1
|
Kamiyama M, Shingyouchi Y, Sarma R, Ghosh M, Kawawaki T, Biswas S, Negishi Y. Exploring the structural evolution of Cu-thiolate nanoclusters and their property correlations. Chem Commun (Camb) 2025; 61:1048-1062. [PMID: 39660545 DOI: 10.1039/d4cc06139j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Research on copper nanoclusters (Cu NCs) is expanding rapidly due to their remarkable structural versatility and related tunable properties they exhibit. This fast-paced development creates a need for a comprehensive overview of the structural evolution of Cu NCs, especially regarding how different geometric configurations emerge from variations in the ligand choice. In light of this, this feature article focuses on the role of thiolate ligands in shaping the structural and electronic properties of Cu NCs, with a particular emphasis on how modifications of ligands influence the geometry of NCs. While thiolates play a central role in stabilizing Cu NCs, this feature article also underscores the significance of co-ligands-such as hydrides, phosphines, and halides-because relying solely on thiolates is often insufficient to fully protect the surface of Cu NCs, unlike in the case of gold or silver NCs. A detailed analysis of how various thiolates and co-ligands affect core geometry reveals a direct correlation with the electronic properties of Cu NCs, which in turn influences their optical behavior. By examining these ligand-driven structural and electronic changes, this feature article aims to provide a deeper understanding of the relationship between ligand design and the resulting NC properties. The ultimate goal is to offer a strategy for the rational design of Cu NCs with tailored functionalities, thereby advancing NC chemistry and opening up new possibilities for applications in optoelectronics, catalysis, and sensing.
Collapse
Affiliation(s)
- Maho Kamiyama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yamato Shingyouchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Rupa Sarma
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Mandira Ghosh
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| | - Sourav Biswas
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| | - Yuichi Negishi
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
2
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
3
|
Brocha Silalahi RP, Liang H, Jo Y, Liao JH, Chiu TH, Wu YY, Wang X, Kahlal S, Wang Q, Choi W, Lee D, Saillard JY, Liu CW. Hydride-Containing Pt-doped Cu-rich Nanoclusters: Synthesis, Structure, and Electrocatalytic Hydrogen Evolution. Chemistry 2023:e202303755. [PMID: 38149882 DOI: 10.1002/chem.202303755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
A structurally precise hydride-containing Pt-doped Cu-rich nanocluster [PtH2 Cu14 {S2 P(Oi Pr)2 }6 (CCPh)6 ] (1) has been synthesized. It consists of a bicapped icosahedral Cu14 cage that encapsulates a linear PtH2 unit. Upon the addition of two equivalents of CF3 COOH to 1, two hydrido clusters are isolated. These clusters are [PtHCu11 {S2 P(Oi Pr)2 }6 (CCPh)4 ] (2), which is a vertex-missing Cu11 cuboctahedron encaging a PtH moiety, and [PtH2 Cu11 {S2 P(Oi Pr)2 }6 (CCPh)3 ] (3), a distorted 3,3,4,4,4-pentacapped trigonal prismatic Cu11 cage enclosing a PtH2 unit. The electronic structure of 2, analyzed by Density Functional Theory, is a 2e superatom. The electrocatalytic activities of 1-3 for hydrogen evolution reaction (HER) were compared. Notably, Cluster 2 exhibited an exceptionally excellent HER activity within metal nanoclusters, with an onset potential of -0.03 V (at 10 mA cm-2 ), a Tafel slope of 39 mV dec-1 , and consistent HER activity throughout 3000 cycles in 0.5 M H2 SO4 . Our study suggests that the accessible central Pt site plays a crucial role in the remarkable HER activity and may provide valuable insights for establishing correlations between catalyst structure and HER activity.
Collapse
Affiliation(s)
- Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| | - Hao Liang
- Univ Rennes CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Yongsung Jo
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| | - Ying-Yann Wu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States
| | - Samia Kahlal
- Univ Rennes CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Qi Wang
- Univ Rennes CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Woojun Choi
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dongil Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien, 97401, Taiwan R. O. C
| |
Collapse
|
4
|
Artem'ev AV, Liu CW. Recent progress in dichalcophosphate coinage metal clusters and superatoms. Chem Commun (Camb) 2023. [PMID: 37184074 DOI: 10.1039/d3cc01215h] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Atomically precise clusters of group 11 metals (Cu, Ag, and Au) attract considerable attention owing to their remarkable structure and fascinating properties. One of the unique subclasses of these clusters is based on dichalcophosphate ligands of [(RO)2PE2]- type (E = S or Se, and R = alkyl). These ligands successfully stabilise the most diverse Cu, Ag, and Au clusters and superatoms, spanning from simple ones to amazing assemblies featuring unusual structural and bonding patterns. It is noteworthy that such complicated clusters are assembled directly from cheap and simple reagents, metal(I) salts and dichalcophosphate anions. This reaction, when performed in the presence of a hydride or other anion sources, or foreign metal ions, results in hydrido- or anion-templated homo- or heteronuclear structures. In this feature article, we survey the recent advances in this exciting field, highlighting the powerful synthetic capabilities of the system "a metal(I) salt - [(RO)2PX2]- ligands - a templating anion or borohydride" as an inexhaustible platform for the creation of new atomically precise clusters, superatoms, and nanoalloys.
Collapse
Affiliation(s)
- Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, SB RAS, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - C W Liu
- National Dong Hwa University, Department of Chemistry, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
5
|
Heptanuclear Silver Hydride Clusters as Catalytic Precursors for the Reduction of 4-Nitrophenol. Molecules 2022; 27:molecules27165223. [PMID: 36014476 PMCID: PMC9415167 DOI: 10.3390/molecules27165223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
We report on the design, synthesis, and characterization of the first silver hydride clusters solely protected and stabilized by dithiophosphonate ligands and their application for the in situ generation of silver nanoparticles towards the catalytic reduction of 4-nitrophenol in an aqueous system. The synthesis of the silver monohydride cluster involves the incorporation of an interstitial hydride using sodium borohydride. Poly-nuclear magnetic resonance and mass spectrometry were used to establish the structural properties. The structural properties were then confirmed with a single-crystal X-ray diffraction analysis, which showed a distorted tetracapped tetrahedron core with one hydride ion encapsulated within the core of the silver framework. Additionally, the synthesized heptanuclear silver hydride was utilized as a precursor for the in situ generation of silver nanoparticles, which simultaneously catalyzed the reduction of 4-nitrophenol. The mechanism of the catalytic activity was investigated by first synthesizing AgNPs, which was subsequently used as a catalyst. The kinetic study showed that the pseudo-first constant obtained using the cluster (2.43 × 10−2 s−1) was higher than that obtained using the synthesized AgNPs (2.43 × 10−2 s−1). This indicated that the silver monohydride cluster was more active owing to the release of the encapsulated hydride ion and greater reaction surface prior to aggregation.
Collapse
|
6
|
van Zyl WE, Liu CW. Interstitial hydrides in nanoclusters can reduce M(I) (M = Cu, Ag, Au) to M(0) and form stable superatoms. Chemistry 2021; 28:e202104241. [PMID: 34936722 DOI: 10.1002/chem.202104241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/11/2022]
Abstract
High-nuclearity clusters resemble the closest model between the determination of atomically precise chemical species and the bulk metallic version thereof, and both impacts on a variety of applications, including catalysis, optics, sensors, and new energy sources. Our interest lies with the nanoclusters of the Group 11 (Cu, Ag, Au) metals stabilized by dichalcogenido and hydrido ligands. Herein, we describe superatoms formed by the clusters and their relationship with precursor hydrido clusters. Specifically, our concept seeks to demonstrate a possible correlation that exist between hydrido clusters (and nanoalloys) and the formation of superatoms, with the loss of hydrides and typically with release of H 2 gas. These reactions appear to be internal self-redox reactions and require no additional reducing agent, but does seem to require a similar core structure. Knowledge of such processes could provide insight into how clusters grow and an understanding in bridging the atomically precise cluster - metal nanoparticle mechanism.
Collapse
Affiliation(s)
- Werner E van Zyl
- University of Kwazulu-Natal, School of Chemistry and Physics, SOUTH AFRICA
| | - Chen-Wei Liu
- National Dong Hwa University, Department of Chemistry, 1, section 2, University drive, 974, Hualien, TAIWAN
| |
Collapse
|
7
|
Wang S, Liu T, Jiang DE. Locating Hydrides in Ligand-Protected Copper Nanoclusters by Deep Learning. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53468-53474. [PMID: 34591462 DOI: 10.1021/acsami.1c14618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrides play an important role in constructing atomically precise metal nanoclusters and nanoparticles. They occupy both the interstitial sites inside the metal cores and the interfacial sites between the surface of the metal core and the ligand layer. Although the heavy-atom positions can be routinely determined by single-crystal X-ray diffraction, the challenge in growing a large and high-enough-quality single crystal for neutron diffraction and the limited availability of neutron sources have prevented researchers from precisely knowing the hydride locations. A recently developed deep-learning method showed great promise in accelerating the determination of hydride sites in metal nanostructures, but it is unclear if this approach, trained on clusters up to Cu32 in size, can be applied to recently discovered, much larger nanoclusters such as Cu81. Here we show that an improved deep-learning model based on convolutional neural networks is both accurate and robust. We apply it to two recently reported copper nanoclusters, [Cu32(PET)24H8Cl2]2- and [Cu81(PhS)46(tBuNH2)10H32]3+, whose hydride locations have not been determined by neutron but were proposed from density functional theory (DFT) calculations. In the former, our CNN model confirms the DFT structure; in the latter, our CNN model predicts a more stable structure with different hydride sites.
Collapse
Affiliation(s)
- Song Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Tongyu Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
8
|
|
9
|
Zhong YJ, Liao JH, Chiu TH, Wu YY, Kahlal S, McGlinchey MJ, Saillard JY, Liu CW. Intercluster exchanges leading to hydride-centered bimetallic clusters: a multi-NMR, X-ray crystallographic, and DFT study. Dalton Trans 2021; 50:4727-4734. [PMID: 33734266 DOI: 10.1039/d1dt00072a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Encouraged by the successful syntheses of alloy nanoclusters (or nanoparticles) via intercluster (or interparticle) reactions, herein we apply this methodology to prepare a series of bimetallic hydride clusters. Mixing of two clusters, [Ag7(H){E2P(OiPr)2}6] (E = S, 1; Se, 3) and [Cu7(H){E2P(OiPr)2}6] (E = S, 2; Se, 4), yields two series of hydride-centered bimetallic clusters, [CuxAg7-x(H){E2P(OiPr)2}6] (x = 0-7; E = S, 5; Se, 6). Their compositions are fully characterized by positive-mode ESI-MS spectrometry, multi-NMR spectroscopy, and the structures of [Cu6Ag(H){S2P(OiPr)2}6] (5a) and [CuAg6(H){Se2P(OiPr)2}6] (6a) by single crystal X-ray diffraction. The presence of individual compounds in solution is the result of a (dynamic) chemical equilibrium primarily driven by metal exchanges. In fact, the process of inter-cluster exchange of 1 and 2 leading to hydride-centered bimetallic clusters 5 can be monitored by concentration-dependent 31P NMR spectroscopy of which the higher concentration of 1 in the reaction, the closer to its resonance will be the distribution, in accord with Le Chatelier's principle. The dynamic equilibrium is further confirmed by 2D exchange spectroscopy that reveals a stepwise process involving one metal exchange at a time. DFT calculations on a model series of clusters 6 show that silver prefers occupying the inner tetrahedral positions, while copper favors capping positions, in full agreement with the crystal structure of 5a and 6a.
Collapse
Affiliation(s)
- Yu-Jie Zhong
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
11
|
Schütz M, Gemel C, Muhr M, Jandl C, Kahlal S, Saillard JY, Fischer RA. Exploring Cu/Al cluster growth and reactivity: from embryonic building blocks to intermetalloid, open-shell superatoms. Chem Sci 2021; 12:6588-6599. [PMID: 34040734 PMCID: PMC8132940 DOI: 10.1039/d1sc00268f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Cluster growth reactions in the system [Cu5](Mes)5 + [Al4](Cp*)4 (Mes = mesitylene, Cp* = pentamethylcyclopentadiene) were explored and monitored by in situ LIFDI-MS and 1H-NMR. Feedback into experimental design allowed for an informed choice and precise adjustment of reaction conditions and led to isolation of the intermetallic cluster [Cu4Al4](Cp*)5(Mes) (1). Cluster 1 reacts with excess 3-hexyne to yield the triangular cluster [Cu2Al](Cp*)3 (2). The two embryonic [Cu4Al4](Cp*)5(Mes) and [Cu2Al](Cp*)3 clusters 1 and 2, respectively, were shown to be intermediates in the formation of an inseparable composite of the closely related clusters [Cu7Al6](Cp*)6 (3), [HCu7Al6](Cp*)6 (3H) and [Cu8Al6](Cp*)6 (4), which just differ by one Cu core atom. The radical nature of the open-shell superatomic [Cu7Al6](Cp*)6 cluster 3 is reflected in its reactivity towards addition of one Cu core atom leading to the closed shell superatom [Cu8Al6](Cp*)6 (4), and as well by its ability to undergo σ(C-H) and σ(Si-H) activation reactions of C6H5CH3 (toluene) and (TMS)3SiH (TMS = tris(trimethylsilyl)).
Collapse
Affiliation(s)
- Max Schütz
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 D-85748 Garching Germany
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| | - Christian Gemel
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 D-85748 Garching Germany
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| | - Maximilian Muhr
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 D-85748 Garching Germany
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| | - Christian Jandl
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226 F-35000 Rennes France
| | | | - Roland A Fischer
- Department of Chemistry, Technical University Munich Lichtenbergstrasse 4 D-85748 Garching Germany
- Catalysis Research Centre, Technical University Munich Ernst-Otto-Fischer Strasse 1 D-85748 Garching Germany
| |
Collapse
|
12
|
Nakajima T, Nakamae K, Ura Y, Tanase T. Multinuclear Copper Hydride Complexes Supported by Polyphosphine Ligands. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takayuki Nakajima
- Department of Chemistry; Faculty of Science; Nara Women's University; Kita Uoya-Nishi-Machi Nara 630-8506 Japan
| | - Kanako Nakamae
- Department of Chemistry; Faculty of Science; Nara Women's University; Kita Uoya-Nishi-Machi Nara 630-8506 Japan
| | - Yasuyuki Ura
- Department of Chemistry; Faculty of Science; Nara Women's University; Kita Uoya-Nishi-Machi Nara 630-8506 Japan
| | - Tomoaki Tanase
- Department of Chemistry; Faculty of Science; Nara Women's University; Kita Uoya-Nishi-Machi Nara 630-8506 Japan
| |
Collapse
|
13
|
Zhong YJ, Liao JH, Chiu TH, Wu YY, Kahlal S, Saillard JY, Liu CW. Hydride-encapsulated bimetallic clusters supported by 1,1-dithiolates. Chem Commun (Camb) 2020; 56:9300-9303. [DOI: 10.1039/d0cc03848b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A four-coordinated hydride lying at the center of heptanuclear bimetallic clusters was anisotropically refined to convergence by X-ray crystallography.
Collapse
Affiliation(s)
- Yu-Jie Zhong
- Department of Chemistry
- National Dong Hwa University
- Hualien 974301
- Republic of China
| | - Jian-Hong Liao
- Department of Chemistry
- National Dong Hwa University
- Hualien 974301
- Republic of China
| | - Tzu-Hao Chiu
- Department of Chemistry
- National Dong Hwa University
- Hualien 974301
- Republic of China
| | - Ying-Yann Wu
- Institute of Chemistry
- Academia Sinica
- Taipei 11528
- Republic of China
| | - Samia Kahlal
- CNRS
- ISCR-UMR 6226
- Univ. Rennes
- F-35000 Rennes
- France
| | | | - C. W. Liu
- Department of Chemistry
- National Dong Hwa University
- Hualien 974301
- Republic of China
| |
Collapse
|
14
|
Tanase T, Otaki R, Okue A, Nakamae K, Nakajima T. Dinuclear Copper Complexes Triply Bridged by a Tetraphosphane,
rac
‐Ph
2
PCH
2
P(Ph)CH
2
P(Ph)CH
2
PPh
2. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tomoaki Tanase
- Department of Chemistry Faculty of Science Nara Women's University 630–8506 Nara Japan
| | - Risa Otaki
- Department of Chemistry Faculty of Science Nara Women's University 630–8506 Nara Japan
| | - Ayumi Okue
- Department of Chemistry Faculty of Science Nara Women's University 630–8506 Nara Japan
| | - Kanako Nakamae
- Department of Chemistry Faculty of Science Nara Women's University 630–8506 Nara Japan
| | - Takayuki Nakajima
- Department of Chemistry Faculty of Science Nara Women's University 630–8506 Nara Japan
| |
Collapse
|
15
|
Kishore PV, Shi DR, Liao JH, Gupta AK, Liu C. Synthesis and structural characterization of xanthate ligated hydrido Cu(I) clusters and Cu(I) coordination polymer. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Latouche C, Gautier R, Génois R, Massuyeau F. Structural and Spectroscopic Investigations of Two [Cu 4X 6] 2– (X = Cl –, Br –) Clusters: A Joint Theoretical and Experimental Work. J Phys Chem A 2018; 122:4628-4634. [DOI: 10.1021/acs.jpca.8b02663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camille Latouche
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
| | - Romain Gautier
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
| | - Romain Génois
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
| | - Florian Massuyeau
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
| |
Collapse
|
17
|
Dhayal RS, Chen HP, Liao JH, van Zyl WE, Liu CW. Synthesis, Structural Characterization, and H2
Evolution Study of a Spheroid-Shape Hydride-Rich Copper Nanocluster. ChemistrySelect 2018. [DOI: 10.1002/slct.201800765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rajendra S. Dhayal
- Department of Chemistry; National Dong Hwa University; Hualien Taiwan 97401, R. O. C
- Department of Chemical Sciences; School of Basic and Applied Sciences; Central University of Punjab; Bathinda- 151 001 India
| | - Hsuan-Ping Chen
- Department of Chemistry; National Dong Hwa University; Hualien Taiwan 97401, R. O. C
| | - Jian-Hong Liao
- Department of Chemistry; National Dong Hwa University; Hualien Taiwan 97401, R. O. C
| | - Werner E. van Zyl
- School of Chemistry and Physics; University of KwaZulu-Natal, Westville Campus; Durban 4000 South Africa
| | - C. W. Liu
- Department of Chemistry; National Dong Hwa University; Hualien Taiwan 97401, R. O. C
| |
Collapse
|
18
|
Nie HH, Han YZ, Tang Z, Yang SY, Teo BK. Hydride Induced Formation and Optical Properties of Tetrahedral [Cu4(μ4-H)(μ2-X)2(PPh2Py)4]+ Clusters (X = Cl, Br; Py = pyridyl). J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1359-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
|
20
|
Fukuzumi S, Lee YM, Nam W. Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.07.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Latouche C, Liao JH, Li YJ, Shiu RY, Barone V, Kahlal S, Liu CW, Saillard JY. Encapsulating Iodine and Copper into Copper(I) Clusters Stabilized by Dichalcogenolate Ligands: Stability, Structure, and Optical Properties. Inorg Chem 2017; 56:14135-14146. [DOI: 10.1021/acs.inorgchem.7b02269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Camille Latouche
- Institut des Matériaux
Jean Rouxel, Université de Nantes, CNRS, 2 rue de la Houssinière,
BP 32229, 44322 Nantes cedex 3, France
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan, Republic of China
| | - Yi-Juan Li
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan, Republic of China
| | - Ruei-Yi Shiu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan, Republic of China
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Samia Kahlal
- Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, Campus
de Beaulieu, 263 av. Général Leclerc, 35042 Rennes, France
| | - C. W. Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Road, Shoufeng, Hualien 97401, Taiwan, Republic of China
| | - Jean-Yves Saillard
- Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, Campus
de Beaulieu, 263 av. Général Leclerc, 35042 Rennes, France
| |
Collapse
|
22
|
Inverse coordination – An emerging new chemical concept. II. Halogens as coordination centers. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Chakraborty I, Pradeep T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem Rev 2017; 117:8208-8271. [DOI: 10.1021/acs.chemrev.6b00769] [Citation(s) in RCA: 1305] [Impact Index Per Article: 163.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Indranath Chakraborty
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
24
|
Phanopoulos A, Warren M, White AJP, Horton A, Crimmin MR. Isolation of an unusual [Cu 6] nanocluster through sequential addition of copper(i) to a polynucleating ligand. Dalton Trans 2017; 46:2077-2080. [PMID: 28133681 DOI: 10.1039/c6dt04703c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addition of 2 equiv. of CuI to a [Cu]4 multimetallic complex results in cluster formation leading to the isolation of a rare bicapped tetrahedral [Cu6I2] cluster that is stabilised by two conformationally constrained polynucleating ligands.
Collapse
Affiliation(s)
- Andreas Phanopoulos
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - Mark Warren
- Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Andrew J P White
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - Andrew Horton
- PTI/DX Emerging Technologies, Shell Global Solutions International B.V, P.O. Box 38000, 1030 BN Amsterdam, The Netherlands
| | - Mark R Crimmin
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
25
|
Vibronic coupling to simulate the phosphorescence spectra of Ir(III)-based OLED systems: TD-DFT results meet experimental data. J Mol Model 2016; 22:265. [DOI: 10.1007/s00894-016-3132-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
26
|
Li J, White JM, Mulder RJ, Reid GE, Donnelly PS, O’Hair RAJ. Synthesis, Structural Characterization, and Gas-Phase Unimolecular Reactivity of Bis(diphenylphosphino)amino Copper Hydride Nanoclusters [Cu3(X)(μ3-H)((PPh2)2NH)3](BF4), Where X = μ2-Cl and μ3-BH4. Inorg Chem 2016; 55:9858-9868. [DOI: 10.1021/acs.inorgchem.6b01696] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiaye Li
- School
of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Jonathan M. White
- School
of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Roger J. Mulder
- CSIRO Manufacturing, Bayview
Avenue, Clayton, Victoria 3168, Australia
| | - Gavin E. Reid
- School
of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, University of Melbourne, 30 Flemington
Road, Parkville, Victoria 3010, Australia
| | - Paul S. Donnelly
- School
of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Richard A. J. O’Hair
- School
of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
27
|
Jordan AJ, Lalic G, Sadighi JP. Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity. Chem Rev 2016; 116:8318-72. [PMID: 27454444 DOI: 10.1021/acs.chemrev.6b00366] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydride complexes of copper, silver, and gold encompass a broad array of structures, and their distinctive reactivity has enabled dramatic recent advances in synthesis and catalysis. This Review summarizes the synthesis, characterization, and key stoichiometric reactions of isolable or observable coinage metal hydrides. It discusses catalytic processes in which coinage metal hydrides are known or probable intermediates, and presents mechanistic studies of selected catalytic reactions. The purpose of this Review is to convey how developments in coinage metal hydride chemistry have led to new organic transformations, and how developments in catalysis have in turn inspired the synthesis of reactive new complexes.
Collapse
Affiliation(s)
- Abraham J Jordan
- School of Chemistry & Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Gojko Lalic
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Joseph P Sadighi
- School of Chemistry & Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
28
|
[Ag20
{S2
P(OR)2
}12
]: A Superatom Complex with a Chiral Metallic Core and High Potential for Isomerism. Chemistry 2016; 22:9943-7. [DOI: 10.1002/chem.201602275] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 12/27/2022]
|
29
|
Dhayal RS, van Zyl WE, Liu CW. Polyhydrido Copper Clusters: Synthetic Advances, Structural Diversity, and Nanocluster-to-Nanoparticle Conversion. Acc Chem Res 2016; 49:86-95. [PMID: 26696469 DOI: 10.1021/acs.accounts.5b00375] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal hydride clusters have historically been studied to unravel their aesthetically pleasing molecular structures and interesting properties, especially toward hydrogen related applications. Central to this work is the hydride ligand, H¯, the smallest closed-shell spherical anion known. Two new developments in polyhydrido nanocluster chemistry include the determination of heretofore unknown hydride coordination modes and novel structural constructs, and conversion from the molecular entities to rhombus-shaped copper nanoparticles (CuNPs). These advances, together with hydrogen evolution and catalysis, have provided both experimentalists and theorists with a rich scientific directive to further explore. The isolation of hexameric [{(Ph3P)CuH}6] (Stryker reagent) could be regarded as the springboard for the recent emergence of polyhydrido copper cluster chemistry due to its utilization in a variety of organic chemical transformations. The stability of clusters of various nuclearity was improved through phosphine, pyridine, and carbene type ligands. Our focus lies with the isolation of novel copper (poly)hydride clusters using mostly the phosphor-1,1-dithiolato type ligands. We found such chalcogen-stabilized clusters to be exceptionally air and moisture stable over a wide range of nuclearities (Cu7 to Cu32). In this Account, we (i) report on state-of-the-art copper hydride cluster chemistry, especially with regards to the diverse and novel structural types generally, and newly discovered hydride coordination modes in particular, (ii) demonstrate the indispensable power of neutron diffraction for the unambiguous assignment and location of hydride ligand(s) within a cluster, and (iii) prove unique transformations that can occur not only between well characterized high nuclearity clusters, but also how such clusters can transform to uniquely shaped nanoparticles of several nanometers in diameter through copper hydride reduction. The increase in the number of low- to high-nuclearity hydride clusters allows for different means by which they can be classified. We chose a classification based on the coordination mode of hydride ligand within the cluster. This includes copper clusters associated with bridging (μ2-H) and capping (μ3-H) hydride modes, followed by an interstitial (μ4-H) hydride mode that was introduced for the first time into octa- and hepta-nuclear copper clusters stabilized by dichalcogen-type ligands. This breakthrough provided a means to explore higher nuclearity polyhydrido nanoclusters, which contain both capping (μ3-H) and interstitial (μ(4-6)-H) hydrides. The presence of bidentate ligands having mixed S/P dative sites led to air- and moisture-stable copper hydride nanoclusters. The formation of rhombus-shaped nanoparticles (CuNPs) from copper polyhydrides in the presence of excess borohydrides suggests the presence of metal hydrides as intermediates during the formation of nanoparticles.
Collapse
Affiliation(s)
- Rajendra S. Dhayal
- Department
of Chemistry, National Dong Hwa University, Hualien, Taiwan 97401
- Centre
for Chemical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Werner E. van Zyl
- School
of Chemistry and Physics, University of KwaZulu Natal, Private Bag X54001, Westville
Campus, Durban 4000, South Africa
| | - C. W. Liu
- Department
of Chemistry, National Dong Hwa University, Hualien, Taiwan 97401
| |
Collapse
|
30
|
Vazart F, Latouche C. Validation of a computational protocol to simulate near IR phosphorescence spectra for Ru(II) and Ir(III) metal complexes. Theor Chem Acc 2015. [DOI: 10.1007/s00214-015-1737-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Dhayal RS, Liao JH, Wang X, Liu YC, Chiang MH, Kahlal S, Saillard JY, Liu CW. Diselenophosphate-Induced Conversion of an Achiral [Cu20H11{S2P(OiPr)2}9] into a Chiral [Cu20H11{Se2P(OiPr)2}9] Polyhydrido Nanocluster. Angew Chem Int Ed Engl 2015; 54:13604-8. [DOI: 10.1002/anie.201506736] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 12/19/2022]
|
32
|
Dhayal RS, Liao JH, Wang X, Liu YC, Chiang MH, Kahlal S, Saillard JY, Liu CW. Diselenophosphate-Induced Conversion of an Achiral [Cu20H11{S2P(OiPr)2}9] into a Chiral [Cu20H11{Se2P(OiPr)2}9] Polyhydrido Nanocluster. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506736] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Dhayal RS, Liao JH, Kahlal S, Wang X, Liu YC, Chiang MH, van Zyl WE, Saillard JY, Liu CW. [Cu32(H)20{S2P(OiPr)2}12]: The Largest Number of Hydrides Recorded in a Molecular Nanocluster by Neutron Diffraction. Chemistry 2015; 21:8369-74. [DOI: 10.1002/chem.201501122] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 12/26/2022]
|
34
|
|
35
|
Dhayal RS, Liao JH, Liu YC, Chiang MH, Kahlal S, Saillard JY, Liu CW. [Ag21{S2P(OiPr)2}12]+: An Eight-Electron Superatom. Angew Chem Int Ed Engl 2015; 54:3702-6. [DOI: 10.1002/anie.201410332] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 11/07/2022]
|
36
|
Daly S, Krstić M, Giuliani A, Antoine R, Nahon L, Zavras A, Khairallah GN, Bonačić-Koutecký V, Dugourd P, O'Hair RAJ. Gas-phase VUV photoionisation and photofragmentation of the silver deuteride nanocluster [Ag10D8L6]2+ (L = bis(diphenylphosphino)methane). A joint experimental and theoretical study. Phys Chem Chem Phys 2015; 17:25772-7. [DOI: 10.1039/c5cp01160d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The VUV photoionisation and photofragmentation of a mass-selected, ligated silver deuteride nanocluster was studied.
Collapse
Affiliation(s)
- Steven Daly
- Institut Lumière Matière
- Université Claude Bernard Lyon 1
- Lyon
- France
| | - Marjan Krstić
- Center of Excellence for Science and Technology – Integration of Mediterranean region (STIM) at Interdisciplinary Center for Advanced Science and Technology (ICAST)
- University of Split
- Split
- Croatia
| | | | - Rodolphe Antoine
- Institut Lumière Matière
- Université Claude Bernard Lyon 1
- Lyon
- France
| | - Laurent Nahon
- SOLEIL
- l'Orme des Merisiers
- F-91192 Gif sur Yvette
- France
| | - Athanasios Zavras
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Parkville
- Australia
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology
| | - George N. Khairallah
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Parkville
- Australia
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology – Integration of Mediterranean region (STIM) at Interdisciplinary Center for Advanced Science and Technology (ICAST)
- University of Split
- Split
- Croatia
- Humboldt-Universität Berlin
| | - Philippe Dugourd
- Institut Lumière Matière
- Université Claude Bernard Lyon 1
- Lyon
- France
| | - Richard A. J. O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Parkville
- Australia
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology
| |
Collapse
|
37
|
Baiardi A, Latouche C, Bloino J, Barone V. Accurate yet feasible computations of resonance Raman spectra for metal complexes in solution: [Ru(bpy)3](2+) as a case study. Dalton Trans 2014; 43:17610-4. [PMID: 25207752 PMCID: PMC4627507 DOI: 10.1039/c4dt02151g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herein we present a new and promising approach for the high-resolution modeling of vibrational resonance Raman spectra of metal complexes in solution. The model explicitly includes Duschinsky couplings, solvent effects, and anharmonic corrections in a computational tool able to treat large molecular systems containing transition metals.
Collapse
Affiliation(s)
- Alberto Baiardi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| | | | | | | |
Collapse
|
38
|
Latouche C, Baiardi A, Barone V. Virtual Eyes Designed for Quantitative Spectroscopy of Inorganic Complexes: Vibronic Signatures in the Phosphorescence Spectra of Terpyridine Derivatives. J Phys Chem B 2014; 119:7253-7. [DOI: 10.1021/jp510589u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Camille Latouche
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Alberto Baiardi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
39
|
Liao JH, Dhayal RS, Wang X, Kahlal S, Saillard JY, Liu CW. Neutron Diffraction Studies of a Four-Coordinated Hydride in Near Square-Planar Geometry. Inorg Chem 2014; 53:11140-5. [DOI: 10.1021/ic501747e] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, R.O.C
| | | | - Xiaoping Wang
- Chemical and Engineering Materials Division, Neutron
Science Directorate, Oak Ridge National Laboratory, Oak Ridge 37831, United States
| | - Samia Kahlal
- Institut
des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1-Ecole Nationale Supérieure de Chimie de Rennes, Avenue du Général Leclerc, 35042 Rennes, France
| | - Jean-Yves Saillard
- Institut
des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1-Ecole Nationale Supérieure de Chimie de Rennes, Avenue du Général Leclerc, 35042 Rennes, France
| | - C. W. Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, R.O.C
| |
Collapse
|
40
|
Edwards AJ, Dhayal RS, Liao P, Liao J, Chiang M, Piltz RO, Kahlal S, Saillard J, Liu CW. Chinese Puzzle Molecule: A 15 Hydride, 28 Copper Atom Nanoball. Angew Chem Int Ed Engl 2014; 53:7214-8. [DOI: 10.1002/anie.201403324] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Alison J. Edwards
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia)
| | - Rajendra S. Dhayal
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401 (Taiwan, R.O.C.) http://faculty.ndhu.edu.tw/∼cwl/index.htm
| | - Ping‐Kuei Liao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401 (Taiwan, R.O.C.) http://faculty.ndhu.edu.tw/∼cwl/index.htm
| | - Jian‐Hong Liao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401 (Taiwan, R.O.C.) http://faculty.ndhu.edu.tw/∼cwl/index.htm
| | - Ming‐Hsi Chiang
- Institute of Chemistry, Academica Sinica, Taipei 115 (Taiwan, R.O.C.)
| | - Ross O. Piltz
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia)
| | - Samia Kahlal
- UMR‐CNRS, 6226 “Institut des Sciences Chimiques de Rennes”, Université de Rennes 1, 35042 Rennes Cedex (France)
| | - Jean‐Yves Saillard
- UMR‐CNRS, 6226 “Institut des Sciences Chimiques de Rennes”, Université de Rennes 1, 35042 Rennes Cedex (France)
| | - C. W. Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401 (Taiwan, R.O.C.) http://faculty.ndhu.edu.tw/∼cwl/index.htm
| |
Collapse
|
41
|
Edwards AJ, Dhayal RS, Liao P, Liao J, Chiang M, Piltz RO, Kahlal S, Saillard J, Liu CW. Chinese Puzzle Molecule: A 15 Hydride, 28 Copper Atom Nanoball. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403324] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alison J. Edwards
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia)
| | - Rajendra S. Dhayal
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401 (Taiwan, R.O.C.) http://faculty.ndhu.edu.tw/∼cwl/index.htm
| | - Ping‐Kuei Liao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401 (Taiwan, R.O.C.) http://faculty.ndhu.edu.tw/∼cwl/index.htm
| | - Jian‐Hong Liao
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401 (Taiwan, R.O.C.) http://faculty.ndhu.edu.tw/∼cwl/index.htm
| | - Ming‐Hsi Chiang
- Institute of Chemistry, Academica Sinica, Taipei 115 (Taiwan, R.O.C.)
| | - Ross O. Piltz
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia)
| | - Samia Kahlal
- UMR‐CNRS, 6226 “Institut des Sciences Chimiques de Rennes”, Université de Rennes 1, 35042 Rennes Cedex (France)
| | - Jean‐Yves Saillard
- UMR‐CNRS, 6226 “Institut des Sciences Chimiques de Rennes”, Université de Rennes 1, 35042 Rennes Cedex (France)
| | - C. W. Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401 (Taiwan, R.O.C.) http://faculty.ndhu.edu.tw/∼cwl/index.htm
| |
Collapse
|