1
|
Feng Y, An Q, Zhao Z, Wu M, Yang C, Liang W, Xu X, Jiang T, Zhang G. Beta-elemene: A phytochemical with promise as a drug candidate for tumor therapy and adjuvant tumor therapy. Biomed Pharmacother 2024; 172:116266. [PMID: 38350368 DOI: 10.1016/j.biopha.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND β-Elemene (IUPAC name: (1 S,2 S,4 R)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl) cyclohexane), is a natural compound found in turmeric root. Studies have demonstrated its diverse biological functions, including its anti-tumor properties, which have been extensively investigated. However, these have not yet been reviewed. The aim of this review was to provide a comprehensive summary of β-elemene research, with respect to disease treatment. METHODS β-Elemene-related articles were found in PubMed, ScienceDirect, and Google Scholar databases to systematically summarize its structure, pharmacokinetics, metabolism, and pharmacological activity. We also searched the Traditional Chinese Medicine System Pharmacology database for therapeutic targets of β-elemene. We further combined these targets with the relevant literature for KEGG and GO analyses. RESULTS Studies on the molecular mechanisms underlying β-elemene activity indicate that it regulates multiple pathways, including STAT3, MAPKs, Cyclin-dependent kinase 1/cyclin B, Notch, PI3K/AKT, reactive oxygen species, METTL3, PTEN, p53, FAK, MMP, TGF-β/Smad signaling. Through these molecular pathways, β-elemene has been implicated in tumor cell proliferation, apoptosis, migration, and invasion and improving the immune microenvironment. Additionally, β-elemene increases chemotherapeutic drug sensitivity and reverses resistance by inhibiting DNA damage repair and regulating pathways including CTR1, pak1, ERK1/2, ABC transporter protein, Prx-1 and ERCC-1. Nonetheless, owing to its lipophilicity and low bioavailability, additional structural modifications could improve the efficacy of this drug. CONCLUSION β-Elemene exhibits low toxicity with good safety, inhibiting various tumor types via diverse mechanisms in vivo and in vitro. When combined with chemotherapeutic drugs, it enhances efficacy, reduces toxicity, and improves tumor killing. Thus, β-elemene has vast potential for research and development.
Collapse
Affiliation(s)
- Yewen Feng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Qingwen An
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Zhengqi Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Mengting Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Chuqi Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - WeiYu Liang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Xuefei Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China
| | - Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China.
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China; Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang 310053, China; Traditional Chinese Medicine "Preventing Disease" Wisdom Health Project Research Center of Zhejiang, Zhejiang 310053, China.
| |
Collapse
|
2
|
Du Z, Qu Y, Farrell NP. Intramolecular platinum migration on a peptide in gas phase during collision-induced dissociation. J Inorg Biochem 2019; 202:110858. [PMID: 31689625 DOI: 10.1016/j.jinorgbio.2019.110858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 11/30/2022]
Abstract
We report the migration of platinum ligand unit {Pt(en)}2 (en = ethylenediamine) on a short peptide during collision-induced dissociation fragmentation combined with the characterization of the same species by 2D [1H,15N] HSQC (Heteronuclear Single Quantum Coherence) NMR spectroscopy. The NMR spectrum showed that the cysteine is platinated while the MS/MS (Tandem mass spectrometry) showed the platination at glutamic acid. Our results provide the first experimental evidence of platinum migration on peptide during collision-induced dissociation.
Collapse
Affiliation(s)
- Zhifeng Du
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA; Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Qu
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA
| |
Collapse
|
3
|
Sheng Y, Cao K, Li J, Hou Z, Yuan S, Huang G, Liu H, Liu Y. Selective Targeting of the Zinc Finger Domain of HIV Nucleocapsid Protein NCp7 with Ruthenium Complexes. Chemistry 2018; 24:19146-19151. [PMID: 30276894 DOI: 10.1002/chem.201803917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/19/2018] [Indexed: 12/17/2022]
Abstract
Nucleocapsid protein 7 (NCp7) is an attractive target for anti-HIV drug development. Here we found that ruthenium complexes are reactive to NCp7 and various Ru-agents exhibit significantly different reactivity. Interestingly, the zinc-finger domains of NCp7 also demonstrate different affinity to Ru-complexes; the C-terminal domain is much more reactive than the N-terminal domain. Each zinc-finger domain of NCp7 binds up to three Ru-motifs, and the ruthenium binding causes zinc-ejection from NCp7 and disrupts the protein folding. Therefore, ruthenium complexes interfere with the DNA binding of NCp7 and interrupt the protein function. The different reactivity of Ru-agents suggests a feasible strategy for improving the targeting of NCp7 by ligand design. This work provides an insight into the mechanism of ruthenium complex with NCp7, and suggests more potential application of ruthenium drugs.
Collapse
Affiliation(s)
- Yaping Sheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Kaiming Cao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ji Li
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, Jiang Su, P.R. China
| | - Zhuanghao Hou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Siming Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guangming Huang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongke Liu
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, Jiang Su, P.R. China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Shenberger Y, Marciano O, Gottlieb HE, Ruthstein S. Insights into the N-terminal Cu(II) and Cu(I) binding sites of the human copper transporter CTR1. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1492717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yulia Shenberger
- The Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ortal Marciano
- The Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hugo E. Gottlieb
- The Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sharon Ruthstein
- The Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
5
|
Wu X, Yuan S, Wang E, Tong Y, Ma G, Wei K, Liu Y. Platinum transfer from hCTR1 to Atox1 is dependent on the type of platinum complex. Metallomics 2018; 9:546-555. [PMID: 28383086 DOI: 10.1039/c6mt00303f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In spite of their wide application, the cellular uptake of platinum based anticancer drugs is still unclear. The copper transport protein, hCTR1, is proposed to facilitate the cellular uptake of cisplatin, whereas organic cation transport (OCT) is more important for oxaliplatin. It has been reported that both N-terminal and C-terminal metal binding motifs of hCTR1 are highly reactive to cisplatin, which is the initial step of protein assisted cellular uptake of cisplatin. It is still unknown how the platinum drugs in hCTR1 transfer to cytoplasmic media, and whether various platinum complexes possess different activities in this process. Herein, we investigated the reaction of the platinated C-terminal metal binding motif of hCTR1 (C8) with the down-stream protein Atox1. Results show that Atox1 is highly reactive to the platinated C8 adducts of cisplatin and transplatin, whereas the oxaliplatin/C8 adduct is much less reactive. The platinum transfer from C8 to Atox1 occurs in the reaction, which results in the protein unfolding of Atox1. These results demonstrated that the platinated intracellular-domain of hCTR1 is reactive to Atox1, and the reactivity is dependent on the ligand and the coordination structure of platinum complexes. The different reactivity is consistent with the hypothesis that hCTR1 is more significant in the transport of cisplatin than that of oxaliplatin.
Collapse
Affiliation(s)
- Xuelei Wu
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Levy AR, Yarmiayev V, Moskovitz Y, Ruthstein S. Probing the structural flexibility of the human copper metallochaperone Atox1 dimer and its interaction with the CTR1 c-terminal domain. J Phys Chem B 2014; 118:5832-42. [PMID: 24837030 DOI: 10.1021/jp412589b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Both the essentiality and the toxicity of copper in human, yeast, and bacteria cells require precise mechanisms for acquisition, intimately linked to controlled distribution, which have yet to be fully understood. This work explores one aspect in the copper cycle, by probing the interaction between the human copper chaperone Atox1 and the c-terminal domain of the copper transporter, CTR1, using electron paramagnetic resonance (EPR) spectroscopy and circular dichroism (CD). The data collected here shows that the Atox1 keeps its dimer nature also in the presence of the CTR1 c-terminal domain; however, two geometrical states are assumed by the Atox1. One is similar to the geometrical state reported by the crystal structure, while the latter has not yet been constructed. In the presence of the CTR1 c-terminal domain, both states are assumed; however, the structure of Atox1 is more restricted in the presence of the CTR1 c-terminal domain. This study also shows that the last three amino acids of the CTR1 c-terminal domain, HCH, are important for maintaining the crystal structure of the Atox1, allowing less structural flexibility and improved thermal stability of Atox1.
Collapse
Affiliation(s)
- Ariel R Levy
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University , Ramat-Gan, Israel , 5290002
| | | | | | | |
Collapse
|