1
|
Structural Features of Eu 3+ and Tb 3+-Bipyridinedicarboxamide Complexes. Polymers (Basel) 2022; 14:polym14245540. [PMID: 36559907 PMCID: PMC9786332 DOI: 10.3390/polym14245540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Photoluminescent lanthanide complexes of Eu3+ and Tb3+ as central atoms and N6,N6'-diisopropyl-[2,2'-bipyridine]-6,6'-dicarboxamide as ligand were synthesized. The structure of these complexes was established by single-crystal X-ray diffraction, mass spectrometry, 1H and 13C nuclear magnetic resonance, ultraviolet-visible, infrared spectroscopy, and thermogravimetry. Bipyridinic ligands provide formation of coordinatively saturated complexes of lanthanide ions and strong photoluminescence (PL). The Eu3+- and Tb3+-complexes exhibit PL emission in the red and green regions observed at a 340 nm excitation. The quantum yield for the complexes was revealed to be 36.5 and 12.6% for Tb3+- and Eu3+-complexes, respectively. These lanthanide compounds could be employed as photoluminescent solid-state compounds and as emitting fillers in polymer (for example, polyethylene glycol) photoluminescent materials.
Collapse
|
2
|
Miroshnichenko AS, Neplokh V, Mukhin IS, Islamova RM. Silicone Materials for Flexible Optoelectronic Devices. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8731. [PMID: 36556538 PMCID: PMC9780939 DOI: 10.3390/ma15248731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Polysiloxanes and materials based on them (silicone materials) are of great interest in optoelectronics due to their high flexibility, good film-forming ability, and optical transparency. According to the literature, polysiloxanes are suggested to be very promising in the field of optoelectronics and could be employed in the composition of liquid crystal devices, computer memory drives organic light emitting diodes (OLED), and organic photovoltaic devices, including dye synthesized solar cells (DSSC). Polysiloxanes are also a promising material for novel optoectronic devices, such as LEDs based on arrays of III-V nanowires (NWs). In this review, we analyze the currently existing types of silicone materials and their main properties, which are used in optoelectronic device development.
Collapse
Affiliation(s)
- Anna S. Miroshnichenko
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia
- ChemBio Cluster, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia
- Laboratory of Renewable Energy Sources, St. Petersburg Academic University, 8/3 Khlopina Str., St. Petersburg 194021, Russia
| | - Vladimir Neplokh
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia
- ChemBio Cluster, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia
- High School of Engineering Physics, The Great St. Petersburg Polytechnical University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Ivan S. Mukhin
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia
- ChemBio Cluster, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia
- Laboratory of Renewable Energy Sources, St. Petersburg Academic University, 8/3 Khlopina Str., St. Petersburg 194021, Russia
- High School of Engineering Physics, The Great St. Petersburg Polytechnical University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Regina M. Islamova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia
| |
Collapse
|
3
|
Rare Earth Complexes of Europium(II) and Substituted Bis(pyrazolyl)borates with High Photoluminescence Efficiency. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228053. [PMID: 36432156 PMCID: PMC9694868 DOI: 10.3390/molecules27228053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Rare earth europium(II) complexes based on d-f transition luminescence have characteristics of broad emission spectra, tunable emission colors and short excited state lifetimes, showing great potential in display, lighting and other fields. In this work, four complexes of Eu(II) and bis(pyrazolyl)borate ligands, where pyrazolyl stands for pyrazolyl, 3-methylpyrazolyl, 3,5-dimethylpyrazolyl or 3-trifluoromethylpyrazole, were designed and synthesized. Due to the varied steric hindrance of the ligands, different numbers of solvent molecules (tetrahydrofuran) are participated to saturate the coordination structure. These complexes showed blue-green to yellow emissions with maximum wavelength in the range of 490-560 nm, and short excited state lifetimes of 30-540 ns. Among them, the highest photoluminescence quantum yield can reach 100%. In addition, when the complexes were heated under vacuum or nitrogen atmosphere, they finally transformed into the complexes of Eu(II) and corresponding tri(pyrazolyl)borate ligands and sublimated away.
Collapse
|
4
|
Mathieu E, Kiraev SR, Kovacs D, Wells JAL, Tomar M, Andres J, Borbas KE. Sensitization Pathways in NIR-Emitting Yb(III) Complexes Bearing 0, +1, +2, or +3 Charges. J Am Chem Soc 2022; 144:21056-21067. [DOI: 10.1021/jacs.2c05813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emilie Mathieu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Salauat R. Kiraev
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Jordann A. L. Wells
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Monika Tomar
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Julien Andres
- Chemistry and Chemical Engineering Section, Ecole Polytechnique Fédérale de Lausanne (EPFL), BCH 3311, CH-1015 Lausanne, Switzerland
| | - K. Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
5
|
Guo R, Wang L, Cai Z, Zhao Z, Bian Z, Liu Z. Complexes of Ce(III) and Bis(pyrazolyl)borate Ligands: Synthesis, Structures, and Luminescence Properties. Inorg Chem 2022; 61:14164-14172. [PMID: 35994595 DOI: 10.1021/acs.inorgchem.2c02353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Luminescent cerium(III) complexes based on the d-f transition have characteristics of broad emission spectra, tunable emission colors, and short excited state lifetimes, showing potential applications in display, lighting, and other fields. Thus it is important to construct luminescent Ce(III) complexes with high photoluminescence efficiency and good stability. In this work, five Ce(III) complexes with dihydrobis(pyrazolyl)borate or diphenylbis(pyrazolyl)borate ligands, where pyrazolyl stands for pyrazolyl, 3-methylpyrazolyl, or 3,5-dimethylpyrazolyl, were designed and synthesized, showing emission colors from deep blue to yellow with a maximum wavelength in the range of 390-560 nm, short excited state lifetimes of 30-80 ns, and photoluminescence quantum yields exceeding 75% in solid powder. By comparing these complexes, it is found that higher photoluminescence efficiency and better thermal/air stability could be achieved in the complexes with dihydrobis(pyrazolyl)borate ligands.
Collapse
Affiliation(s)
- Ruoyao Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Liding Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zelun Cai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Yan W, Cai Z, Qi H, Guo R, Liu Z, Bian Z. Deep-blue emitting cerium(III) complexes with tris(pyrazolyl)borate and triflate ligand. Dalton Trans 2022; 51:3234-3240. [DOI: 10.1039/d1dt04072c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Red, green and blue emitting materials, the three-primary colors, are very important in lighting and display. Red-emitting Eu(III) complexes and green-emitting Tb(III) complexes exhibit high color purity and photoluminescence (PL)...
Collapse
|
7
|
Kovacs D, Kocsi D, Wells JAL, Kiraev SR, Borbas KE. Electron transfer pathways in photoexcited lanthanide(iii) complexes of picolinate ligands. Dalton Trans 2021; 50:4244-4254. [PMID: 33688904 DOI: 10.1039/d1dt00616a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of luminescent lanthanide(iii) complexes consisting of 1,4,7-triazacyclononane frameworks and three secondary amide-linked carbostyril antennae were synthesised. The metal binding sites were augmented with two pyridylcarboxylate donors yielding octadentate ligands. The antennae carried methyl, methoxymethyl or trifluoromethyl substituents in their 4-positions, allowing for a range of excited state energies and antenna electronic properties. The 1H NMR spectra of the Eu(iii) complexes were found to be analogous to each other. Similar results were obtained in the solid-state by single-crystal X-ray crystallography, which showed the structures to have nine-coordinate metal ions with heavily distorted tricapped trigonal prismatic geometries. Steady-state and time-resolved luminescence spectroscopy showed that the antennae could sensitize both Tb(iii) and Eu(iii), however, quantum yields were lower than in other octadentate complexes lacking pyridylcarboxylate. Complexes with more electron-poor pyridines were less emissive even when equipped with the same antenna. The oxidation and reduction potentials of the antennae and the pyridinecarboxylates, respectively, were determined by cyclic voltammetry. The obtained values were consistent with electron transfer from the excited antenna to the pyridine providing a previously unexplored quenching pathway that could efficiently compete with energy transfer to the lanthanide. These results show the crucial impact that photophysically innocent ligand binding sites can have on lanthanide luminescence.
Collapse
Affiliation(s)
- Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
8
|
Salerno EV, Eliseeva SV, Schneider BL, Kampf JW, Petoud S, Pecoraro VL. Visible, Near-Infrared, and Dual-Range Luminescence Spanning the 4f Series Sensitized by a Gallium(III)/Lanthanide(III) Metallacrown Structure. J Phys Chem A 2020; 124:10550-10564. [DOI: 10.1021/acs.jpca.0c08819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elvin V. Salerno
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Svetlana V. Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071, Orleans Cedex 2, France
| | - Bernadette L. Schneider
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeff W. Kampf
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071, Orleans Cedex 2, France
| | - Vincent L. Pecoraro
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Kovacs D, Mathieu E, Kiraev SR, Wells JAL, Demeyere E, Sipos A, Borbas KE. Coordination Environment-Controlled Photoinduced Electron Transfer Quenching in Luminescent Europium Complexes. J Am Chem Soc 2020; 142:13190-13200. [DOI: 10.1021/jacs.0c05518] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Emilie Mathieu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Salauat R. Kiraev
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Jordann A. L. Wells
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ellen Demeyere
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Agnès Sipos
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - K. Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
10
|
Sidorov AA, Gogoleva NV, Bazhina ES, Nikolaevskii SA, Shmelev MA, Zorina-Tikhonova EN, Starikov AG, Kiskin MA, Eremenko IL. Some aspects of the formation and structural features of low nuclearity heterometallic carboxylates. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Heterometallic carboxylate complexes are of paramount interest in pure and applied coordination chemistry. Despite that plurality of such type compounds have been published to date, synthetic aspects of their chemistry often remain in the shadow of intriguing physical properties manifesting by these species. Present review summarizes reliable data on direct synthesis of low nuclearity molecular compounds as well as coordination polymers on their base with carboxylate-bridged {M2Mg} (M = Co2+, Ni2+, Cd2+), {M2Li2} (M = Co2+, Ni2+, Zn2+, VO2+), {M2Ln2} and {M2Ln} (M = Cu2+, Zn2+, Co2+) metal cores. Structural features and stabilization factors are considered and principal outcomes are confirmed by quantum-chemical calculations. Particular attention is paid to consideration of ligand-exchange reactions that allow controllable modification of heterometallic metal core under mild conditions giving diverse molecular complexes with modified ligand environment or Metal-Organic Frameworks with permanent porosity.
Collapse
Affiliation(s)
- Aleksey A. Sidorov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninsky Prosp. 31 , Moscow 119991 , Russia
| | - Natalia V. Gogoleva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninsky Prosp. 31 , Moscow 119991 , Russia
| | - Evgeniya S. Bazhina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninsky Prosp. 31 , Moscow 119991 , Russia
| | - Stanislav A. Nikolaevskii
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninsky Prosp. 31 , Moscow 119991 , Russia
| | - Maksim A. Shmelev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninsky Prosp. 31 , Moscow 119991 , Russia
| | - Ekaterina N. Zorina-Tikhonova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninsky Prosp. 31 , Moscow 119991 , Russia
| | - Andrey G. Starikov
- Institute of Physical and Organic Chemistry of Southern Federal University , Stachki Ave. 194/2 , Rostov-on-Don 344090 , Russia
| | - Mikhail A. Kiskin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninsky Prosp. 31 , Moscow 119991 , Russia
| | - Igor L. Eremenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninsky Prosp. 31 , Moscow 119991 , Russia
| |
Collapse
|
11
|
Kruck C, Nazari P, Dee C, Richards BS, Turshatov A, Seitz M. Efficient Ytterbium Near-Infrared Luminophore Based on a Nondeuterated Ligand. Inorg Chem 2019; 58:6959-6965. [PMID: 31050288 DOI: 10.1021/acs.inorgchem.9b00548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel molecular ytterbium complex is reported with a new tetradentate ligand based on the 2,2'-bipyridine-6,6'-dicarboxylic acid scaffold. The photophysical properties are investigated, especially with respect to near-infrared luminescence. The ytterbium complex shows a rather high absolute luminescence quantum yield of Φ = 3.0% and a luminescence lifetime of τobs = 72 μs at room temperature in CD3OD solution.
Collapse
Affiliation(s)
- Christian Kruck
- Institute of Inorganic Chemistry , University of Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Pariya Nazari
- Institute of Microstructure Technology , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Carolin Dee
- Institute of Inorganic Chemistry , University of Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Bryce S Richards
- Institute of Microstructure Technology , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Andrey Turshatov
- Institute of Microstructure Technology , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Michael Seitz
- Institute of Inorganic Chemistry , University of Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| |
Collapse
|
12
|
Yang Y, Zhang Z, Yang L, Liu J, Xu C, Luo S, Rao L. Complexation of U(VI) with BiPDA, DmBiPDA, and PhenDA: Comparison on Structures and Binding Strengths in Aqueous and DMSO/20%(v)H2O Solutions. Inorg Chem 2019; 58:6064-6074. [DOI: 10.1021/acs.inorgchem.9b00319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanqiu Yang
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhicheng Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liang Yang
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - Jun Liu
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - Chao Xu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Shunzhong Luo
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - Linfeng Rao
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
|
14
|
Kreidt E, Kruck C, Seitz M. Nonradiative Deactivation of Lanthanoid Luminescence by Multiphonon Relaxation in Molecular Complexes. INCLUDING ACTINIDES 2018. [DOI: 10.1016/bs.hpcre.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Hupp B, Schiller C, Lenczyk C, Stanoppi M, Edkins K, Lorbach A, Steffen A. Synthesis, Structures, and Photophysical Properties of a Series of Rare Near-IR Emitting Copper(I) Complexes. Inorg Chem 2017; 56:8996-9008. [DOI: 10.1021/acs.inorgchem.7b00958] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin Hupp
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carl Schiller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carsten Lenczyk
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco Stanoppi
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Katharina Edkins
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Lorbach
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Steffen
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
16
|
Ridenour JA, Carter KP, Butcher RJ, Cahill CL. RE-p-halobenzoic acid–terpyridine complexes, Part II: structural diversity, supramolecular assembly, and luminescence properties in a series of p-bromobenzoic acid rare-earth hybrid materials. CrystEngComm 2017. [DOI: 10.1039/c6ce02355j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Optical Properties of Heavily Fluorinated Lanthanide Tris β-Diketonate Phosphine Oxide Adducts. INORGANICS 2016. [DOI: 10.3390/inorganics4030027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
18
|
Sy M, Nonat A, Hildebrandt N, Charbonnière LJ. Lanthanide-based luminescence biolabelling. Chem Commun (Camb) 2016; 52:5080-95. [DOI: 10.1039/c6cc00922k] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiplexing, time-resolution, FRET…lanthanide-based biolabels reveal exceptional spectroscopic properties for bioanalytical applications.
Collapse
Affiliation(s)
- Mohamadou Sy
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- IPHC
- UMR 7178 CNRS
- Université de Strasbourg
- ECPM
| | - Aline Nonat
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- IPHC
- UMR 7178 CNRS
- Université de Strasbourg
- ECPM
| | - Niko Hildebrandt
- NanoBioPhotonics, Institut d'Electronique Fondamentale
- Université Paris-Saclay
- Université Paris-Sud
- CNRS
- Orsay
| | - Loïc J. Charbonnière
- Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse
- IPHC
- UMR 7178 CNRS
- Université de Strasbourg
- ECPM
| |
Collapse
|
19
|
|
20
|
Wahsner J, Seitz M. Nonradiative Deactivation of Lanthanoid Excited States by Inner-Sphere Carboxylates. Inorg Chem 2015; 54:10841-8. [DOI: 10.1021/acs.inorgchem.5b01920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jessica Wahsner
- Inorganic
Chemistry I, Department of Chemistry and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Michael Seitz
- Institute of Inorganic Chemistry, University of Tübingen, Auf
der Morgenstelle 18, 72076 Tübingen, Germany
- Inorganic
Chemistry I, Department of Chemistry and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
21
|
|
22
|
Zhang K, Zhang L, Zhang S, Hu Y, Zheng Y, Huang W. Construction of Identical [2 + 2] Schiff-Base Macrocyclic Ligands by LnIII and ZnII Template Ions Including Efficient YbIII Near-Infrared Sensitizers. Inorg Chem 2015; 54:5295-300. [DOI: 10.1021/acs.inorgchem.5b00283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Coordination
Chemistry, Nanjing National Laboratory of Microstructures, School
of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Lei Zhang
- State Key Laboratory of Coordination
Chemistry, Nanjing National Laboratory of Microstructures, School
of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Song Zhang
- State Key Laboratory of Coordination
Chemistry, Nanjing National Laboratory of Microstructures, School
of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Yong Hu
- State Key Laboratory of Coordination
Chemistry, Nanjing National Laboratory of Microstructures, School
of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Youxuan Zheng
- State Key Laboratory of Coordination
Chemistry, Nanjing National Laboratory of Microstructures, School
of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Wei Huang
- State Key Laboratory of Coordination
Chemistry, Nanjing National Laboratory of Microstructures, School
of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
23
|
Gao R, Wang F, Sui K, Du J, Li G. Pyridine effected tunable luminescence properties of a 1D cadmium(II) polymer with tetranuclear second building units. Supramol Chem 2014. [DOI: 10.1080/10610278.2014.979172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ruimin Gao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001Henan, P.R. China
| | - Feng Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001Henan, P.R. China
- Department of Chemistry, Henan Institute of Education, Zhengzhou, 450014Henan, P.R. China
| | - Ke Sui
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001Henan, P.R. China
| | - Jiaqi Du
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001Henan, P.R. China
| | - Gang Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001Henan, P.R. China
| |
Collapse
|
24
|
Doffek C, Wahsner J, Kreidt E, Seitz M. Breakdown of the Energy Gap Law in Molecular Lanthanoid Luminescence: The Smallest Energy Gap Is Not Universally Relevant for Nonradiative Deactivation. Inorg Chem 2014; 53:3263-5. [DOI: 10.1021/ic500017a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christine Doffek
- Department of Chemistry
and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Jessica Wahsner
- Department of Chemistry
and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Elisabeth Kreidt
- Department of Chemistry
and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Michael Seitz
- Department of Chemistry
and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
25
|
Yue Z, Chen Z, Yao M, Wang H, Li G. Selective pyridine recognition by an imidazole dicarboxylate-based 3D cadmium(ii) MOF. RSC Adv 2014. [DOI: 10.1039/c4ra04803b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One newly prepared 3D polymer (1) composed of left- and right-handed helices containing [Cd8(p-ClPhHIDC)12(4,4′-bipy)6] cages shows selective pyridine recognition, with a visual colour change from pearl to pink under ultraviolet irradiation.
Collapse
Affiliation(s)
- Zhifang Yue
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001, P. R. China
| | - Zhenna Chen
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001, P. R. China
| | - Minjie Yao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001, P. R. China
| | - Haili Wang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001, P. R. China
| | - Gang Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001, P. R. China
| |
Collapse
|
26
|
Carter KP, Zulato CHF, Cahill CL. Exploring supramolecular assembly and luminescent behavior in a series of RE-p-chlorobenzoic acid-1,10-phenanthroline complexes. CrystEngComm 2014. [DOI: 10.1039/c4ce01806k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eleven new rare earth (RE)-p-chlorobenzoic acid-1,10-phenanthroline complexes have been synthesized and their structural, supramolecular and luminescent properties have been explored.
Collapse
Affiliation(s)
- Korey P. Carter
- Department of Chemistry
- The George Washington University
- Washington, USA
| | - Cecília H. F. Zulato
- Department of Chemistry
- The George Washington University
- Washington, USA
- Laboratory of Functional Materials
- Institute of Chemistry
| | | |
Collapse
|