1
|
Liu Y, Resch SG, Chen H, Dechert S, Demeshko S, Bill E, Ye S, Meyer F. Fully Delocalized Mixed-Valent Cu 1.5 Cu 1.5 Complex: Strong Cu-Cu interaction and Fast Electron Self-Exchange Rate Despite Large Structural Changes. Angew Chem Int Ed Engl 2023; 62:e202215840. [PMID: 36504436 DOI: 10.1002/anie.202215840] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
A flexible macrocyclic ligand with two tridentate {CNC} compartments can host two Cu ions in reversibly interconvertible states, CuI CuI (1) and mixed-valent Cu1.5 Cu1.5 (2). They were characterized by XRD and multiple spectroscopic methods, including EPR, UV/Vis absorption and MCD, in combination with TD-DFT and CASSCF calculations. 2 features a short Cu⋅⋅⋅Cu distance (≈2.5 Å; compared to ≈4.0 Å in 1) and a very high delocalization energy of 13 000 cm-1 , comparable to the mixed-valent state of the biological CuA site. Electron self-exchange between 1 and 2 is rapid despite large structural reorganization, and is proposed to proceed via a sequential mechanism involving an active conformer of 1, viz. 1'; the latter has been characterized by XRD. Such electron transfer (ET) process is reminiscent of the conformationally gated ET proposed for biological systems. This redox couple is a unique pair of flexible dicopper complexes, achieving fast electron self-exchange closely related to the function of the CuA site.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Stefan G Resch
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Haowei Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Eckhard Bill
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Smith DE, Levason W, Powell J, Reid G. Synthesis, properties and structural features of molybdenum(v) oxide trichloride complexes with neutral chalcogenoether ligands. Dalton Trans 2021; 50:4380-4389. [PMID: 33704331 DOI: 10.1039/d1dt00038a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexes of oxotrichloromolybdenum(v) with neutral group 16 donor ligands, [MoOCl3(L-L)] (L-L = RS(CH2)2SR, R = iPr, Ph; MeS(CH2)3SMe; MeSe(CH2)2SeMe; MeSe(CH2)3SeMe), [{MoOCl2(EMe2)}2(μ-Cl)2] (E = S, Se, Te), [(MoOCl3)2{o-C6H4(EMe)2}]n (E = Se or Te) and [(MoOCl3)2{MeTe(CH2)3TeMe}]n, have been obtained by reaction of the ligands with [MoOCl3(thf)2] or MoOCl3 in either CH2Cl2 or toluene, and characterised by microanalysis, IR and UV-visible spectroscopy and magnetic measurements. The telluroethers are the first examples containing Mo in a positive oxidation state. X-ray crystal structures are reported for the six-coordinate fac-[MoOCl3{MeS(CH2)3SMe}], mer-[MoOCl3{iPrS(CH2)2SiPr}] and mer-[MoOCl3{MeSe(CH2)2SeMe}], as well as the six-coordinate chloride-bridged dimers, [{MoOCl2(SMe2)}2(μ-Cl)2] and [{MoOCl2(SeMe2)}2(μ-Cl)2]. The structure of the mixed-valence decomposition product, [MoIVCl{o-C6H4(TeMe)2}2(μ-O)MoVOCl4], was also determined. In toluene solution MoOCl4 is reduced by MeS(CH2)3SMe to produce the Mo(v) complex, [MoOCl3{ MeS(CH2)3SMe}]. Crystal structures of the previously unknown diphosphine analogue, [MoOCl3{Me2P(CH2)2PMe2}], and the mixed-valence derivative [MoIVCl{Me2P(CH2)2PMe2}2(μ-O)MoVOCl4] are also reported for comparison and help to clarify earlier contradictory literature reports. In contrast to the dimeric EMe2 complexes, [{MoOCl2(EMe2)}2(μ-Cl)2], PMe3 forms the monomeric complex, fac-[MoOCl3(PMe3)2].
Collapse
Affiliation(s)
- Danielle E Smith
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | | | | | | |
Collapse
|
3
|
Hillenbrand J, van Gastel M, Bill E, Neese F, Fürstner A. Isolation of a Homoleptic Non-oxo Mo(V) Alkoxide Complex: Synthesis, Structure, and Electronic Properties of Penta- tert-Butoxymolybdenum. J Am Chem Soc 2020; 142:16392-16402. [PMID: 32847348 PMCID: PMC7517713 DOI: 10.1021/jacs.0c07073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Treatment of [MoCl4(THF)2] with MOtBu (M = Na, Li) does not result in simple metathetic ligand exchange but entails disproportionation with formation of the well-known dinuclear complex [(tBuO)3Mo≡Mo(OtBu)3] and a new paramagnetic compound, [Mo(OtBu)5]. This particular five-coordinate species is the first monomeric, homoleptic, all-oxygen-ligated but non-oxo 4d1 Mo(V) complex known to date; as such, it proves that the dominance of the Mo═O group over (high-valent) molybdenum chemistry can be challenged. [Mo(OtBu)5] was characterized in detail by a combined experimental/computational approach using X-ray diffraction; UV/vis, MCD, IR, EPR, and NMR spectroscopy; and quantum chemistry. The recorded data confirm a Jahn-Teller distortion of the structure, as befitting a d1 species, and show that the complex undergoes Berry pseudorotation. The alkoxide ligands render the disproportionation reaction, leading the formation of [Mo(OtBu)5] to be particularly facile, even though the parent complex [MoCl4(THF)2] itself was also found to be intrinsically unstable; remarkably, this substrate converts into a crystalline material, in which the newly formed Mo(III) and Mo(V) products cohabitate the same unit cell.
Collapse
Affiliation(s)
| | | | - Eckhard Bill
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim/Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
4
|
Maganas D, Kowalska JK, Van Stappen C, DeBeer S, Neese F. Mechanism of L 2,3-edge x-ray magnetic circular dichroism intensity from quantum chemical calculations and experiment-A case study on V (IV)/V (III) complexes. J Chem Phys 2020; 152:114107. [PMID: 32199419 DOI: 10.1063/1.5129029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this work, we present a combined experimental and theoretical study on the V L2,3-edge x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra of VIVO(acac)2 and VIII(acac)3 prototype complexes. The recorded V L2,3-edge XAS and XMCD spectra are richly featured in both V L3 and L2 spectral regions. In an effort to predict and interpret the nature of the experimentally observed spectral features, a first-principles approach for the simultaneous prediction of XAS and XMCD spectra in the framework of wavefunction based ab initio methods is presented. The theory used here has previously been formulated for predicting optical absorption and MCD spectra. In the present context, it is applied to the prediction of the V L2,3-edge XAS and XMCD spectra of the VIVO(acac)2 and VIII(acac)3 complexes. In this approach, the spin-free Hamiltonian is computed on the basis of the complete active space configuration interaction (CASCI) in conjunction with second order N-electron valence state perturbation theory (NEVPT2) as well as the density functional theory (DFT)/restricted open configuration interaction with singles configuration state functions based on a ground state Kohn-Sham determinant (ROCIS/DFT). Quasi-degenerate perturbation theory is then used to treat the spin-orbit coupling (SOC) operator variationally at the many particle level. The XAS and XMCD transitions are computed between the relativistic many particle states, considering their respective Boltzmann populations. These states are obtained from the diagonalization of the SOC operator along with the spin and orbital Zeeman operators. Upon averaging over all possible magnetic field orientations, the XAS and XMCD spectra of randomly oriented samples are obtained. This approach does not rely on the validity of low-order perturbation theory and provides simultaneous access to the calculation of XMCD A, B, and C terms. The ability of the method to predict the XMCD C-term signs and provide access to the XMCD intensity mechanism is demonstrated on the basis of a generalized state coupling mechanism based on the type of the excitations dominating the relativistically corrected states. In the second step, the performance of CASCI, CASCI/NEVPT2, and ROCIS/DFT is evaluated. The very good agreement between theory and experiment has allowed us to unravel the complicated XMCD C-term mechanism on the basis of the SOC interaction between the various multiplets with spin S' = S, S ± 1. In the last step, it is shown that the commonly used spin and orbital sum rules are inadequate in interpreting the intensity mechanism of the XAS and XMCD spectra of the VIVO(acac)2 and VIII(acac)3 complexes as they breakdown when they are employed to predict their magneto-optical properties. This conclusion is expected to hold more generally.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Joanna K Kowalska
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Ye S, Kupper C, Meyer S, Andris E, Navrátil R, Krahe O, Mondal B, Atanasov M, Bill E, Roithová J, Meyer F, Neese F. Magnetic Circular Dichroism Evidence for an Unusual Electronic Structure of a Tetracarbene-Oxoiron(IV) Complex. J Am Chem Soc 2016; 138:14312-14325. [PMID: 27682505 DOI: 10.1021/jacs.6b07708] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In biology, high valent oxo-iron(IV) species have been shown to be pivotal intermediates for functionalization of C-H bonds in the catalytic cycles of a range of O2-activating iron enzymes. This work details an electronic-structure investigation of [FeIV(O)(LNHC)(NCMe)]2+ (LNHC = 3,9,14,20-tetraaza-1,6,12,17-tetraazoniapenta-cyclohexacosane-1(23),4,6(26),10,12(25),15,17(24),21-octaene, complex 1) using helium tagging infrared photodissociation (IRPD), absorption, and magnetic circular dichroism (MCD) spectroscopy, coupled with DFT and highly correlated wave function based multireference calculations. The IRPD spectrum of complex 1 reveals the Fe-O stretching vibration at 832 ± 3 cm-1. By analyzing the Franck-Condon progression, we can determine the same vibration occurring at 616 ± 10 cm-1 in the E(dxy → dxz,yz) excited state. Both values are similar to those measured for [FeIV(O)(TMC)(NCMe)]2+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). The low-temperature MCD spectra of complex 1 exhibit three pseudo A-term signals around 12 500, 17 000, and 24 300 cm-1. We can unequivocally assign them to the ligand field transitions of dxy → dxz,yz, dxz,yz → dz2, and dxz,yz → dx2-y2, respectively, through direct calculations of MCD spectra and independent determination of the MCD C-term signs from the corresponding electron donating and accepting orbitals. In comparison with the corresponding transitions observed for [FeIV(O) (SR-TPA)(NCMe)]2+ (SR-TPA = tris(3,5-dimethyl-4-methoxypyridyl-2-methy)amine), the excitations within the (FeO)2+ core of complex 1 have similar transition energies, whereas the excitation energy for dxz,yz → dx2-y2 is significantly higher (∼12 000 cm-1 for [FeIV(O)(SR-TPA)(NCMe)]2+). Our results thus substantiate that the tetracarbene ligand (LNHC) of complex 1 does not significantly affect the bonding in the (FeO)2+ unit but strongly destabilizes the dx2-y2 orbital to eventually lift it above dz2. As a consequence, this unusual electron configuration leads to an unprecedentedly larger quintet-triplet energy separation for complex 1, which largely rules out the possibility that the H atom transfer reaction may take place on the quintet surface and hence quenches two-state reactivity. The resulting mechanistic implications are discussed.
Collapse
Affiliation(s)
- Shengfa Ye
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Claudia Kupper
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen , Tammannstr. 4, D-37077 Göttingen, Germany
| | - Steffen Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen , Tammannstr. 4, D-37077 Göttingen, Germany
| | - Erik Andris
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Rafael Navrátil
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Oliver Krahe
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Bhaskar Mondal
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Mihail Atanasov
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany.,Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences , 1113 Sofia, Bulgaria
| | - Eckhard Bill
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen , Tammannstr. 4, D-37077 Göttingen, Germany
| | - Frank Neese
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
6
|
Ye S, Xue G, Krivokapic I, Petrenko T, Bill E, Que Jr L, Neese F. Magnetic circular dichroism and computational study of mononuclear and dinuclear iron(IV) complexes. Chem Sci 2015; 6:2909-2921. [PMID: 26417426 PMCID: PMC4583211 DOI: 10.1039/c4sc03268c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/26/2015] [Indexed: 12/13/2022] Open
Abstract
High-valent iron(IV)-oxo species are key intermediates in the catalytic cycles of a range of O2-activating iron enzymes. This work presents a detailed study of the electronic structures of mononuclear ([FeIV(O)(L)(NCMe)]2+, 1, L = tris(3,5-dimethyl-4-methoxylpyridyl-2-methyl)amine) and dinuclear ([(L)FeIV(O)(μ-O)FeIV(OH)(L)]3+, 2) iron(IV) complexes using absorption (ABS), magnetic circular dichroism (MCD) spectroscopy and wave-function-based quantum chemical calculations. For complex 1, the experimental MCD spectra at 2-10 K are dominated by a broad positive C-term band between 12000 and 18000 cm-1. As the temperature increases up to ~20 K, this feature is gradually replaced by a derivative-shaped signal. The computed MCD spectra are in excellent agreement with experiment, which reproduce not only the excitation energies and the MCD signs of key transitions but also their temperature-dependent intensity variations. To further corroborate the assignments suggested by the calculations, the individual MCD sign for each transition is independently determined from the corresponding electron donating and accepting orbitals. Thus, unambiguous assignments can be made for the observed transitions in 1. The ABS/MCD data of complex 2 exhibit ten features that are assigned as ligand-field transitions or oxo- or hydroxo-to-metal charge transfer bands, based on MCD/ABS intensity ratios, calculated excitation energies, polarizations, and MCD signs. In comparison with complex 1, the electronic structure of the FeIV=O site is not significantly perturbed by the binding to another iron(IV) center. This may explain the experimental finding that complexes 1 and 2 have similar reactivities toward C-H bond activation and O-atom transfer.
Collapse
Affiliation(s)
- Shengfa Ye
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Genqiang Xue
- Department of Chemistry , Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant St. SE , Minneapolis , Minnesota 55455 , USA .
| | - Itana Krivokapic
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Taras Petrenko
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Eckhard Bill
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Lawrence Que Jr
- Department of Chemistry , Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant St. SE , Minneapolis , Minnesota 55455 , USA .
| | - Frank Neese
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| |
Collapse
|
7
|
Westphal A, Klinkebiel A, Berends HM, Broda H, Kurz P, Tuczek F. Electronic Structure and Spectroscopic Properties of Mononuclear Manganese(III) Schiff Base Complexes: A Systematic Study on [Mn(acen)X] Complexes by EPR, UV/vis, and MCD Spectroscopy (X = Hal, NCS). Inorg Chem 2013; 52:2372-87. [DOI: 10.1021/ic301889e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anne Westphal
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| | - Arne Klinkebiel
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| | - Hans-Martin Berends
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| | - Henning Broda
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| | - Philipp Kurz
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| | - Felix Tuczek
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel, Germany
| |
Collapse
|