartmental ligand complexes of group 12 metal ions: Studies on their photophysical properties and phosphatase like activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 178:114-124. [PMID: 28171815 DOI: 10.1016/j.saa.2017.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/30/2016] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
The reaction of a pentadentate compartmental ligand LH, namely 4-tert-Butyl-2,6-bis-[(2-pyridin-2-yl-ethylimino)-methyl]-phenol, with group 12 metal ions (ZnII, CdII, HgII) followed by addition of NaSCN afforded one discrete dinuclear complex [Zn2(L)(SCN)3](1), and two polymeric 1D species [Cd2.5(L)(SCN)3(AcO)]n (2) and [Hg2(L)(SCN)3]n (3). All the complexes have been structurally characterized by single crystal X-ray diffraction. The crystal structure of the complexes reveals different coordination modes of thiocyanate anion that affect the different topology detected in the compounds: the anions are μ1-NCS and μ1,1-NCS connected in complex 1, while μ1,3-NCS bridging mode is observed in 2, and μ1-SCN and μ1,3-NCS in 3. The polymeric Hg complex of the bicompartmental ligand system here reported is unprecedented. Detail study of their photophysical properties including the phosphorescence spectra at 77K has been done. Phosphatase like activity of all the three complexes has been performed in DMSO-H2O medium and their activity follows the order of 1>2>>3.
Collapse
Affiliation(s)
- Jaydeep Adhikary
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India; Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Prateeti Chakraborty
- Department of Chemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| | - Sugata Samanta
- Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Sanjib Ghosh
- The School of Science, Adamas University, Barasat, West Bengal, India.
| | - Debasis Das
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India.
| |
Collapse
|
38
|
Hannigan SF, Arnoff AI, Neville SE, Lum JS, Golen JA, Rheingold AL, Orth N, Ivanović‐Burmazović I, Liebhäuser P, Rösener T, Stanek J, Hoffmann A, Herres‐Pawlis S, Doerrer LH. On the Way to a Trisanionic {Cu
3
O
2
} Core for Oxidase Catalysis: Evidence of an Asymmetric Trinuclear Precursor Stabilized by Perfluoropinacolate Ligands. Chemistry 2017; 23:8212-8224. [DOI: 10.1002/chem.201605926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Steven F. Hannigan
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - Amanda I. Arnoff
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - Sarah E. Neville
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - June S. Lum
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - James A. Golen
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Nicole Orth
- Lehrstuhl für Bioanorganische Chemie Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Ivana Ivanović‐Burmazović
- Lehrstuhl für Bioanorganische Chemie Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Patricia Liebhäuser
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Thomas Rösener
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Julia Stanek
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Alexander Hoffmann
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Sonja Herres‐Pawlis
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Linda H. Doerrer
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| |
Collapse
|
39
|
Barman SK, Mondal T, Koley D, Lloret F, Mukherjee R. A phenoxo-bridged dicopper(ii) complex as a model for phosphatase activity: mechanistic insights from a combined experimental and computational study. Dalton Trans 2017; 46:4038-4054. [PMID: 28271106 DOI: 10.1039/c6dt03514k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A μ-phenoxo-bis(μ2-1,3-acetato)-bridged dicopper(ii) complex [Cu(L1)(μ-O2CMe)2][NO3] (1) has been synthesized from the perspective of modeling phosphodiesterase activity. Structural characterization was done initially with 1·3Et2O (vapour diffusion of Et2O into MeOH solution of 1; poor crystal quality) and finally with its perchlorate salt [Cu(L1)(μ-O2CMe)2][ClO4]·1.375MeCN·0.25H2O, crystallized from vapour diffusion of n-pentane into a MeCN-MeOH mixture (comparatively better crystal quality). An asymmetric unit of such a crystal contains two independent molecules of compositions [Cu(L1)(μ-O2CMe)2][ClO4] and [Cu(L1)(μ-O2CMe)2(MeCN)][ClO4] (coordinated MeCN with 0.75 occupancy), and two molecules of MeCN and H2O (each H2O molecule with 0.25 occupancy) as the solvent of crystallization. These two cations, each having five-coordinate (μ-phenoxo)bis(μ-acetato)-bridged CuII ions, differ by only the coordination environment of only one CuII ion, which has a weakly coordinated acetonitrile molecule in its sixth position. Temperature-dependent magnetic studies on 1 reveal that the copper(ii) centres are antiferromagnetically coupled with the exchange-coupling constant J = -124(1) cm-1. Theoretically calculated J = -126.51 cm-1, employing a broken-symmetry DFT approach, is in excellent agreement with the experimental value. The dicopper(ii) complex has been found to be catalytically efficient in the hydrolysis of 2-hydroxypropyl-p-nitrophenylphosphate (HPNP). Detailed kinetic experiments and solution studies (potentiometry, species distribution and ESI-MS) were performed to elucidate the reaction mechanism. DFT calculations were performed to discriminate between different possible mechanistic pathways. The free-energy barrier for HPNP hydrolysis catalyzed by 1 is comparable to that obtained from the experimentally-determined value. The involvement of non-covalent (hydrogen-bonding) interaction has also been probed by DFT calculations. The activity of 1 is found to be the highest, compared to the structurally-characterized Mn, Co, Ni and Zn complexes of L1(-) reported earlier, under identical experimental conditions, in which each metal centre is six-coordinate.
Collapse
Affiliation(s)
- Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. and Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Totan Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Francesc Lloret
- Departament de Química Inorgànica/Fundació General de la Universitat de València (FGUV)/Instituto de Ciencia, Molecular (ICMOL), Universitat de València, Polígono de la Coma, s/n, 46980-Paterna, València, Spain
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. and Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| |
Collapse
|
40
|
Ferre FT, Resende JA, Schultz J, Mangrich AS, Faria RB, Rocha AB, Scarpellini M. Catalytic promiscuity of mononuclear copper(II) complexes in mild conditions: Catechol and cyclohexane oxidations. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Dancs Á, May NV, Selmeczi K, Darula Z, Szorcsik A, Matyuska F, Páli T, Gajda T. Tuning the coordination properties of multi-histidine peptides by using a tripodal scaffold: solution chemical study and catechol oxidase mimicking. NEW J CHEM 2017. [DOI: 10.1039/c6nj03126a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Histidine-rich tripodal peptides form unique oligonuclear complexes with copper(ii), which exhibit efficient catecholase-like activity.
Collapse
Affiliation(s)
- Ágnes Dancs
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
- Université de Lorraine – CNRS
| | - Nóra V. May
- Research Centre for Natural Sciences HAS
- H-1117 Budapest
- Hungary
| | - Katalin Selmeczi
- Université de Lorraine – CNRS
- UMR 7565 SRSMC
- 54506 Vandœuvre-lès-Nancy
- France
| | - Zsuzsanna Darula
- Institute of Biochemistry
- Biological Research Centre
- Hungarian Academy of Sciences
- H-6724 Szeged
- Hungary
| | - Attila Szorcsik
- MTA-SZTE Bioinorganic Chemistry Research Group
- H-6720 Szeged
- Hungary
| | - Ferenc Matyuska
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
| | - Tibor Páli
- Institute of Biophysics
- Biological Research Centre
- Hungarian Academy of Sciences
- H-6724 Szeged
- Hungary
| | - Tamás Gajda
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
| |
Collapse
|
42
|
Kumari S, Mahato AK, Maurya A, Singh VK, Kesharwani N, Kachhap P, Koshevoy IO, Haldar C. Syntheses and characterization of monobasic tridentate Cu(ii) Schiff-base complexes for efficient oxidation of 3,5-di-tert-butylcatechol and oxidative bromination of organic substrates. NEW J CHEM 2017. [DOI: 10.1039/c7nj00957g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhanced bifunctional catalytic activities are shown by monobasic tridentate Cu(ii) Schiff-base complexes.
Collapse
Affiliation(s)
- Sweta Kumari
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad 826004
- India
| | - Arun Kumar Mahato
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad 826004
- India
| | - Abhishek Maurya
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad 826004
- India
| | - Vijay Kumar Singh
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad 826004
- India
| | - Neha Kesharwani
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad 826004
- India
| | - Payal Kachhap
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad 826004
- India
| | - Igor O. Koshevoy
- Department of Chemistry
- University of Eastern Finland
- Joensuu
- Finland
| | - Chanchal Haldar
- Department of Applied Chemistry
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad 826004
- India
| |
Collapse
|
43
|
Singh YP, Patel RN, Singh Y, Butcher RJ, Vishakarma PK, Singh RB. Structure and antioxidant superoxide dismutase activity of copper(II) hydrazone complexes. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Sama F, Dhara AK, Akhtar MN, Chen YC, Tong ML, Ansari IA, Raizada M, Ahmad M, Shahid M, Siddiqi ZA. Aminoalcohols and benzoates-friends or foes? Tuning nuclearity of Cu(ii) complexes, studies of their structures, magnetism, and catecholase-like activities as well as performing DFT and TDDFT studies. Dalton Trans 2017; 46:9801-9823. [DOI: 10.1039/c7dt01571b] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu(ii) complexes of varying nuclearity are synthesized, characterized and assessed for catecholase activities.
Collapse
Affiliation(s)
- Farasha Sama
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Ashish Kumar Dhara
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - Muhammad Nadeem Akhtar
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Yan-Cong Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Ming-Liang Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | | | - Mukul Raizada
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Musheer Ahmad
- Department of Applied Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - M. Shahid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Zafar A. Siddiqi
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
45
|
Dasgupta S, Majumder I, Chakraborty P, Zangrando E, Bauza A, Frontera A, Das D. Ligand-Flexibility Controlled and Solvent-Induced Nuclearity Conversion in CuII-Based Catecholase Models: A Deep Insight Through Combined Experimental and Theoretical Investigations. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600985] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sanchari Dasgupta
- Department of Chemistry; University of Calcutta; 92, A. P. C. Road 700009 Kolkata India
| | - Ishani Majumder
- Department of Chemistry; University of Calcutta; 92, A. P. C. Road 700009 Kolkata India
| | - Prateeti Chakraborty
- Department of Chemistry; Amity University Kolkata; New Town 700156 Kolkata India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences; University of Trieste; Via L. Giorgieri 1 34127 Trieste Italy
| | - Antonio Bauza
- Departament de Química; Universitat de les Illes Balears; Crta. de Valldemossa km 7.5 07122 Palma (Baleares) Spain
| | - Antonio Frontera
- Departament de Química; Universitat de les Illes Balears; Crta. de Valldemossa km 7.5 07122 Palma (Baleares) Spain
| | - Debasis Das
- Department of Chemistry; University of Calcutta; 92, A. P. C. Road 700009 Kolkata India
| |
Collapse
|
46
|
Zerón P, Westphal M, Comba P, Flores-Álamo M, Stueckl AC, Leal-Cervantes C, Ugalde-Saldívar VM, Gasque L. Dinuclear Copper(II) Complexes with Distant Metal Centers: Weaker Donor Groups Increase Catecholase Activity. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600967] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paulino Zerón
- Departamento de Química Inorgánica y Nuclear; Facultad de Química; Universidad Nacional Autónoma de México; CDMX 04510 Ciudad Universitaria México
| | - Michael Westphal
- Anorganisch-Chemisches Institut und Interdisciplinäres Zentrum für Wissenschaftliches Rechnen (IWR); Universität Heidelberg; INF 270 69120 Heidelberg Germany
| | - Peter Comba
- Anorganisch-Chemisches Institut und Interdisciplinäres Zentrum für Wissenschaftliches Rechnen (IWR); Universität Heidelberg; INF 270 69120 Heidelberg Germany
| | - Marcos Flores-Álamo
- Departamento de Química Inorgánica y Nuclear; Facultad de Química; Universidad Nacional Autónoma de México; CDMX 04510 Ciudad Universitaria México
| | - A. Claudia Stueckl
- Institut für Anorganische Chemie; Georg-August-Universtität; Tammannstrasse 4 37073 Göttingen Germany
| | - Carmen Leal-Cervantes
- Departamento de Química Inorgánica y Nuclear; Facultad de Química; Universidad Nacional Autónoma de México; CDMX 04510 Ciudad Universitaria México
| | - Víctor M. Ugalde-Saldívar
- Departamento de Química Inorgánica y Nuclear; Facultad de Química; Universidad Nacional Autónoma de México; CDMX 04510 Ciudad Universitaria México
| | - Laura Gasque
- Departamento de Química Inorgánica y Nuclear; Facultad de Química; Universidad Nacional Autónoma de México; CDMX 04510 Ciudad Universitaria México
| |
Collapse
|
47
|
Novel bioinspired acetato-bridged dinuclear nickel(II)-Schiff-base complex: Catechol oxidase and in vitro biological activity studies. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.08.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Caglar S, Dilek E, Caglar B, Adiguzel E, Temel E, Buyukgungor O, Tabak A. New metal complexes with diclofenac containing 2-pyridineethanol or 2-pyridinepropanol: synthesis, structural, spectroscopic, thermal properties, catechol oxidase and carbonic anhydrase activities. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1227802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sema Caglar
- Faculty of Arts and Sciences, Department of Chemistry, Erzincan University, Erzincan, Turkey
| | - Esra Dilek
- Faculty of Pharmacy, Division of Pharmaceutical Basic Sciences, Department of Biochemistry, Erzincan University, Erzincan, Turkey
| | - Bulent Caglar
- Faculty of Arts and Sciences, Department of Chemistry, Erzincan University, Erzincan, Turkey
| | - Ekrem Adiguzel
- Faculty of Arts and Sciences, Department of Chemistry, Erzincan University, Erzincan, Turkey
| | - Ersin Temel
- Department of Electric and Energy, Technical Science Vocational High School, Giresun University, Giresun, Turkey
| | - Orhan Buyukgungor
- Faculty of Arts and Sciences, Department of Physics, Ondokuz Mayis University, Samsun, Turkey
| | - Ahmet Tabak
- Faculty of Arts and Sciences, Department of Chemistry, Sinop University, Sinop, Turkey
| |
Collapse
|
49
|
Du K, Harris TD. A CuII2 Paramagnetic Chemical Exchange Saturation Transfer Contrast Agent Enabled by Magnetic Exchange Coupling. J Am Chem Soc 2016; 138:7804-7. [DOI: 10.1021/jacs.6b03060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kang Du
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - T. David Harris
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
50
|
Nakajima T, Yamashiro C, Taya M, Kure B, Tanase T. Systematic Synthesis of Di‐, Tri‐, and Tetranuclear Homo‐ and Heterometal Complexes Using a Mononuclear Copper Synthon with a Tetradentate Amino Alcohol Ligand. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takayuki Nakajima
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| | - Chisako Yamashiro
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| | - Megumi Taya
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| | - Bunsho Kure
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| | - Tomoaki Tanase
- Department of Chemistry Faculty of Science Nara Women's University Kitauoya‐nishi‐machi 630‐8506 Nara Japan
| |
Collapse
|