1
|
Bennett MT, Park KA, Musgrave CB, Brubaker JW, Dickie DA, Goddard WA, Gunnoe TB. Hexa-Fe(III) Carboxylate Complexes Facilitate Aerobic Hydrocarbon Oxidative Functionalization: Rh Catalyzed Oxidative Coupling of Benzene and Ethylene to Form Styrene. ACS Catal 2024; 14:10295-10316. [PMID: 38988649 PMCID: PMC11232027 DOI: 10.1021/acscatal.4c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
Fe(II) carboxylates react with dioxygen and carboxylic acid to form Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 (X = acetate or pivalate), which is an active oxidant for Rh-catalyzed arene alkenylation. Heating (150-200 °C) the catalyst precursor [(η2-C2H4)2Rh(μ-OAc)]2 with ethylene, benzene, Fe(II) carboxylate, and dioxygen yields styrene >30-fold faster than the reaction with dioxygen in the absence of the Fe(II) carboxylate additive. It is also demonstrated that Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 is an active oxidant under anaerobic conditions, and the reduced material can be reoxidized to Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 by dioxygen. At optimized conditions, a turnover frequency of ∼0.2 s-1 is achieved. Unlike analogous reactions with Cu(II) carboxylate oxidants, which undergo stoichiometric Cu(II)-mediated production of phenyl esters (e.g., phenyl acetate) as side products at temperatures ≥150 °C, no phenyl ester side product is observed when Fe carboxylate additives are used. Kinetic isotope effect experiments using C6H6 and C6D6 give k H/k D = 3.5(3), while the use of protio or monodeutero pivalic acid reveals a small KIE with k H/k D = 1.19(2). First-order dependencies on Fe(II) carboxylate and dioxygen concentration are observed in addition to complicated kinetic dependencies on the concentration of carboxylic acid and ethylene, both of which inhibit the reaction rate at a high concentration. Mechanistic studies are consistent with irreversible benzene C-H activation, ethylene insertion into the formed Rh-Ph bond, β-hydride elimination, and reaction of Rh-H with Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 to regenerate a Rh-carboxylate complex.
Collapse
Affiliation(s)
- Marc T. Bennett
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kwanwoo A. Park
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Jack W. Brubaker
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Diane A. Dickie
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Rinn N, Rojas-León I, Peerless B, Gowrisankar S, Ziese F, Rosemann NW, Pilgrim WC, Sanna S, Schreiner PR, Dehnen S. Adamantane-type clusters: compounds with a ubiquitous architecture but a wide variety of compositions and unexpected materials properties. Chem Sci 2024; 15:9438-9509. [PMID: 38939157 PMCID: PMC11206280 DOI: 10.1039/d4sc01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024] Open
Abstract
The research into adamantane-type compounds has gained momentum in recent years, yielding remarkable new applications for this class of materials. In particular, organic adamantane derivatives (AdR4) or inorganic adamantane-type compounds of the general formula [(RT)4E6] (R: organic substituent; T: group 14 atom C, Si, Ge, Sn; E: chalcogenide atom S, Se, Te, or CH2) were shown to exhibit strong nonlinear optical (NLO) properties, either second-harmonic generation (SHG) or an unprecedented type of highly-directed white-light generation (WLG) - depending on their respective crystalline or amorphous nature. The (missing) crystallinity, as well as the maximum wavelengths of the optical transitions, are controlled by the clusters' elemental composition and by the nature of the organic groups R. Very recently, it has been additionally shown that cluster cores with increased inhomogeneity, like the one in compounds [RSi{CH2Sn(E)R'}3], not only affect the chemical properties, such as increased robustness and reversible melting behaviour, but that such 'cluster glasses' form a conceptually new basis for their use in light conversion devices. These findings are likely only the tip of the iceberg, as beside elemental combinations including group 14 and group 16 elements, many more adamantane-type clusters (on the one hand) and related architectures representing extensions of adamantane-type clusters (on the other hand) are known, but have not yet been addressed in terms of their opto-electronic properties. In this review, we therefore present a survey of all known classes of adanmantane-type compounds and their respective synthetic access as well as their optical properties, if reported.
Collapse
Affiliation(s)
- Niklas Rinn
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Irán Rojas-León
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Benjamin Peerless
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Saravanan Gowrisankar
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Ferdinand Ziese
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Nils W Rosemann
- Light Technology Institute, Karlsruhe Institute of Technology Engesserstr. 13 76131 Karlsruhe Germany
| | - Wolf-Christian Pilgrim
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Simone Sanna
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Peter R Schreiner
- Department of Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research, Justus Liebig University Giessen Germany
| | - Stefanie Dehnen
- Institute of Nanotechnology, Karlsruhe Institute of Technology Herrmann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
3
|
Hossain K, Atta S, Chakraborty AB, Karmakar S, Majumdar A. Nonheme binuclear transition metal complexes with hydrosulfide and polychalcogenides. Chem Commun (Camb) 2024; 60:4979-4998. [PMID: 38654604 DOI: 10.1039/d4cc00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The intriguing chemistry of chalcogen (S, Se)-containing ligands and their capability to bridge multiple metal centres have resulted in a plethora of reports on transition metal complexes featuring hydrosulfide (HS-) and polychalcogenides (En2-, E = S, Se). While a large number of such molecules are strictly organometallic complexes, examples of non-organometallic complexes featuring HS- and En2- with N-/O-donor ligands are relatively rare. The general synthetic procedure for the transition metal-hydrosulfido complexes involves the reaction of the corresponding metal salts with HS-/H2S and this is prone to generate sulfido bridged oligomers in the absence of sterically demanding ligands. On the other hand, the synthetic methods for the preparation of transition metal-polychalcogenido complexes include the reaction of the corresponding metal salts with En2- or the two electron oxidation of low-valent metals with elemental chalcogen, often at an elevated temperature and/or for a long time. Recently, we have developed new synthetic methods for the preparation of two new classes of binuclear transition metal complexes featuring either HS-, or Sn2- and Sen2- ligands. The new method for the synthesis of transition metal-hydrosulfido complexes involved transition metal-mediated hydrolysis of thiolates at room temperature (RT), while the method for the synthesis of transition metal-polychalcogenido complexes involved redox reaction of coordinated thiolates and exogenous elemental chalcogens at RT. An overview of the synthetic aspects, structural properties and intriguing reactivity of these two new classes of transition metal complexes is presented.
Collapse
Affiliation(s)
- Kamal Hossain
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Sayan Atta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Anuj Baran Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
4
|
Ciambellotti S, Pratesi A, Tassone G, Turano P, Mangani S, Pozzi C. Iron Binding in the Ferroxidase Site of Human Mitochondrial Ferritin. Chemistry 2021; 27:14690-14701. [PMID: 34343376 DOI: 10.1002/chem.202102270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Ferritins are nanocage proteins that store iron ions in their central cavity as hydrated ferric oxide biominerals. In mammals, further the L (light) and H (heavy) chains constituting cytoplasmic maxi-ferritins, an additional type of ferritin has been identified, the mitochondrial ferritin (MTF). Human MTF (hMTF) is a functional homopolymeric H-like ferritin performing the ferroxidase activity in its ferroxidase site (FS), in which Fe(II) is oxidized to Fe(III) in the presence of dioxygen. To better investigate its ferroxidase properties, here we performed time-lapse X-ray crystallography analysis of hMTF, providing structural evidence of how iron ions interact with hMTF and of their binding to the FS. Transient iron binding sites, populating the pathway along the cage from the iron entry channel to the catalytic center, were also identified. Furthermore, our kinetic data at variable iron loads indicate that the catalytic iron oxidation reaction occurs via a diferric peroxo intermediate followed by the formation of ferric-oxo species, with significant differences with respect to human H-type ferritin.
Collapse
Affiliation(s)
- Silvia Ciambellotti
- Department of Chemistry "Ugo Schiff" Department of Excellence 2018-2022, University of Florence, via della Lastruccia 2, 50019, Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| | - Paola Turano
- Department of Chemistry "Ugo Schiff" Department of Excellence 2018-2022, University of Florence, via della Lastruccia 2, 50019, Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Stefano Mangani
- Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| |
Collapse
|
5
|
Pal N, Jana M, Majumdar A. Reduction of NO by diiron complexes in relation to flavodiiron nitric oxide reductases. Chem Commun (Camb) 2021; 57:8682-8698. [PMID: 34373873 DOI: 10.1039/d1cc03149j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of nitric oxide (NO) to nitrous oxide (N2O) is associated with immense biological and health implications. Flavodiiron nitric oxide reductases (FNORs) are diiron containing enzymes that catalyze the two electron reduction of NO to N2O and help certain pathogenic bacteria to survive under "nitrosative stress" in anaerobic growth conditions. Consequently, invading bacteria can proliferate inside the body of mammals by bypassing the immune defense mechanism involving NO and may thus lead to harmful infections. Various mechanisms, namely the direct reduction, semireduction, superreduction and hyponitrite mechanisms, have been proposed over time for catalytic NO reduction by FNORs. Model studies in relation to the diiron active site of FNORs have immensely helped to replicate the minimal structure-reactivity relationship and to understand the mechanism of NO reduction. A brief overview of the FNOR activity and the proposed reaction mechanisms followed by a systematic description and detailed analysis of the model studies is presented, which describes the development in the area of NO reduction by diiron complexes and its implications. A great deal of successful modeling chemistry as well as the shortcomings related to the synthesis and reactivity studies is discussed in detail. Finally, future prospects in this particular area of research are proposed, which in due course may bring more clarity in the understanding of this important redox reaction.
Collapse
Affiliation(s)
- Nabhendu Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | | | | |
Collapse
|
6
|
Wong JWL, Hua S, Demeshko S, Dechert S, Ye S, Meyer F. Bis(pyrazolato) Bridged Diiron Complexes: Ferromagnetic Coupling in a Mixed‐Valent HS‐Fe
II
/LS‐Fe
III
Dinuclear Complex. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joanne W. L. Wong
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Shao‐An Hua
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Shengfa Ye
- Max‐Planck Institut für Kohlenforschung Stiftstraße 34‐36 45470 Mülheim an der Ruhr Germany
| | - Franc Meyer
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
7
|
Jana M, White CJ, Pal N, Demeshko S, Cordes (née Kupper) C, Meyer F, Lehnert N, Majumdar A. Functional Models for the Mono- and Dinitrosyl Intermediates of FNORs: Semireduction versus Superreduction of NO. J Am Chem Soc 2020; 142:6600-6616. [DOI: 10.1021/jacs.9b13795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Manish Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Corey J. White
- Department of Chemistry, The University of Michigan, 930 N. University Avenue, Ann Arbor 48109, Michigan, United States
| | - Nabhendu Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität, Tammannstraße 4, Göttingen 37077, Germany
| | | | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität, Tammannstraße 4, Göttingen 37077, Germany
| | - Nicolai Lehnert
- Department of Chemistry, The University of Michigan, 930 N. University Avenue, Ann Arbor 48109, Michigan, United States
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
8
|
Ganguly T, Majumdar A. Comparative Study for the Cobalt(II)- and Iron(II)-Mediated Desulfurization of Disulfides Demonstrating That the C–S Bond Cleavage Step Precedes the S–S Bond Cleavage Step. Inorg Chem 2020; 59:4037-4048. [DOI: 10.1021/acs.inorgchem.0c00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tuhin Ganguly
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
9
|
Lahneche YD, Boulebd H, Benslimane M, Bencharif M, Belfaitah A. Dinuclear Hg(II) complex of new benzimidazole-based Schiff base: one-pot synthesis, crystal structure, spectroscopy, and theoretical investigations. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1680833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Youssra Doria Lahneche
- Faculté des Sciences Exactes, Laboratoire Des Produits Naturels D’Origine Végétale et de Synthèse Organique, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
- Unité de Recherche de Chimie de L’Environnement et Moléculaire Structurale, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Houssem Boulebd
- Faculté des Sciences Exactes, Laboratoire Des Produits Naturels D’Origine Végétale et de Synthèse Organique, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Meriem Benslimane
- Unité de Recherche de Chimie de L’Environnement et Moléculaire Structurale, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Mustapha Bencharif
- Faculté des Sciences Exactes, Laboratoire Des Matériaux, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Ali Belfaitah
- Faculté des Sciences Exactes, Laboratoire Des Produits Naturels D’Origine Végétale et de Synthèse Organique, Université des Frères Mentouri-Constantine 1, Constantine, Algeria
| |
Collapse
|
10
|
Ganguly T, Das A, Majumdar A. Iron(II) Mediated Desulfurization of Organosulfur Substrates Produces Nonheme Diiron(II)-hydrosulfides. Inorg Chem 2019; 58:9998-10011. [DOI: 10.1021/acs.inorgchem.9b01144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tuhin Ganguly
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Ayan Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
11
|
Barman SK, Cano J, Lloret F, Mukherjee R. Single-Molecule-Magnet FeII4FeIII2 and Antiferromagnetic FeIII4 Coordination Clusters. Inorg Chem 2019; 58:8086-8099. [DOI: 10.1021/acs.inorgchem.9b00828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suman K. Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Joan Cano
- Departament de Química, Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de València, Polígono de
la Coma, s/n, 46980 Paterna (València), Spain
| | - Francesc Lloret
- Departament de Química, Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de València, Polígono de
la Coma, s/n, 46980 Paterna (València), Spain
| | | |
Collapse
|
12
|
Pal N, Majumdar A. Transfer of hydrosulfide from thiols to iron(ii): a convenient synthetic route to nonheme diiron(ii)–hydrosulfide complexes. Dalton Trans 2019; 48:5903-5908. [DOI: 10.1039/c8dt04092c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synthesis and reactivity of an unprecedented nonheme diiron(ii)–hydrosulfide complex via Fe(ii) mediated C–S bond cleavage of thiols.
Collapse
Affiliation(s)
- Nabhendu Pal
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Amit Majumdar
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
13
|
Benhassine A, Boulebd H, Anak B, Bouraiou A, Bouacida S, Bencharif M, Belfaitah A. Copper(II) and zinc(II) as metal-carboxylate coordination complexes based on (1-methyl-1H-benzo[d]imidazol-2-yl) methanol derivative: Synthesis, crystal structure, spectroscopy, DFT calculations and antioxidant activity. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
White CJ, Speelman AL, Kupper C, Demeshko S, Meyer F, Shanahan JP, Alp EE, Hu M, Zhao J, Lehnert N. The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases. J Am Chem Soc 2018; 140:2562-2574. [DOI: 10.1021/jacs.7b11464] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Corey J. White
- Department
of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Amy L. Speelman
- Department
of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Claudia Kupper
- Institut
für Anorganische Chemie, Universität Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institut
für Anorganische Chemie, Universität Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institut
für Anorganische Chemie, Universität Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - James P. Shanahan
- Department
of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - E. Ercan Alp
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael Hu
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jiyong Zhao
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Nicolai Lehnert
- Department
of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
15
|
Jana M, Majumdar A. C–S Bond Cleavage, Redox Reactions, and Dioxygen Activation by Nonheme Dicobalt(II) Complexes. Inorg Chem 2017; 57:617-632. [DOI: 10.1021/acs.inorgchem.7b02432] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manish Jana
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Majumdar
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
16
|
Jasniewski AJ, Engstrom LM, Vu VV, Park MH, Que L. X-ray absorption spectroscopic characterization of the diferric-peroxo intermediate of human deoxyhypusine hydroxylase in the presence of its substrate eIF5a. J Biol Inorg Chem 2016; 21:605-18. [PMID: 27380180 PMCID: PMC4990465 DOI: 10.1007/s00775-016-1373-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022]
Abstract
Human deoxyhypusine hydroxylase (hDOHH) is an enzyme that is involved in the critical post-translational modification of the eukaryotic translation initiation factor 5A (eIF5A). Following the conversion of a lysine residue on eIF5A to deoxyhypusine (Dhp) by deoxyhypusine synthase, hDOHH hydroxylates Dhp to yield the unusual amino acid residue hypusine (Hpu), a modification that is essential for eIF5A to promote peptide synthesis at the ribosome, among other functions. Purification of hDOHH overexpressed in E. coli affords enzyme that is blue in color, a feature that has been associated with the presence of a peroxo-bridged diiron(III) active site. To gain further insight into the nature of the diiron site and how it may change as hDOHH goes through the catalytic cycle, we have conducted X-ray absorption spectroscopic studies of hDOHH on five samples that represent different species along its reaction pathway. Structural analysis of each species has been carried out, starting with the reduced diferrous state, proceeding through its O2 adduct, and ending with a diferric decay product. Our results show that the Fe⋯Fe distances found for the five samples fall within a narrow range of 3.4-3.5 Å, suggesting that hDOHH has a fairly constrained active site. This pattern differs significantly from what has been associated with canonical dioxygen activating nonheme diiron enzymes, such as soluble methane monooxygenase and Class 1A ribonucleotide reductases, for which the Fe⋯Fe distance can change by as much as 1 Å during the redox cycle. These results suggest that the O2 activation mechanism for hDOHH deviates somewhat from that associated with the canonical nonheme diiron enzymes, opening the door to new mechanistic possibilities for this intriguing family of enzymes.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Lisa M Engstrom
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Van V Vu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Vietnam
| | - Myung Hee Park
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
17
|
Pal N, Majumdar A. Controlling the Reactivity of Bifunctional Ligands: Carboxylate-Bridged Nonheme Diiron(II) Complexes Bearing Free Thiol Groups. Inorg Chem 2016; 55:3181-91. [DOI: 10.1021/acs.inorgchem.6b00316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nabhendu Pal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Amit Majumdar
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
18
|
Mikata Y, Ohnishi R, Ugai A, Konno H, Nakata Y, Hamagami I, Sato SI. OFF–ON–OFF fluorescent response of N,N,N′,N′-tetrakis(1-isoquinolylmethyl)-2-hydroxy-1,3-propanediamine (1-isoHTQHPN) toward Zn2+. Dalton Trans 2016; 45:7250-7. [DOI: 10.1039/c6dt00506c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1-isoHTQHPN exhibits OFF–ON–OFF fluorescent response toward increasing concentration of Zn2+ions due to the specific intramolecular excimer formation in a mononuclear complex.
Collapse
Affiliation(s)
- Yuji Mikata
- Department of Chemistry
- Biology
- and Environmental Science
- Faculty of Science
- Nara Women's University
| | - Risa Ohnishi
- Department of Chemistry
- Faculty of Science
- Nara Women's University
- Nara 630-8506
- Japan
| | - Anna Ugai
- Department of Chemistry
- Faculty of Science
- Nara Women's University
- Nara 630-8506
- Japan
| | - Hideo Konno
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | | | | | - Shin-ichiro Sato
- Graduate School of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| |
Collapse
|
19
|
Pozzi C, Di Pisa F, Bernacchioni C, Ciambellotti S, Turano P, Mangani S. Iron binding to human heavy-chain ferritin. ACTA ACUST UNITED AC 2015; 71:1909-20. [PMID: 26327381 DOI: 10.1107/s1399004715013073] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022]
Abstract
Maxi-ferritins are ubiquitous iron-storage proteins with a common cage architecture made up of 24 identical subunits of five α-helices that drive iron biomineralization through catalytic iron(II) oxidation occurring at oxidoreductase sites (OS). Structures of iron-bound human H ferritin were solved at high resolution by freezing ferritin crystals at different time intervals after exposure to a ferrous salt. Multiple binding sites were identified that define the iron path from the entry ion channels to the oxidoreductase sites. Similar data are available for another vertebrate ferritin: the M protein from Rana catesbeiana. A comparative analysis of the iron sites in the two proteins identifies new reaction intermediates and underlines clear differences in the pattern of ligands that define the additional iron sites that precede the oxidoreductase binding sites along this path. Stopped-flow kinetics assays revealed that human H ferritin has different levels of activity compared with its R. catesbeiana counterpart. The role of the different pattern of transient iron-binding sites in the OS is discussed with respect to the observed differences in activity across the species.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio Di Pisa
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Caterina Bernacchioni
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Silvia Ciambellotti
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Paola Turano
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
20
|
Khatua S, Majumdar A. Flavodiiron nitric oxide reductases: Recent developments in the mechanistic study and model chemistry for the catalytic reduction of NO. J Inorg Biochem 2015; 142:145-53. [DOI: 10.1016/j.jinorgbio.2014.09.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 11/24/2022]
|
21
|
Castillo I, Neira AC, Nordlander E, Zeglio E. Bis(benzimidazolyl)amine copper complexes with a synthetic ‘histidine brace’ structural motif relevant to polysaccharide monooxygenases. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|