1
|
Yang W, Liu S, Yan J, Zhong F, Jia N, Yan Y, Zhang Q. Metallo-Polyelectrolyte-Based Robust Anion Exchange Membranes via Acetalation of a Commodity Polymer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Weihong Yang
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Shuang Liu
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Jing Yan
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Fenglin Zhong
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Nanfang Jia
- Beijing BOE Display Technology Co., Ltd., Beijing 100176, P. R. China
| | - Yi Yan
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| |
Collapse
|
2
|
Astruc D. The supramolecular redox functions of metallomacromolecules. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2020. [DOI: 10.1186/s42825-020-00026-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Metallomacromolecules are frequently encountered in redox proteins including metal-tanned hide collagen and play crucial roles involving supramolecular properties in biological electron-transfer processes. They are also currently found in non-natural families, such as: metallopolymers, metallodendrimers and metallodendronic polymers. This mini-review discusses the supramolecular redox functions of such nanomaterials developed in our research group. Electron-transfer processes are first examined in mono-, bis- and hexa-nuclear ferrocenes and other electron-reservoir organoiron systems showing the influence of supramolecular and reorganization aspects on their mechanism. Then applications of electron-transfer processes using these same organoiron redox systems in metallomacromolecules and their supramolecular functions are discussed including redox recognition/sensing, catalysis templates, electrocatalysis, redox catalysis, molecular machines, electrochromes, drug delivery device and nanobatteries.
Graphical Abstract
Collapse
|
3
|
Komeda J, Shiotsuki R, Rapakousiou A, Sakamoto R, Toyoda R, Iwase K, Tsuji M, Kamiya K, Nishihara H. 'Click' conjugated porous polymer nanofilm with a large domain size created by a liquid/liquid interfacial protocol. Chem Commun (Camb) 2020; 56:3677-3680. [PMID: 32118239 DOI: 10.1039/d0cc00360c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A liquid/liquid interfacial method is used to synthesize a conjugated porous polymer nanofilm with a large domain size. Copper-catalyzed azide-alkyne cycloaddition between a triangular terminal alkyne and azide monomers at a water/dichloromethane interface generates a 1,2,3-triazole-linked polymer nanofilm featuring a large aspect ratio and robustness against heat and pH.
Collapse
Affiliation(s)
- Joe Komeda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Anions play a vital role in a broad range of environmental, technological, and physiological processes, making their detection/quantification valuable. Electroanalytical sensors offer much to the selective, sensitive, cheap, portable, and real-time analysis of anion presence where suitable combinations of selective (noncovalent) recognition and transduction can be integrated. Spurred on by significant developments in anion supramolecular chemistry, electrochemical anion sensing has received considerable attention in the past two decades. In this review, we provide a detailed overview of all electroanalytical techniques that have been used for this purpose, including voltammetric, impedimetric, capacititive, and potentiometric methods. We will confine our discussion to sensors that are based on synthetic anion receptors with a specific focus on reversible, noncovalent interactions, in particular, hydrogen- and halogen-bonding. Apart from their sensory properties, we will also discuss how electrochemical techniques can be used to study anion recognition processes (e.g., binding constant determination) and will furthermore provide a detailed outlook over future efforts and promising new avenues in this field.
Collapse
Affiliation(s)
- Robert Hein
- Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , U.K
| | - Paul D Beer
- Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , U.K
| | - Jason J Davis
- Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , U.K
| |
Collapse
|
5
|
Jarrett-Wilkins CN, Musgrave RA, Hailes RLN, Harniman RL, Faul CFJ, Manners I. Linear and Branched Fiber-like Micelles from the Crystallization-Driven Self-Assembly of Heterobimetallic Block Copolymer Polyelectrolyte/Surfactant Complexes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Rebecca A. Musgrave
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Rebekah L. N. Hailes
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Robert L. Harniman
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Charl F. J. Faul
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Ian Manners
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| |
Collapse
|
6
|
Smith CA, Narouz MR, Lummis PA, Singh I, Nazemi A, Li CH, Crudden CM. N-Heterocyclic Carbenes in Materials Chemistry. Chem Rev 2019; 119:4986-5056. [PMID: 30938514 DOI: 10.1021/acs.chemrev.8b00514] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
N-Heterocyclic carbenes (NHCs) have become one of the most widely studied class of ligands in molecular chemistry and have found applications in fields as varied as catalysis, the stabilization of reactive molecular fragments, and biochemistry. More recently, NHCs have found applications in materials chemistry and have allowed for the functionalization of surfaces, polymers, nanoparticles, and discrete, well-defined clusters. In this review, we provide an in-depth look at recent advances in the use of NHCs for the development of functional materials.
Collapse
Affiliation(s)
- Christene A Smith
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Mina R Narouz
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Paul A Lummis
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Ishwar Singh
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Ali Nazemi
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Chien-Hung Li
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Cathleen M Crudden
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6.,Institute of Transformative Bio-Molecules, ITbM-WPI , Nagoya University , Nagoya , Chikusa 464-8601 , Japan
| |
Collapse
|
7
|
Pageni P, Yang P, Bam M, Zhu T, Chen YP, Decho AW, Nagarkatti M, Tang C. Recyclable magnetic nanoparticles grafted with antimicrobial metallopolymer-antibiotic bioconjugates. Biomaterials 2018; 178:363-372. [PMID: 29759729 DOI: 10.1016/j.biomaterials.2018.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022]
Abstract
Over-prescription and improper use of antibiotics has led to the emergence of bacterial resistance, posing a major threat to public health. There has been significant interest in the development of alternative therapies and agents to combat antibiotic resistance. We report the preparation of recyclable magnetic iron oxide nanoparticles grafted with charged cobaltocenium-containing metallopolymers by surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. β-Lactam antibiotics were then conjugated with metallopolymers to enhance their vitality against both Gram-positive and Gram-negative bacteria. The enhanced antibacterial activity was a result of synergy of antimicrobial segments that facilitate the inhibition of hydrolysis of antibiotics and local enhancement of antibiotic concentration on a nanoparticle surface. These magnetic nanoparticles can be recycled numerous times without losing the initial antimicrobial potency. Studies suggested negligible toxicity of metallopolymer-grafted nanoparticles to red blood cells and minimal tendency to induce resistance in bacteria.
Collapse
Affiliation(s)
- Parasmani Pageni
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Peng Yang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Marpe Bam
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29209, United States
| | - Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Yung Pin Chen
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29209, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
8
|
Rapakousiou A, Belin C, Salmon L, Ruiz J, Astruc D. Click Co sandwich-terminated dendrimers as polyhydride reservoirs and micellar templates. Chem Commun (Camb) 2017; 53:6267-6270. [PMID: 28548161 DOI: 10.1039/c7cc03311g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neutral click metallodendrimers with [CoI(η4-cyclopentadiene)(η5-cyclopentadienyl)] termini are synthesized by reduction of dendrimers with 9, 27 or 81 cobalticenium termini and serve as polyhydride reservoirs and reductants; for instance, they reduce proton sources to H2 and AuIII to micellized capsules of gold nanoparticles.
Collapse
|
9
|
Rapakousiou A, Sakamoto R, Shiotsuki R, Matsuoka R, Nakajima U, Pal T, Shimada R, Hossain A, Masunaga H, Horike S, Kitagawa Y, Sasaki S, Kato K, Ozawa T, Astruc D, Nishihara H. Liquid/Liquid Interfacial Synthesis of a Click Nanosheet. Chemistry 2017; 23:8443-8449. [PMID: 28419580 DOI: 10.1002/chem.201700201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/13/2017] [Indexed: 01/04/2023]
Abstract
A liquid/liquid interfacial synthesis is employed, for the first time, to synthesize a covalent two-dimensional polymer nanosheet. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) between a three-way terminal alkyne and azide at a water/dichloromethane interface generates a 1,2,3-triazole-linked nanosheet. The resultant nanosheet, with a flat and smooth texture, has a maximum domain size of 20 μm and minimum thickness of 5.3 nm. The starting monomers in the organic phase and the copper catalyst in the aqueous phase can only meet at the liquid/liquid interface as a two-dimensional reaction space; this allows them to form the two-dimensional polymer. The robust triazole linkage generated by irreversible covalent-bond formation allows the nanosheet to resist hydrolysis under both acidic and alkaline conditions, and to endure pyrolysis up to more than 300 °C. The coordination ability of the triazolyl group enables the nanosheet to act as a reservoir for metal ions, with an affinity order of Pd2+ >Au3+ >Cu2+ .
Collapse
Affiliation(s)
- Amalia Rapakousiou
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,IMDEA Nanociencia Ciudad Universitaria de Cantoblanco, C/Faraday 9, 28049, Madrid, Spain
| | - Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Ryo Shiotsuki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryota Matsuoka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ukyo Nakajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tigmansu Pal
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Rintaro Shimada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Amran Hossain
- Venture Laboratory, Kyoto Institute of Technology, Matsugasaki Hashigami cho 1, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yasutaka Kitagawa
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Sono Sasaki
- Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, Matsugasaki Hashikami-cho 1, Sakyo-ku, Kyoto, 606-8585, Japan.,RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Kenichi Kato
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Takeaki Ozawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Didier Astruc
- ISM, UMR CNRS No. 5255, University of Bordeaux, 33405, Talence Cedex, France
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
10
|
Metallomacromolecules containing cobalt sandwich complexes: Synthesis and functional materials properties. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
|
12
|
Gu H, Ciganda R, Gatard S, Lu F, Zhao P, Ruiz J, Astruc D. On metallocene-containing macromolecules and their applications. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Abd-El-Aziz AS, Agatemor C, Etkin N. Functional Materials Based on Metal-Containing Polymers. FUNCTIONAL METALLOSUPRAMOLECULAR MATERIALS 2015:87-119. [DOI: 10.1039/9781782622673-00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Since the dawn of human civilization, there has been a demand for materials that include ceramics, metals, and polymers. Increasing demand as well as the need for enhanced performance has driven material scientists to research metal-containing polymers as complements of these materials. Consequently, metal-containing polymers that integrate the excellent thermal, electronic, optical, and magnetic properties of metals with the lightweight, low cost, and in some cases, the chemical stability of organic-based polymers have been designed, and used as catalysts, sensors, ceramic precursors, magnetic materials, and electrical conductors. This chapter provides an overview of some of these functional metal-containing polymers.
Collapse
Affiliation(s)
- Alaa S. Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island 550 University Avenue Charlottetown Prince Edward Island C1A 4P3 Canada
| | - Christian Agatemor
- Department of Chemistry, University of Prince Edward Island 550 University Avenue Charlottetown Prince Edward Island C1A 4P3 Canada
| | - Nola Etkin
- Department of Chemistry, University of Prince Edward Island 550 University Avenue Charlottetown Prince Edward Island C1A 4P3 Canada
| |
Collapse
|
14
|
Arseneault M, Wafer C, Morin JF. Recent advances in click chemistry applied to dendrimer synthesis. Molecules 2015; 20:9263-94. [PMID: 26007183 PMCID: PMC6272213 DOI: 10.3390/molecules20059263] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/12/2015] [Indexed: 11/16/2022] Open
Abstract
Dendrimers are monodisperse polymers grown in a fractal manner from a central point. They are poised to become the cornerstone of nanoscale devices in several fields, ranging from biomedicine to light-harvesting. Technical difficulties in obtaining these molecules has slowed their transfer from academia to industry. In 2001, the arrival of the "click chemistry" concept gave the field a major boost. The flagship reaction, a modified Hüisgen cycloaddition, allowed researchers greater freedom in designing and building dendrimers. In the last five years, advances in click chemistry saw a wider use of other click reactions and a notable increase in the complexity of the reported structures. This review covers key developments in the click chemistry field applied to dendrimer synthesis from 2010 to 2015. Even though this is an expert review, basic notions and references have been included to help newcomers to the field.
Collapse
Affiliation(s)
- Mathieu Arseneault
- Chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| | - Caroline Wafer
- Chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| | - Jean-François Morin
- Chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| |
Collapse
|
15
|
|
16
|
Gatard S, Deraedt C, Rapakousiou A, Sonet D, Salmon L, Ruiz J, Astruc D. New Polysilyl Dendritic Precursors of Triazolylferrocenyl and Triazolylcobalticenium Dendrimers—Comparative Electrochemical Study and Stabilization of Small, Catalytically Active Pd Nanoparticles. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sylvain Gatard
- ISM,
UMR CNRS No. 5255, University of Bordeaux, 33405 Talence Cedex, France
- ICMR,
UMR CNRS No. 7312, University of Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - Christophe Deraedt
- ISM,
UMR CNRS No. 5255, University of Bordeaux, 33405 Talence Cedex, France
| | - Amalia Rapakousiou
- ISM,
UMR CNRS No. 5255, University of Bordeaux, 33405 Talence Cedex, France
| | - Dorian Sonet
- ISM,
UMR CNRS No. 5255, University of Bordeaux, 33405 Talence Cedex, France
| | - Lionel Salmon
- LCC,
CNRS and University of Toulouse (UPS, INP), 31077 Toulouse, France
| | - Jaime Ruiz
- ISM,
UMR CNRS No. 5255, University of Bordeaux, 33405 Talence Cedex, France
| | - Didier Astruc
- ISM,
UMR CNRS No. 5255, University of Bordeaux, 33405 Talence Cedex, France
| |
Collapse
|
17
|
Yan Y, Deaton TM, Zhang J, He H, Hayat J, Pageni P, Matyjaszewski K, Tang C. Syntheses of Monosubstituted Rhodocenium Derivatives, Monomers, and Polymers. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yi Yan
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - T. Maxwell Deaton
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jiuyang Zhang
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Hongkun He
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jeffery Hayat
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Parasmani Pageni
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Chuanbing Tang
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
18
|
Wang D, Deraedt C, Salmon L, Labrugère C, Etienne L, Ruiz J, Astruc D. Efficient and Magnetically Recoverable “Click” PEGylated γ-Fe2O3-Pd Nanoparticle Catalysts for Suzuki-Miyaura, Sonogashira, and Heck Reactions with Positive Dendritic Effects. Chemistry 2014; 21:1508-19. [DOI: 10.1002/chem.201404590] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 11/05/2022]
|
19
|
Day DP, Dann T, Blagg RJ, Wildgoose GG. Synthesis and characterization of redox active cyrhetrene–triazole click products. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Li N, Zhao P, Igartua ME, Rapakousiou A, Salmon L, Moya S, Ruiz J, Astruc D. Stabilization of AuNPs by Monofunctional Triazole Linked to Ferrocene, Ferricenium, or Coumarin and Applications to Synthesis, Sensing, and Catalysis. Inorg Chem 2014; 53:11802-8. [DOI: 10.1021/ic5021498] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Na Li
- ISM, Univ. Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Pengxiang Zhao
- ISM, Univ. Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
- Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907, Sichuan, China
| | - María E. Igartua
- CIC biomaGUNE, Unidad Biosuperficies, Paseo Miramónn 182, Edif.
“C”, 20009 Donostia-San Sebastián, Spain
| | - Amalia Rapakousiou
- ISM, Univ. Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Lionel Salmon
- LCC, CNRS, 205 Route
de Narbonne, 31077 Toulouse Cedex, France
| | - Sergio Moya
- CIC biomaGUNE, Unidad Biosuperficies, Paseo Miramónn 182, Edif.
“C”, 20009 Donostia-San Sebastián, Spain
| | - Jaime Ruiz
- ISM, Univ. Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Didier Astruc
- ISM, Univ. Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| |
Collapse
|
21
|
Hardy CG, Zhang J, Yan Y, Ren L, Tang C. Metallopolymers with transition metals in the side-chain by living and controlled polymerization techniques. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.03.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
|
23
|
Yan Y, Zhang J, Wilbon P, Qiao Y, Tang C. Ring-opening metathesis polymerization of 18-e Cobalt(I)-containing norbornene and application as heterogeneous macromolecular catalyst in atom transfer radical polymerization. Macromol Rapid Commun 2014; 35:1840-5. [PMID: 25250694 DOI: 10.1002/marc.201400365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/18/2014] [Indexed: 11/09/2022]
Abstract
In the last decades, metallopolymers have received great attention due to their various applications in the fields of materials and chemistry. In this article, a neutral 18-electron exo-substituted η(4) -cyclopentadiene CpCo(I) unit-containing polymer is prepared in a controlled/"living" fashion by combining facile click chemistry and ring-opening meta-thesis polymerization (ROMP). This Co(I)-containing polymer is further used as a heterogeneous macromolecular catalyst for atom transfer radical polymerization (ATRP) of methyl methacrylate and styrene.
Collapse
Affiliation(s)
- Yi Yan
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina, 29208, USA
| | | | | | | | | |
Collapse
|
24
|
Rapakousiou A, Wang Y, Ciganda R, Lasnier JM, Astruc D. Click Chemistry of an Ethynylarene Iron Complex: Syntheses, Properties, and Redox Chemistry of Cationic Bimetallic and Dendritic Iron-Sandwich Complexes. Organometallics 2014. [DOI: 10.1021/om500495r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Yanlan Wang
- ISM, UMR CNRS 5255, University of Bordeaux, 33405 Talence Cedex, France
| | - Roberto Ciganda
- ISM, UMR CNRS 5255, University of Bordeaux, 33405 Talence Cedex, France
| | | | - Didier Astruc
- ISM, UMR CNRS 5255, University of Bordeaux, 33405 Talence Cedex, France
| |
Collapse
|
25
|
Wang Y, Rapakousiou A, Astruc D. ROMP Synthesis of Cobalticenium–Enamine Polyelectrolytes. Macromolecules 2014. [DOI: 10.1021/ma5007864] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanlan Wang
- ISM, UMR
CNRS No. 5255, Université de Bordeaux, 33405 Talence Cedex, France
| | - Amalia Rapakousiou
- ISM, UMR
CNRS No. 5255, Université de Bordeaux, 33405 Talence Cedex, France
| | - Didier Astruc
- ISM, UMR
CNRS No. 5255, Université de Bordeaux, 33405 Talence Cedex, France
| |
Collapse
|
26
|
Wang Y, Latouche C, Rapakousiou A, Lopez C, Ledoux-Rak I, Ruiz J, Saillard JY, Astruc D. Uncatalyzed Hydroamination of Electrophilic Organometallic Alkynes: Fundamental, Theoretical, and Applied Aspects. Chemistry 2014; 20:8076-88. [DOI: 10.1002/chem.201400373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Indexed: 11/05/2022]
|
27
|
Vanicek S, Kopacka H, Wurst K, Müller T, Schottenberger H, Bildstein B. Chemoselective, Practical Synthesis of Cobaltocenium Carboxylic Acid Hexafluorophosphate. Organometallics 2014. [DOI: 10.1021/om401120h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Stefan Vanicek
- Institute of General,
Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Holger Kopacka
- Institute of General,
Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute of General,
Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Thomas Müller
- Institute of Organic Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Herwig Schottenberger
- Institute of General,
Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Benno Bildstein
- Institute of General,
Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
28
|
Abd-El-Aziz AS, Agatemor C, Etkin N. Sandwich complex-containing macromolecules: property tunability through versatile synthesis. Macromol Rapid Commun 2014; 35:513-59. [PMID: 24474608 DOI: 10.1002/marc.201300826] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/03/2013] [Indexed: 12/17/2022]
Abstract
Sandwich complexes feature unique properties as the physical and electronic properties of a hydrocarbon ligand or its derivative are integrated into the physical, electronic, magnetic, and optical properties of a metal. Incorporation of these complexes into macromolecules results in intriguing physical, electrical, and optical properties that were hitherto unknown in organic-based macromolecules. These properties are tunable through well-designed synthetic strategies. This review surveys many of the synthetic approaches that have resulted in tuning the properties of sandwich complex-containing macromolecules. While the past two decades have seen an ever-growing number of research publications in this field, gaps remain to be filled. Thus, we expect this review to stimulate research interest towards bridging these gaps, which include the insolubility of some of these macromolecules as well as expanding the scope of the sandwich complexes.
Collapse
Affiliation(s)
- Alaa S Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | | | | |
Collapse
|
29
|
Day DP, Dann T, Hughes DL, Oganesyan VS, Steverding D, Wildgoose GG. Cymantrene–Triazole “Click” Products: Structural Characterization and Electrochemical Properties. Organometallics 2014. [DOI: 10.1021/om4007642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David P. Day
- Energy & Materials Laboratory, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Thomas Dann
- Energy & Materials Laboratory, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - David. L. Hughes
- Energy & Materials Laboratory, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Vasily S. Oganesyan
- Energy & Materials Laboratory, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Dietmar Steverding
- BioMedical Research Centre, Norwich Medical
School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Gregory G. Wildgoose
- Energy & Materials Laboratory, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
30
|
Xu L, Chen LJ, Yang HB. Recent progress in the construction of cavity-cored supramolecular metallodendrimers via coordination-driven self-assembly. Chem Commun (Camb) 2014; 50:5156-70. [DOI: 10.1039/c3cc47484d] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
“Click” Synthesis and Redox Activity of a Water-Soluble Triazolylcobalticinium Polyelectrolyte. J Inorg Organomet Polym Mater 2013. [DOI: 10.1007/s10904-013-9958-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Yan Y, Zhang J, Qiao Y, Tang C. Facile preparation of cobaltocenium-containing polyelectrolyte via click chemistry and RAFT polymerization. Macromol Rapid Commun 2013; 35:254-259. [PMID: 24023049 DOI: 10.1002/marc.201300558] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/23/2013] [Indexed: 11/11/2022]
Abstract
A facile method to prepare cationic cobaltocenium-containing polyelectrolyte is reported. Cobaltocenium monomer with methacrylate is synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between 2-azidoethyl methacrylate and ethynylcobaltocenium hexafluorophosphate. Further controlled polymerization is achieved by reversible addition-fragmentation chain transfer polymerization (RAFT) by using cumyl dithiobenzoate (CDB) as a chain transfer agent. Kinetic study demonstrates the controlled/living process of polymerization. The obtained side-chain cobaltocenium-containing polymer is a metal-containing polyelectrolyte that shows characteristic redox behavior of cobaltocenium.
Collapse
Affiliation(s)
- Yi Yan
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina, 29208, USA
| | - Jiuyang Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina, 29208, USA
| | - Yali Qiao
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina, 29208, USA
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina, 29208, USA
| |
Collapse
|