1
|
Hooper RX, Mercado BQ, Holland PL. Desulfurization and N 2 Binding at an Iron Complex Derived from the C-S Activation of Benzothiophene. Organometallics 2023; 42:2019-2027. [PMID: 38282963 PMCID: PMC10810089 DOI: 10.1021/acs.organomet.3c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Metal insertion into the C-S bonds of thiophenes is a facile route to interesting polydentate ligand scaffolds with C and S donors. Here, we describe iron-mediated C-S activation of a diphenylphosphine-functionalized benzothiophene proligand. Metalation of the proligand with "tetrakis(trimethylphosphine)iron" gives an initial five-coordinate, diamagnetic iron(II) species with two PMe3 ligands and a dianionic PCS pincer ligand. Upon one-electron reduction, a reactive anionic iron(I) complex is formed. This species then undergoes deep-seated changes, notably cleavage of C-S and C-P bonds in the supporting ligand. Substantial coordination sphere alterations accompany the ligand C-S bond activation, including loss of a sulfur anion from the S-Fe-C metallacycle and reorganization of the two PMe3 ligands. The resulting desulfurized six-coordinate PCC iron complex also has an N2 ligand trans to the vinyl C. Reducing this complex then cleaves a C-P bond in the appended diphenylphosphine, giving a phosphido arm. These ligand transformations demonstrate novel approaches to pincers with thiolates and phosphides, which would be difficult to synthesize using typical methods through free ligand salts.
Collapse
Affiliation(s)
- Reagan X. Hooper
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | | | | |
Collapse
|
2
|
Leitner D, Wittwer B, Neururer FR, Seidl M, Wurst K, Tambornino F, Hohloch S. Expanding the Utility of β-Diketiminate Ligands in Heavy Group VI Chemistry of Molybdenum and Tungsten. Organometallics 2023; 42:1411-1424. [PMID: 37388273 PMCID: PMC10302891 DOI: 10.1021/acs.organomet.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 07/01/2023]
Abstract
We report the synthesis of 17 molybdenum and tungsten complexes supported by the ubiquitous BDI ligand framework (BDI = β-diketiminate). The focal entry point is the synthesis of four molybdenum and tungsten(V) BDI complexes of the general formula [MO(BDIR)Cl2] [M = Mo, R = Dipp (1); M = W, R = Dipp (2); M = Mo, R = Mes (3); M = W, R = Mes (4)] synthesized by the reaction between MoOCl3(THF)2 or WOCl3(THF)2 and LiBDIR. Reactivity studies show that the BDIDipp complexes are excellent precursors toward adduct formation, reacting smoothly with dimethylaminopyridine (DMAP) and triethylphosphine oxide (OPEt3). No reaction with small phosphines has been observed, strongly contrasting the chemistry of previously reported rhenium(V) complexes. Additionally, the complexes 1 and 2 are good precursors for salt metathesis reactions. While 1 can be chemically reduced to the first stable example of a Mo(IV) BDI complex 15, reduction of 2 resulted in degradation of the BDI ligand via a nitrene transfer reaction, leading to MAD (4-((2,6-diisopropylphenyl)imino)pent-2-enide) supported tungsten(V) and tungsten(VI) complexes 16 and 17. All reported complexes have been thoroughly studied by VT-NMR and (heteronuclear) NMR spectroscopy, as well as UV-vis and EPR spectroscopy, IR spectroscopy, and X-ray diffraction analysis.
Collapse
Affiliation(s)
- Daniel Leitner
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Benjamin Wittwer
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Florian R. Neururer
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Michael Seidl
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Klaus Wurst
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Frank Tambornino
- Fachbereich
Chemie and Wissenschaftlichen Zentrum für Materialwissenschaften
(WZMW), Phillips-University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Stephan Hohloch
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| |
Collapse
|
3
|
Wojnar M, Ziller JW, Heyduk AF. Two-Electron Mixed Valency in a Heterotrimetallic Nickel-Vanadium-Nickel Complex. Inorg Chem 2023; 62:1405-1413. [PMID: 36633592 PMCID: PMC9890480 DOI: 10.1021/acs.inorgchem.2c03381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mixed-valence complexes represent an enticing class of coordination compounds to interrogate electron transfer confined within a molecular framework. The diamagnetic heterotrimetallic anion, [V(SNS)2{Ni(dppe)}2]-, was prepared by reducing (dppe)NiCl2 in the presence of the chelating metalloligand [V(SNS)2]- [dppe = bis(diphenylphosphino)ethane; (SNS)3- = bis(2-thiolato-4-methylphenyl)amide]. Vanadium-nickel bonds span the heterotrimetallic core in the structure of [V(SNS)2{Ni(dppe)}2]-, with V-Ni bond lengths of 2.78 and 2.79 Å. One-electron oxidation of monoanionic [V(SNS)2{Ni(dppe)}2]- yielded neutral, paramagnetic V(SNS)2{Ni(dppe)}2. The solid-state structure of V(SNS)2{Ni(dppe)}2 revealed that the two nickel ions occupy unique coordination environments: one nickel is in a square-planar S2P2 coordination environment (τ4 = 0.19), with a long Ni···V distance of 3.45 Å; the other nickel is in a tetrahedral S2P2 coordination environment (τ4 = 0.84) with a short Ni-V distance of 2.60 Å, consistent with a formal metal-metal bond. Continuous-wave X-band electron paramagnetic resonance spectroscopy, electrochemical investigations, and density functional theory computations indicated that the unpaired electron in the neutral V(SNS)2{Ni(dppe)}2 cluster is localized on the bridging [V(SNS)2] metalloligand, and as a result, V(SNS)2{Ni(dppe)}2 is best described as a two-electron mixed-valence complex. These results demonstrate the important role that metal-metal interactions and flexible coordination geometries play in enabling multiple, reversible electron transfer processes in small cluster complexes.
Collapse
|
4
|
Pashanova KI, Poddel'sky AI, Piskunov AV. Complexes of “late” transition metals of the 3d row based on functionalized o-iminobenzoquinone type ligands: Interrelation of molecular and electronic structure, magnetic behaviour. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Kaswan P, Oswal P, Kumar A, Mohan Srivastava C, Vaya D, Rawat V, Nayan Sharma K, Kumar Rao G. SNS donors as mimic to enzymes, chemosensors, and imaging agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Sarkar P, Sarmah A, Mukherjee C. Where is the unpaired electron density? A combined experimental and theoretical finding on the geometric and electronic structures of the Co( iii) and Mn( iv) complexes of the unsymmetrical non-innocent pincer ONS ligand. Dalton Trans 2022; 51:16723-16732. [DOI: 10.1039/d2dt01868c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The geometry and electronic structures of the Co and Mn complexes of the pincer H3LONS ligand composed of both hard and soft donor atoms at the coordinating sites are reported.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amrit Sarmah
- Department of Molecular Modelling, Institute of Organic Chemistry and Biochemistry ASCR, v.v.i. Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
7
|
Charette BJ, Ziller JW, Heyduk AF. Metal-Ion Influence on Ligand-Centered Hydrogen-Atom Transfer. Inorg Chem 2021; 60:1579-1589. [PMID: 33434022 DOI: 10.1021/acs.inorgchem.0c02981] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ligand-centered hydrogen-atom-transfer (HAT) reactivity was examined for a family of group 10 metal complexes containing a tridentate pincer ligand derived from bis(2-mercapto-p-tolyl)amine, [SNS]H3. Six new metal complexes of palladium and platinum were synthesized with the [SNS] ligand platform in different redox and protonation states to complete the group 10 series previously reported with nickel. The HAT reactivity was examined for this family of nickel, palladium, and platinum complexes to determine the impact of a metal ion on the ligand-centered reactivity. Thermodynamic measurements revealed that N-H bond dissociation free energies increased by approximately 10 kcal mol-1 along the series Ni < Pd < Pt driven by changes to both the redox potential and pKa of the ligand. Kinetic analyses for all three metal complexes suggest that the barrier to the HAT reactivity is primarily entropic rather than enthalpic for this system.
Collapse
Affiliation(s)
- Bronte J Charette
- Department of Chemistry, University of California at Irvine (UCI), Irvine, California 92677-2025, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California at Irvine (UCI), Irvine, California 92677-2025, United States
| | - Alan F Heyduk
- Department of Chemistry, University of California at Irvine (UCI), Irvine, California 92677-2025, United States
| |
Collapse
|
8
|
Ranis LG, Gianino J, Hoffman JM, Brown SN. Nonclassical oxygen atom transfer reactions of an eight-coordinate dioxomolybdenum( vi) complex. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00308a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eight-coordinate MoO2(DOPOQ)2 can donate two oxygen atoms to substrates such as phosphines in a four-electron nonclassical oxygen atom transfer reaction.
Collapse
Affiliation(s)
- Leila G. Ranis
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Jacqueline Gianino
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Justin M. Hoffman
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Seth N. Brown
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| |
Collapse
|
9
|
Mashima K. Redox-Active α-Diimine Complexes of Early Transition Metals: From Bonding to Catalysis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
10
|
Sohail M, Ashraf MZ, Nadeem R, Bibi S, Rehman R, Iqbal MA. Techniques in the synthesis of organometallic compounds of tungsten. REV INORG CHEM 2020. [DOI: 10.1515/revic-2019-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractTungsten is an elegant substance, and its compounds have great significance because of their extensive range of applications in diverse fields such as in gas sensors, photocatalysis, lithium ion batteries, H2production, electrochromic devices, dyed sensitized solar cells, microchip technology, and liquid crystal displays. Tungsten compounds exhibit a more efficient catalytic behavior, and tungsten-dependent enzymes generally catalyze the transfer of an oxygen atom to or from a physiological donor/acceptor with the metal center. Furthermore, tungsten has an n-type semiconductor band gap. Tungsten forms complexes by reacting with several elements such as H, C, N, O, and P as well as other numerous inorganic elements. Interestingly, all tungsten reactions occur at ambient temperature, usually with tetrahydrofuran and dichloromethane under vacuum. Tungsten has extraordinarily high-temperature properties, making it very useful for X-ray production and heating elements in furnaces. Tungsten coordinates with diverse nonmetallic elements and ligands and produces interesting compounds. This article describes an overview of the synthesis of various organometallic compounds of tungsten.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Raziya Nadeem
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Rabia Rehman
- Institute of Chemistry, University of the Punjab, Lahore 5400, Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture, Faisalabad 38040, Pakistan
| | | |
Collapse
|
11
|
van der Vlugt JI. Redox-Active Pincer Ligands. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Brune V, Hegemann C, Mathur S. Molecular Routes to Two-Dimensional Metal Dichalcogenides MX 2 (M = Mo, W; X = S, Se). Inorg Chem 2019; 58:9922-9934. [PMID: 31310512 DOI: 10.1021/acs.inorgchem.9b01084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New synthetic access to two-dimensional transition metal dichalcogenides (TMDCs) is highly desired to exploit their extraordinary semiconducting and optoelectronic properties for practical applications. We introduce here an entirely novel class of molecular precursors, [MIV(XEtN(Me)EtX)2] (MIV = MoIV, WIV, X = S, Se), enabling chemical vapor deposition of TMDC thin films. Molybdenum and tungsten complexes of dianionic tridentate pincer-type ligands (HXEt)2NR (R = methyl, tert-butyl, phenyl) produced air-stable monomeric dichalcogenide complexes, [W(SEtN(Me)EtS)2] and [Mo(SEtN(Me)EtS)2], displaying W and Mo centers in an octahedral environment of 4 S and 2 N donor atoms. Owing to their remarkable volatility and clean thermal decomposition, both Mo and W complexes, when used in the chemical vapor deposition (CVD) process, produced crystalline MoS2 and WS2 thin films. X-ray diffraction analysis and atomic-scale imaging confirmed the phase purity and 2D structural characteristics of MoS2 and WS2 films. The new set of ligands presented in this work open ups convenient access to a scalable and precursor-based synthesis of 2D transition metal dichalcogenides.
Collapse
Affiliation(s)
- Veronika Brune
- Institute of Inorganic Chemistry , University of Cologne , Greinstraße 6 , D-50939 Cologne , Germany
| | - Corinna Hegemann
- Institute of Inorganic Chemistry , University of Cologne , Greinstraße 6 , D-50939 Cologne , Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry , University of Cologne , Greinstraße 6 , D-50939 Cologne , Germany
| |
Collapse
|
13
|
Soobramoney L, Bala MD, Friedrich HB, Pillay MN. Flexible SNS pincer complexes of copper: Synthesis, structural characterisation and application in n-octane oxidation. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Baltrun M, Watt FA, Schoch R, Wölper C, Neuba AG, Hohloch S. A new bis-phenolate mesoionic carbene ligand for early transition metal chemistry. Dalton Trans 2019; 48:14611-14625. [DOI: 10.1039/c9dt03099a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A new chelating mesoionic carbene ligand, derived from 1,2,3-triazoles, with two redox-active tert-butyl-phenolate linkers has been synthesized and explored towards its reactivity and electrochemical properties in early transition metal chemistry.
Collapse
Affiliation(s)
- Marc Baltrun
- Universität Paderborn
- Fakultät für Naturwissenschaften
- Department Chemie Warburger Straße 100
- 33098 Paderborn
- Germany
| | - Fabian A. Watt
- Universität Paderborn
- Fakultät für Naturwissenschaften
- Department Chemie Warburger Straße 100
- 33098 Paderborn
- Germany
| | - Roland Schoch
- Universität Paderborn
- Fakultät für Naturwissenschaften
- Department Chemie Warburger Straße 100
- 33098 Paderborn
- Germany
| | | | - Adam G. Neuba
- Universität Paderborn
- Fakultät für Naturwissenschaften
- Department Chemie Warburger Straße 100
- 33098 Paderborn
- Germany
| | - Stephan Hohloch
- Universität Paderborn
- Fakultät für Naturwissenschaften
- Department Chemie Warburger Straße 100
- 33098 Paderborn
- Germany
| |
Collapse
|
15
|
Rajput A, Sharma AK, Barman SK, Lloret F, Mukherjee R. Six-coordinate [Co III(L) 2] z (z = 1-, 0, 1+) complexes of an azo-appended o-aminophenolate in amidate(2-) and iminosemiquinonate π-radical (1-) redox-levels: the existence of valence-tautomerism. Dalton Trans 2018; 47:17086-17101. [PMID: 30465680 DOI: 10.1039/c8dt03257b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aerobic reaction of the ligand H2L1, 2-(2-phenylazo)-anilino-4,6-di-tert-butylphenol, CoCl2·6H2O and Et3N in MeOH under refluxing conditions produces, after work-up and recrystallization, black crystals of [Co(L1)2] (1). When examined by cyclic voltammetry, 1 displays in CH2Cl2 three one-electron redox responses: two oxidative, E11/2 = 0.30 V (peak-to-peak separation, ΔEp = 100 mV) and E21/2 = 1.04 V (ΔEp = 120 mV), and one reductive E1/2 = -0.27 V (ΔEp = 120 mV) vs. SCE. Consequently, 1 is chemically oxidized by 1 equiv. of [FeIII(η5-C5H5)2][PF6], affording the isolation of deep purple crystals of [Co(L1)2][PF6]·2CH2Cl2 (2), and one-electron reduction with [CoII(η5-C5H5)2] yielded bluish-black crystals of [CoIII(η5-C5H5)2][Co(L1)2]·MeCN (3). A solid sample of 1 exhibits temperature-independent (50-300 K) magnetism, revealing the presence of a free radical (S = 1/2), which exhibits an isotropic EPR signal (g = 2.003) at 298 K and at 77 K an eight-line feature characteristic of hyperfine-interaction of the radical with the Co (I = 7/2) nucleus. Based on X-ray structural parameters of 1-3 at 100 K, magnetic and EPR spectral behaviour of 1, and variable-temperature (233-313 K) 1H NMR spectral features of 1-3 and 13C NMR spectra at 298 K of 2 and 3 in CDCl3 point to the electronic structure of the complexes as either [CoIII{(LAP)2-}{(LISQ)}˙-] or [CoIII{(L1)2}˙3-] (delocalized nature favours the latter description) (1), [CoIII{(LISQ)˙-}2][PF6]·2CH2Cl2 (2) and [CoIII(η5-C5H5)2][CoIII{(LAP)2-}2]·MeCN (3) [(LAP)2- and (LISQ)˙- represent the redox-level of coordinated ligands o-amidophenolate(2-) ion and o-iminobenzosemiquinonate(1-) π-radical ion, respectively]. Notably, all the observed redox processes are ligand-centred. To the best of our knowledge, this is the first time that six-coordinate complexes of a common tridentate o-aminophenolate-based ligand have been structurally characterized for the parent 1, its monocation 2 and the monoanion 3 counterparts. Temperature-dependent 1H NMR spectra reveal the existence of valence-tautomeric equilibria in 1-3. Density Functional Theory (DFT) calculations at the B3LYP-level of theory corroborate the electronic structural assignment of 1-3 from experimental data. The origins of the observed UV-VIS-NIR absorptions for 1-3 have been assigned, based on time-dependent (TD)-DFT calculations.
Collapse
Affiliation(s)
- Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| | | | | | | | | |
Collapse
|
16
|
Sarkar P, Mukherjee C. A non-innocent pincer H 3L ONS ligand and its corresponding octahedral low-spin Fe(iii) complex formation via ligand-centric homolytic S-S bond scission. Dalton Trans 2018; 47:13337-13341. [PMID: 30207350 DOI: 10.1039/c8dt02763c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the presence of FeCl3 and Et3N, a ligand H4Ldtda(AP) underwent S-S bond cleavage and generated a pincer non-innocent H3LONS ligand, which formed a homoleptic, six-coordinate, low-spin Fe(iii) complex (1). The complex comprised two 2-iminobenzosemiquinone (1-) π-radicals and one thiyl π-radical.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | | |
Collapse
|
17
|
Rosenkoetter KE, Wojnar MK, Charette BJ, Ziller JW, Heyduk AF. Hydrogen-Atom Noninnocence of a Tridentate [SNS] Pincer Ligand. Inorg Chem 2018; 57:9728-9737. [DOI: 10.1021/acs.inorgchem.8b00618] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kyle E. Rosenkoetter
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Michael K. Wojnar
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Bronte J. Charette
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Alan F. Heyduk
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
18
|
Robles-Marín E, Mondragón A, Martínez-Alanis PR, Aullón G, Flores-Alamo M, Castillo I. Easily reduced bis-pincer ( NS2) 2molybdenum( iv) to ( NHS2) 2Mo( ii) by alcohols vs. redox-inert ( NS2)( NHS2)iron( iii) complexes. Dalton Trans 2018; 47:10932-10940. [DOI: 10.1039/c8dt01562g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Iron and molybdenum complexes supported by a pincer-type dianionic [NS2]2− donor were prepared to compare their structural, spectroscopic, and electrochemical properties.
Collapse
Affiliation(s)
- Elvis Robles-Marín
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- CU
- México DF
| | | | - Paulina R. Martínez-Alanis
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Gabriel Aullón
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Marcos Flores-Alamo
- Facultad de Química
- División de Estudios de Posgrado
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- México DF
| | - Ivan Castillo
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- CU
- México DF
| |
Collapse
|
19
|
Roy S, Pramanik S, Ghorui T, Dinda S, Patra SC, Pramanik K. Redox-active diaminoazobenzene complexes of rhodium(iii): synthesis, structure and spectroscopic characterization. NEW J CHEM 2018. [DOI: 10.1039/c7nj04790h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coordination diversity of an aromatic diamine with Rh(iii) is presented together with the elucidation of the molecular and electronic structures, electron transfer, and electronic transitions.
Collapse
Affiliation(s)
- Sima Roy
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Shuvam Pramanik
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Tapas Ghorui
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Soumitra Dinda
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Sarat Chandra Patra
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Kausikisankar Pramanik
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| |
Collapse
|
20
|
Abstract
Strong π bonding in molybdenum(vi) tris(amidophenoxides) drives a preference for the fac geometry and quenches the metal's Lewis acidity.
Collapse
Affiliation(s)
- Alexander N. Erickson
- Department of Chemistry and Biochemistry
- 251 Nieuwland Science Hall
- University of Notre Dame
- Notre Dame
- USA
| | - Seth N. Brown
- Department of Chemistry and Biochemistry
- 251 Nieuwland Science Hall
- University of Notre Dame
- Notre Dame
- USA
| |
Collapse
|
21
|
Wojnar MK, Ziller JW, Heyduk AF. Heterobimetallic and Heterotrimetallic Clusters Containing a Redox‐Active Metalloligand. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M. K. Wojnar
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 92697‐2025 Irvine California U.S.A
| | - Joseph W. Ziller
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 92697‐2025 Irvine California U.S.A
| | - Alan F. Heyduk
- Department of Chemistry University of California, Irvine 1102 Natural Sciences 2 92697‐2025 Irvine California U.S.A
| |
Collapse
|
22
|
Das UK, Daifuku SL, Iannuzzi TE, Gorelsky SI, Korobkov I, Gabidullin B, Neidig ML, Baker RT. Iron(II) Complexes of a Hemilabile SNS Amido Ligand: Synthesis, Characterization, and Reactivity. Inorg Chem 2017; 56:13766-13776. [PMID: 29112382 DOI: 10.1021/acs.inorgchem.7b01802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report an easily prepared bis(thioether) amine ligand, SMeNHSMe, along with the synthesis, characterization, and reactivity of the paramagnetic iron(II) bis(amido) complex, [Fe(κ3-SMeNSMe)2] (1). Binding of the two different thioethers to Fe generates both five- and six-membered rings with Fe-S bonds in the five-membered rings (av 2.54 Å) being significantly shorter than those in the six-membered rings (av 2.71 Å), suggesting hemilability of the latter thioethers. Consistent with this hypothesis, magnetic circular dichroism (MCD) and computational (TD-DFT) studies indicate that 1 in solution contains a five-coordinate component [Fe(κ3-SMeNSMe)(κ2-SMeNSMe)] (2). This ligand hemilability was demonstrated further by reactivity studies of 1 with 2,2'-bipyridine, 1,2-bis(dimethylphosphino)ethane, and 2,6-dimethylphenyl isonitrile to afford iron(II) complexes [L2Fe(κ2-SMeNSMe)2] (3-5). Addition of a Brønsted acid, HNTf2, to 1 produces the paramagnetic, iron(II) amine-amido cation, [Fe(κ3-SMeNSMe)(κ3-SMeNHSMe)](NTf2) (6; Tf = SO2CF3). Cation 6 readily undergoes amine ligand substitution by triphos, affording the 16e- complex [Fe(κ2-SMeNSMe)(κ3-triphos)](NTf2) (7; triphos = bis(2-diphenylphosphinoethyl)phenylphosphine). These complexes are characterized by elemental analysis; 1H NMR, Mössbauer, IR, and UV-vis spectroscopy; and single-crystal X-ray diffraction. Preliminary results of amine-borane dehydrogenation catalysis show complex 7 to be a selective and particularly robust precatalyst.
Collapse
Affiliation(s)
- Uttam K Das
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Stephanie L Daifuku
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Theresa E Iannuzzi
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Serge I Gorelsky
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Ilia Korobkov
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Michael L Neidig
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
23
|
Mondal S, Maity S, Ghosh P. A Redox-Active Cascade Precursor: Isolation of a Zwitterionic Triphenylphosphonio-Hydrazyl Radical and an Indazolo-Indazole Derivative. Inorg Chem 2017; 56:8878-8888. [PMID: 28696110 DOI: 10.1021/acs.inorgchem.7b00818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A redox-active [ML] unit (M = CoII and MnII; LH2 = N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide) defined as a cascade precursor that undergoes a multicomponent redox reaction comprising of a C-N bond formation, tautomerization, oxidation, C-C coupling, demetalation, and affording 6,14-dibenzoylbenzo[f]benzo[5,6]indazolo[3a,3-c]indazole-5,8,13,16-tetraone (IndL2) is reported. Conversion of LH2 → IndL2 in air is overall a (6H++6e) oxidation reaction, and it opens a route for the syntheses of bioactive diarylindazolo[3a,3-c]indazole derivatives. The reaction occurs via a radical coupling reaction, and the radical intermediate was isolated as a triphenylphosphonio adduct. In presence of PPh3 the [ML] unit promotes a reaction that involves a C-P bond formation, tautomerization, and oxidation to yield a stable zwitterionic triphenylphosphonio-hydrazyl radical (PPh3L±•). Conversion of LH2 → PPh3L±• is a (3H++3e) oxidation reaction. To authenticate the [ML] unit, in addition to the IndL2, a zinc(II) complex, [(L3)ZnII(H2O)Cl]·2MeOH (1·2MeOH), was successfully isolated (L3H = a pyridazine derivative of 1,4 naphthoquinone) from a reaction of LH2 with hydrated ZnCl2. Conversion of 3LH2 → 1 is also a multicomponent (6H++6e) oxidation reaction promoted by zinc(II) ion via a radical intermediate. Facile oxidation of [L2-] to [L•-] that was considered as an intermediate of these conversions was confirmed by isolating a 1,4 naphthoquinone-benzhydrazyl radical (LH•) complex, [(LH•)ZnII(H2O)Cl2] (2H•). The intermediates of LH2 → IndL2, LH2 → PPh3L±•, and 3LH2 → 1 conversions were analyzed by electrospray ionization mass spectroscopy. The molecular and electronic structures of PPh3L±•, IndL2, 1·2MeOH, and 2H• were confirmed by single-crystal X-ray crystallography, electron paramagnetic resonance spectroscopy, and density functional theory calculations.
Collapse
Affiliation(s)
- Sandip Mondal
- Department of Chemistry, R. K. Mission Residential College, Narendrapur , Kolkata 103, West Bengal, India
| | - Suvendu Maity
- Department of Chemistry, R. K. Mission Residential College, Narendrapur , Kolkata 103, West Bengal, India
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur , Kolkata 103, West Bengal, India
| |
Collapse
|
24
|
Maity S, Kundu S, Mondal S, Bera S, Ghosh P. Molecular and Electronic Structures of Ruthenium Complexes Containing an ONS-Coordinated Open-Shell π Radical and an Oxidative Aromatic Ring Cleavage Reaction. Inorg Chem 2017; 56:3363-3376. [DOI: 10.1021/acs.inorgchem.6b02862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Suvendu Maity
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 103, India
| | - Suman Kundu
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 103, India
| | - Sandip Mondal
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 103, India
| | - Sachinath Bera
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 103, India
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 103, India
| |
Collapse
|
25
|
Rosenkoetter KE, Ziller JW, Heyduk AF. Heterobimetallic complexes of palladium and platinum containing a redox-active W[SNS]2 metalloligand. Dalton Trans 2017; 46:5503-5507. [DOI: 10.1039/c6dt04451d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterobimetallic W–Pd and W–Pt complexes have been prepared using the redox-active W(SNS)2 metalloligand.
Collapse
Affiliation(s)
| | | | - Alan F. Heyduk
- Department of Chemistry
- University of California
- Irvine
- USA
| |
Collapse
|
26
|
Rosenkoetter KE, Ziller JW, Heyduk AF. A Heterobimetallic W-Ni Complex Containing a Redox-Active W[SNS]2 Metalloligand. Inorg Chem 2016; 55:6794-8. [PMID: 27300501 DOI: 10.1021/acs.inorgchem.6b01164] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tungsten complex W[SNS]2 ([SNS]H3 = bis(2-mercapto-4-methylphenyl)amine) was bound to a Ni(dppe) [dppe = 1,2-bis(diphenylphosphino)ethane] fragment to form the new heterobimetallic complex W[SNS]2Ni(dppe). Characterization of the complex by single-crystal X-ray diffraction revealed the presence of a short W-Ni bond, which renders the complex diamagnetic despite formal tungsten(V) and nickel(I) oxidation states. The W[SNS]2 unit acts as a redox-active metalloligand in the bimetallic complex, which displays four one-electron redox processes by cyclic voltammetry. In the presence of the organic acid 4-cyanoanilinium tetrafluoroborate, W[SNS]2Ni(dppe) catalyzes the electrochemical reduction of protons to hydrogen coincident with the first reduction of the complex.
Collapse
Affiliation(s)
- Kyle E Rosenkoetter
- Department of Chemistry, University of California , 1102 Natural Sciences 2, Irvine, California 92677, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California , 1102 Natural Sciences 2, Irvine, California 92677, United States
| | - Alan F Heyduk
- Department of Chemistry, University of California , 1102 Natural Sciences 2, Irvine, California 92677, United States
| |
Collapse
|
27
|
Das UK, Daifuku SL, Gorelsky SI, Korobkov I, Neidig ML, Le Roy JJ, Murugesu M, Baker RT. Mononuclear, Dinuclear, and Trinuclear Iron Complexes Featuring a New Monoanionic SNS Thiolate Ligand. Inorg Chem 2016; 55:987-97. [PMID: 26741465 DOI: 10.1021/acs.inorgchem.5b02833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The new tridentate ligand, S(Me)N(H)S = 2-(2-methylthiophenyl)benzothiazolidine, prepared in a single step from commercial precursors in excellent yield, undergoes ring-opening on treatment with Fe(OTf)2 in the presence of base affording a trinuclear iron complex, [Fe3(μ2-S(Me)NS(-))4](OTf)2 (1) which is fully characterized by structural and spectroscopic methods. X-ray structural data reveal that 1 contains four S(Me)NS(-) ligands meridionally bound to two pseudooctahedral iron centers each bridged by two thiolates to a distorted tetrahedral central iron. The combined spectroscopic (UV-vis, Mössbauer, NMR), magnetic (solution and solid state), and computational (DFT) studies indicate that 1 includes a central, high-spin Fe(II) (S = 2) with two low-spin (S = 0) peripheral Fe(II) centers. Complex 1 reacts with excess PMePh2, CNxylyl (2,6-dimethylphenyl isocyanide), and P(OMe)3 in CH3CN to form diamagnetic, thiolate-bridged, dinuclear Fe(II) complexes {[Fe(μ-S(Me)NS(-))L2]2}(OTf)2 (2-4). These complexes are characterized by elemental analysis; (1)H NMR, IR, UV-vis, and Mössbauer spectroscopy; and single crystal X-ray diffraction. Interestingly, addition of excess P(OMe)3 to complex 1 in CH2Cl2 produces primarily the diamagnetic, mononuclear Fe(II) complex, {Fe(S(Me)NS(-))[P(OMe)3]3}(OTf) (5).
Collapse
Affiliation(s)
- Uttam K Das
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Stephanie L Daifuku
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Serge I Gorelsky
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Ilia Korobkov
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Michael L Neidig
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Jennifer J Le Roy
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
28
|
Maity S, Kundu S, Weyhermüller T, Ghosh P. Tris(2,2'-azobispyridine) complexes of copper(II): X-ray structures, reactivities, and the radical nonradical bis(ligand) analogues. Inorg Chem 2015; 54:1300-13. [PMID: 25650719 DOI: 10.1021/ic502750u] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tris(abpy) complexes of types mer-[Cu(II)(abpy)3][PF6]2 (mer-1(2+)[PF6(–)]2) and ctc-[Cu(II)(abpy)2(bpy)][PF6]2 (ctc-2(2+)[PF6(–)]2) were successfully isolated and characterized by spectra and single-crystal X-ray structure determinations (abpy = 2,2′-azobispyridine; bpy = 2,2′-bipyridine). Reactions of mer-1(2+) and ctc-2(2+) ions with catechol, o-aminophenol, p-phenylenediamine, and diphenylamine (Ph–NH–Ph) in 2:1 molar ratio afford [CuI(abpy)2](+) (3(+)) and corresponding quinone derivatives. The similar reactions of [Cu(II)(bpy)3](2+) and [Cu(II)(phen)3](2+) with these substrates yielding [Cu(I)(bpy)2](+) and [Cu(I)(phen)2](+) imply that these complexes undergo reduction-induced ligand dissociation reactions (phen = 1,10-phenanthroline). The average −N═N– lengths in mer-1(2+)[PF6(–)]2 and ctc-2(2+)[PF6(–)]2 are 1.248(4), while that in 3(+)[PF6(–)]·2CH2Cl2 is relatively longer, 1.275(2) Å, due to dCu → πazo* back bonding. In cyclic voltammetry, mer-1(2+) exhibits one quasi-reversible wave at −0.42 V due to Cu(II)/Cu(I) and abpy/abpy(•–) couples and two reversible waves at −0.90 and −1.28 V due to abpy/abpy(•–) couple, while those of ctc-2(2+) ion appear at −0.44, −0.86, and −1.10 V versus Fc(+)/Fc couple. The anodic 3(2+)/3(+) and the cathodic 3(+)/3 redox waves at +0.33 and −0.40 V are reversible. The electron paramagnetic resonance spectra and density functional theory (DFT) calculations authenticated the existence of abpy anion radical (abpy(•–)) in 3, which is defined as a hybrid state of [Cu(I)(abpy(0.5•–))(abpy(0.5•–))] and [Cu(II)(abpy(•–))(abpy(•–))] states. 3(2+) ion is a neutral abpy complex of copper(II) of type [Cu(II)(abpy)2](2+). 3 exhibits a near-IR absorption band at 2400–3000 nm because of the intervalence ligand-to-ligand charge transfer, elucidated by time-dependent DFT calculations in CH2Cl2.
Collapse
Affiliation(s)
- Suvendu Maity
- Department of Chemistry, R. K. Mission Residential College , Narendrapur, Kolkata-103, India
| | | | | | | |
Collapse
|
29
|
Pascualini ME, Di Russo NV, Quintero PA, Thuijs AE, Pinkowicz D, Abboud KA, Dunbar KR, Christou G, Meisel MW, Veige AS. Synthesis, Characterization, and Reactivity of Iron(III) Complexes Supported by a Trianionic ONO3– Pincer Ligand. Inorg Chem 2014; 53:13078-88. [DOI: 10.1021/ic502251p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Dawid Pinkowicz
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| | | | - Kim R. Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | | | | | | |
Collapse
|
30
|
Hewage JS, Wanniarachchi S, Morin TJ, Liddle BJ, Banaszynski M, Lindeman SV, Bennett B, Gardinier JR. Homoleptic nickel(II) complexes of redox-tunable pincer-type ligands. Inorg Chem 2014; 53:10070-84. [PMID: 25222027 PMCID: PMC5047063 DOI: 10.1021/ic500657e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Different synthetic methods have been developed to prepare eight new redox-active pincer-type ligands, H(X,Y), that have pyrazol-1-yl flanking donors attached to an ortho-position of each ring of a diarylamine anchor and that have different groups, X and Y, at the para-aryl positions. Together with four previously known H(X,Y) ligands, a series of 12 Ni(X,Y)2 complexes were prepared in high yields by a simple one-pot reaction. Six of the 12 derivatives were characterized by single-crystal X-ray diffraction, which showed tetragonally distorted hexacoordinate nickel(II) centers. The nickel(II) complexes exhibit two quasi-reversible one-electron oxidation waves in their cyclic voltammograms, with half-wave potentials that varied over a remarkable 700 mV range with the average of the Hammett σ(p) parameters of the para-aryl X, Y groups. The one- and two-electron oxidized derivatives [Ni(Me,Me)2](BF4)n (n = 1, 2) were prepared synthetically, were characterized by X-band EPR, electronic spectroscopy, and single-crystal X-ray diffraction (for n = 2), and were studied computationally by DFT methods. The dioxidized complex, [Ni(Me,Me)2](BF4)2, is an S = 2 species, with nickel(II) bound to two ligand radicals. The mono-oxidized complex [Ni(Me,Me)2](BF4), prepared by comproportionation, is best described as nickel(II) with one ligand centered radical. Neither the mono- nor the dioxidized derivative shows any substantial electronic coupling between the metal and their bound ligand radicals because of the orthogonal nature of their magnetic orbitals. On the other hand, weak electronic communication occurs between ligands in the mono-oxidized complex as evident from the intervalence charge transfer (IVCT) transition found in the near-IR absorption spectrum. Band shape analysis of the IVCT transition allowed comparisons of the strength of the electronic interaction with that in the related, previously known, Robin-Day class II mixed valence complex, [Ga(Me,Me)2](2+).
Collapse
Affiliation(s)
- Jeewantha S. Hewage
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Sarath Wanniarachchi
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Tyler J. Morin
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Brendan J. Liddle
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Megan Banaszynski
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Sergey V. Lindeman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Brian Bennett
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - James R. Gardinier
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
31
|
Ranis LG, Werellapatha K, Pietrini NJ, Bunker BA, Brown SN. Metal and Ligand Effects on Bonding in Group 6 Complexes of Redox-Active Amidodiphenoxides. Inorg Chem 2014; 53:10203-16. [DOI: 10.1021/ic501222n] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Leila G. Ranis
- Department
of Chemistry and Biochemistry and ‡Department of Physics, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Kalpani Werellapatha
- Department
of Chemistry and Biochemistry and ‡Department of Physics, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Nicholas J. Pietrini
- Department
of Chemistry and Biochemistry and ‡Department of Physics, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Bruce A. Bunker
- Department
of Chemistry and Biochemistry and ‡Department of Physics, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Seth N. Brown
- Department
of Chemistry and Biochemistry and ‡Department of Physics, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
32
|
Cipressi J, Brown SN. Octahedral to trigonal prismatic distortion driven by subjacent orbital π antibonding interactions and modulated by ligand redox noninnocence. Chem Commun (Camb) 2014; 50:7956-9. [DOI: 10.1039/c4cc03404j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium and osmium bis(amidodiphenoxides) distort towards trigonal prismatic geometries to minimize aryloxide-to-metal π* interactions, limited by increasing degree of oxidation of the redox-active ligand.
Collapse
Affiliation(s)
- Jacqueline Cipressi
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame, USA
| | - Seth N. Brown
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame, USA
| |
Collapse
|
33
|
O'Reilly ME, Veige AS. Trianionic pincer and pincer-type metal complexes and catalysts. Chem Soc Rev 2014; 43:6325-69. [DOI: 10.1039/c4cs00111g] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review provides a comprehensive examination of the synthesis, characterization, properties, and catalytic applications of trianionic pincer metal complexes.
Collapse
Affiliation(s)
| | - Adam S. Veige
- Center for Catalysis
- University of Florida
- Gainesville, USA
| |
Collapse
|
34
|
Sazama GT, Betley TA. Multiple, disparate redox pathways exhibited by a tris(pyrrolido)ethane iron complex. Inorg Chem 2013; 53:269-81. [PMID: 24320208 DOI: 10.1021/ic402210j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron(III) complexes of the tris(pyrrolide)ethane trianion have been synthesized by reaction of one- and two-electron oxidants with [(tpe)Fe(THF)][Li(THF)4] (tpe = tris(5-mesitylpyrrolyl)ethane). X-ray crystallography, (57)Fe Mössbauer, (1)H NMR and EPR spectroscopy, SQUID magnetometry, and density functional theory calculations were employed to rigorously establish the iron 3+ oxidation state. All oxidants employed are proposed to operate via an inner-sphere electron transfer mechanism. Dialkyl peroxides and dibenzyldisulfide served to oxidize iron by one electron, and group transfer of an aryl nitrene unit to the Fe(2+) starting material resulted in formation of Fe(3+) amido species following H-atom abstraction by a presumed nitrenoid intermediate. Single electron transfer to and from diphenyldiazoalkane was also observed to yield a diphenyldiazomethanyl radical anion antiferromagnetically coupled to the S = 5/2 Fe(3+). Isolation of Fe(3+) complexes of tpe, in comparison with previous results wherein the tpe ligand was the redox active moiety, presents an unusual juxtaposition of two noncommunicating redox reservoirs, each accessible via different reaction pathways (namely, inner- and outer-sphere electron transfer).
Collapse
Affiliation(s)
- Graham T Sazama
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
35
|
Synthesis and characterization of trianionic pincer-type complexes of tantalum(V) including solid (X-ray) and solution (NMR) state assignment of an intraligand N–H—F hydrogen bonding interaction. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Wright DD, Brown SN. Nonclassical Oxygen Atom Transfer as a Synthetic Strategy: Preparation of an Oxorhenium(V) Complex of the Bis(3,5-di-tert-butyl-2-phenoxo)amide Ligand. Inorg Chem 2013; 52:7831-3. [DOI: 10.1021/ic4010592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel D. Wright
- Department
of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556-5670,
United States
| | - Seth N. Brown
- Department
of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556-5670,
United States
| |
Collapse
|