1
|
Tao Y, Luan N, Yang C, Sun J, Li K, Dai X, Hailong Zhang, Zhifang Chai, Wang S, Wang Y. Incorporation of the 99TcO 4- Anion within the Ag 24(C≡C tBu) 204+ Cluster Unveiling the Unique Shell-to-Core Charge Transfer. J Am Chem Soc 2024. [PMID: 38489242 DOI: 10.1021/jacs.3c13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
We present the first example of an 99TcO4- anion entrapped within the cavity of a silver cluster, revealing an unprecedented photoinduced charge transfer phenomenon. [Ag24(C≡CtBu)20(99TcO4)]·(BF4)3 (denoted as 99TcO4-@Ag24) was successfully synthesized and structurally characterized. Single-crystal X-ray diffraction and Raman spectroscopy reveal that the tetrahedral structure of the 99TcO4- anion sustains significant symmetry breaking with weakened Tc-O bond strength under confinement within the Ag24(C≡CtBu)204+ cluster. Notably, 99TcO4-@Ag24 exhibits a broadband electronic absorption spectrum in the visible region, which was absent for the other 99TcO4--containing compounds. Density functional theory calculations elucidate that host-guest electrostatic interactions result in an electron polarization effect between the 99TcO4- anion core and the Ag24 cationic shell. The emergence of an absorption band in 99TcO4-@Ag24 is rationalized by intermolecular charge transfer from the Ag24 electronic states to the lowest unoccupied molecular orbitals of 99TcO4- instead of the intramolecular electron transition observed in other 99TcO4--containing compounds.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ni Luan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chunyun Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiayu Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Lu JB, Jiang XL, Wang JQ, Hu HS, Schwarz WHE, Li J. On the highest oxidation states of the actinoids in AnO 4 molecules (An = Ac - Cm): A DMRG-CASSCF study. J Comput Chem 2023; 44:190-198. [PMID: 35420170 DOI: 10.1002/jcc.26856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022]
Abstract
Actinoid tetroxide molecules AnO4 (An = Ac - Cm) are investigated with the ab initio density matrix renormalization group (DMRG) approach. Natural orbital shapes are used to read out the oxidation state (OS) of the f-elements, and the atomic orbital energies and radii are used to explain the trends. The highest OSs reveal a "volcano"-type variation: For An = Ac - Np, the OSs are equal to the number of available valence electrons, that is, AcIII , ThIV , PaV , UVI , and NpVII . Starting with plutonium as the turning point, the highest OSs in the most stable AnO4 isomers then decrease as PuV , AmV , and CmIII , indicating that the 5f-electrons are hard to be fully oxidized off from Pu onward. The variations are related to the actinoid contraction and to the 5f-covalency characteristics. Combined with previous work on OSs, we review their general trends throughout the periodic table, providing fundamental understanding of OS-relevant phenomena.
Collapse
Affiliation(s)
- Jun-Bo Lu
- Departmentof Chemistry, Southern University of Science and Technology, Shenzhen.,Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| | - Xue-Lian Jiang
- Departmentof Chemistry, Southern University of Science and Technology, Shenzhen
| | - Jia-Qi Wang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing.,Theoretische Chemie, Fachbereich Chemie und Biologie, Universität Siegen, Siegen, Germany
| | - Jun Li
- Departmentof Chemistry, Southern University of Science and Technology, Shenzhen.,Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| |
Collapse
|
3
|
Jiang XL, Xu CQ, Lu JB, Cao CS, Schmidbaur H, Schwarz WHE, Li J. Electronic Structure and Spectroscopic Properties of Group-7 Tri-Oxo-Halides MO 3X (M = Mn-Bh, X = F-Ts). Inorg Chem 2021; 60:9504-9515. [PMID: 34152757 DOI: 10.1021/acs.inorgchem.1c00626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 24 trioxide halide molecules MO3X of the manganese group (M = Mn-Bh; X = F-Ts), which are iso-valence-electronic with the famous MnO4- ion, have been quantum-chemically investigated by quasi-relativistic density-functional and ab initio correlated approaches. Geometric and electronic structures, valence and oxidation numbers, vibrational and electronic spectral properties, energetic stabilities of the monomers in the gas phase, and the decay mode of MnO3F have been investigated. The light Mn-3d species are most strongly electron-correlated, indicating that the concept of a closed-shell Lewis-type single-configurational structure [Mn+7(d0) O-2(p6)3 F-(p6)] reaches its limits. The concept of real-valued spin orbitals φ(r)·α and φ(r)·β breaks down for the heavy Bh-6d, At-6p and Ts-7p elements because of the dominating spin-orbit coupling. The vigorous decomposition of MnO3F at ambient conditions starts by the autocatalyzed release of n O2 and the formation of MnmO3m-2nFm clusters, triggered by the electron-depleted "oxylic" character of the oxide ligands in MnO3X.
Collapse
Affiliation(s)
- Xue-Lian Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Bo Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chang-Su Cao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hubert Schmidbaur
- Department Chemie, Technische Universität München, Garching 85747, Germany
| | - W H Eugen Schwarz
- Department of Chemistry, Tsinghua University, Beijing 100084, China.,Department Chemie, Universität Siegen, Siegen 57068, Germany
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Vilarrubias P. Electronic spectroscopy of some small anions containing S, N and O using CR-EOM-CCSD(T) method. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1797915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Pere Vilarrubias
- Generalitat de Catalunya, Departament d’Ensenyament, IES Castelló d’Empúries, Girona, Spain
| |
Collapse
|
5
|
Haggag OS, Malakar P, Pokhilko P, Stanton JF, Krylov AI, Ruhman S. The elusive dynamics of aqueous permanganate photochemistry. Phys Chem Chem Phys 2020; 22:10043-10055. [PMID: 32338267 DOI: 10.1039/c9cp07028a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite decades of investigation, mechanistic details of aqueous permanganate photo-decomposition remain unclear. Here we follow photoinduced dynamics of aqueous permanganate with femtosecond spectroscopy. Photoexcitation of KMnO4(aq) in the visible unleashes a sub-picosecond cascade of non-radiative transitions, leading to a distinct species which relaxes to S0 with a lifetime of 16 ps. Tuning excitation to the UV shows increasing formation of a metastable intermediate, which outlives our ∼1 ns window of detection. Guided by electronic structure calculations and observations from three pulse excitation experiments, we assign the 16 ps species as the lowest Jahn-Teller component of the 3T1 triplet state and suggest a plausible sequence of radiationless transitions, which rapidly populate it. In conjunction with photodecomposition quantum yields obtained from the literature, these results demonstrate that aqueous permanganate photo-decomposition proceeds through a long-lived intermediate which is formed in parallel to the triplet in less than one ps upon UV absorption. The possibility that this is the postulated highly oxidative peroxo species, a fraction of which leads to the stable (MnO2- + O2) fragments, is discussed. Finally, periodic modulations detected in the pump-probe signal are assigned to ground-state vibrational coherences excited by impulsive Raman. Their wavelength-dependent absolute phases outline the borders between adjacent electronic transitions in the linear spectrum of permanganate.
Collapse
Affiliation(s)
- Omer S Haggag
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | | | | | | | | | | |
Collapse
|
6
|
Heit YN, Sergentu DC, Autschbach J. Magnetic circular dichroism spectra of transition metal complexes calculated from restricted active space wavefunctions. Phys Chem Chem Phys 2019; 21:5586-5597. [DOI: 10.1039/c8cp07849a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Multiconfigurational restricted active space (RAS) self-consistent field (SCF) or configuration interaction (CI) approaches, augmented with a treatment of spin–orbit coupling by state interaction, were used to calculate the magnetic circular dichroism , , and/or for closed- and open-shell transition metal complexes.
Collapse
Affiliation(s)
- Yonaton N. Heit
- Department of Chemistry
- University at Buffalo, State University of New York
- Buffalo
- USA
| | | | - Jochen Autschbach
- Department of Chemistry
- University at Buffalo, State University of New York
- Buffalo
- USA
| |
Collapse
|
7
|
Heil A, Kleinschmidt M, Marian CM. On the performance of DFT/MRCI Hamiltonians for electronic excitations in transition metal complexes: The role of the damping function. J Chem Phys 2018; 149:164106. [DOI: 10.1063/1.5050476] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Adrian Heil
- Institute of Theoretical and Computaional Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martin Kleinschmidt
- Institute of Theoretical and Computaional Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christel M. Marian
- Institute of Theoretical and Computaional Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Sharma P, Truhlar DG, Gagliardi L. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4−. J Chem Phys 2018; 148:124305. [DOI: 10.1063/1.5021185] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Prachi Sharma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, Minneapolis, Minnesota 55455-0431, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, Minneapolis, Minnesota 55455-0431, USA
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
9
|
Hizhnyi Y, Nedilko S, Borysiuk V, Shyichuk A. Ab Initio Computational Study of Chromate Molecular Anion Adsorption on the Surfaces of Pristine and B- or N-Doped Carbon Nanotubes and Graphene. NANOSCALE RESEARCH LETTERS 2017; 12:71. [PMID: 28120246 PMCID: PMC5265242 DOI: 10.1186/s11671-017-1846-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/11/2017] [Indexed: 05/12/2023]
Abstract
Density functional theory (DFT) computations of the electronic structures of undoped, B- and N-doped CNT(3,3), CNT(5,5) carbon nanotubes, and graphene with adsorbed chromate anions CrO42- were performed within molecular cluster approach. Relaxed geometries, binding energies, charge differences of the adsorbed CrO42- anions, and electronic wave function contour plots were calculated using B3LYP hybrid exchange-correlation functional. Oscillator strengths of electronic transitions of CrO42- anions adsorbed on the surfaces of studied carbon nanostructures were calculated by the TD-DFT method. Calculations reveal covalent bonding between the anion and the adsorbents in all studied adsorption configurations. For all studied types of adsorbent structures, doping with N strengthens chemical bonding with CrO42- anions, providing a ~2-eV increase in binding energies comparatively to adsorption of the anion on undoped adsorbents. Additional electronic transitions of CrO42- anions appear in the orange-green spectral region when the anions are adsorbed on the N-doped low-diameter carbon nanotubes CNT(3,3) and CNT(5,5).
Collapse
Affiliation(s)
- Yuriy Hizhnyi
- Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska St., 01601 Kyiv, Ukraine
| | - Sergii Nedilko
- Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska St., 01601 Kyiv, Ukraine
| | - Viktor Borysiuk
- Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska St., 01601 Kyiv, Ukraine
| | - Andrii Shyichuk
- Department of Rare Earth, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
10
|
Hedegård ED, Bast R, Kongsted J, Olsen JMH, Jensen HJA. Relativistic Polarizable Embedding. J Chem Theory Comput 2017; 13:2870-2880. [DOI: 10.1021/acs.jctc.7b00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Radovan Bast
- High
Performance Computing Group, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Jacob Kongsted
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | - Hans Jørgen Aagaard Jensen
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
11
|
Olsen JMH, Hedegård ED. Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution. Phys Chem Chem Phys 2017; 19:15870-15875. [DOI: 10.1039/c7cp01194f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The absorption spectrum of MnO4− in vacuum and aqueous solution is modeled using the range-separated complete active space short-range density functional theory method (CAS-srDFT) combined with either implicit (PCM) or explicit (PE) solvent models. The experimental vacuum-to-water solvent shift of the lowest intense transition is reproduced by PE-CAS-srDFT.
Collapse
|
12
|
Huang W, Xing DH, Lu JB, Long B, Schwarz WHE, Li J. How Much Can Density Functional Approximations (DFA) Fail? The Extreme Case of the FeO4 Species. J Chem Theory Comput 2016; 12:1525-33. [PMID: 26938575 DOI: 10.1021/acs.jctc.5b01040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A thorough theoretical study of the relative energies of various molecular Fe·4O isomers with different oxidation states of both Fe and O atoms is presented, comparing simple Hartree-Fock through many Kohn-Sham approximations up to extended coupled cluster and DMRG multiconfiguration benchmark methods. The ground state of Fe·4O is a singlet, hexavalent iron(VI) complex (1)C2v-[Fe(VI)O2](2+)(O2)(2-), with isomers of oxidation states Fe(II), Fe(III), Fe(IV), Fe(V), and Fe(VIII) all lying slightly higher within the range of 1 eV. The disputed existence of oxidation state Fe(VIII) is discussed for isolated FeO4 molecules. Density functional theory (DFT) at various DF approximation (DFA) levels of local and gradient approaches, Hartree-Fock exchange and meta hybrids, range dependent, DFT-D and DFT+U models do not perform better for the relative stabilities of the geometric and electronic Fe·4O isomers than within 1-5 eV. The Fe·4O isomeric species are an excellent testing and validation ground for the development of density functional and wave function methods for strongly correlated multireference states, which do not seem to always follow chemical intuition.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Deng-Hui Xing
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Jun-Bo Lu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Bo Long
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| |
Collapse
|
13
|
Piecuch P, Hansen JA, Ajala AO. Benchmarking the completely renormalised equation-of-motion coupled-cluster approaches for vertical excitation energies. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1076901] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Seidu I, Krykunov M, Ziegler T. Applications of Time-Dependent and Time-Independent Density Functional Theory to Electronic Transitions in Tetrahedral d0 Metal Oxides. J Chem Theory Comput 2015; 11:4041-53. [DOI: 10.1021/acs.jctc.5b00298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Issaka Seidu
- Department of Chemistry, University of Calgary, University
Drive 2500, Calgary, AB T2N-1N4, Canada
| | - Mykhaylo Krykunov
- Department of Chemistry, University of Calgary, University
Drive 2500, Calgary, AB T2N-1N4, Canada
| | - Tom Ziegler
- Department of Chemistry, University of Calgary, University
Drive 2500, Calgary, AB T2N-1N4, Canada
| |
Collapse
|
15
|
Zhang J, Sun ZR, Wang XB. Examining the Critical Roles of Protons in Facilitating Oxidation of Chloride Ions by Permanganates: A Cluster Model Study. J Phys Chem A 2015; 119:6244-51. [DOI: 10.1021/acs.jpca.5b03328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian Zhang
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Physical
Sciences Division, Pacific Northwest National Laboratory, 902 Battelle
Boulevard, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| | - Zhen-Rong Sun
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Xue-Bin Wang
- Physical
Sciences Division, Pacific Northwest National Laboratory, 902 Battelle
Boulevard, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| |
Collapse
|
16
|
|
17
|
Lutz JJ, Piecuch P. Performance of the completely renormalized equation-of-motion coupled-cluster method in calculations of excited-state potential cuts of water. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Escudero D, Thiel W. Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes. J Chem Phys 2014; 140:194105. [DOI: 10.1063/1.4875810] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|