1
|
Ota S, Soto MA, Patrick BO, Kamal S, Lelj F, MacLachlan MJ. π-Extended ligands with dual-binding behavior: hindered rotation unlocks unexpected reactivity in cyclometalated Pt complexes. Chem Sci 2024; 15:d4sc04799k. [PMID: 39282641 PMCID: PMC11388036 DOI: 10.1039/d4sc04799k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Cyclometalated platinum complexes play a crucial role in catalysis, bioimaging, and optoelectronics. Phenylpyridines are widespread cyclometalating ligands that generate stable and highly emissive Pt complexes. While it is common practice to modify these ligands to fine-tune their photophysical properties, the incorporation of polycyclic aromatic hydrocarbons into the ligand's structure has been largely overlooked. This report describes the cyclometalation of naphthalenyl- and anthracenylpyridine ligands, which has resulted in ten new luminescent PtII and PtIV complexes. These species are enabled by a dual-binding behavior discovered in our polyaromatic-containing ligands. The introduction of naphthalenyl and anthracenyl groups unlocks dual binding modes, with the Pt center bonding to either of two distant carbon atoms within the ligand. These complexes exhibit both symmetric structures with two 5-membered metallacycles and asymmetric structures with 5- and 6-membered metallacycles. This work presents a strategy for the regioselective synthesis of Pt complexes with bespoke structures and photophysical properties. Our findings offer new opportunities in platinum chemistry and beyond, with potential implications for materials and technologies.
Collapse
Affiliation(s)
- Seiya Ota
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
| | - Miguel A Soto
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
| | - Brian O Patrick
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
| | - Saeid Kamal
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
| | - Francesco Lelj
- La.M.I.and LaSCAMM INSTM Sezione Basilicata, Dipartiento di Scienze, Università della Basilicata via dell'Ateneo Lucano 10 Potenza 85100 Italy
| | - Mark J MacLachlan
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver V6T 1Z1 Canada
- Stewart Blusson Quantum Matter Institute University of British Columbia 2355 East Mall Vancouver BC V6T 1Z4 Canada
- WPI Nano Life Science Institute Kanazawa University Kanazawa 920-1192 Japan
| |
Collapse
|
2
|
Takimoto K, Shimada T, Nagura K, Hill JP, Nakanishi T, Yuge H, Ishihara S, Labuta J, Sato H. Thermo-/Mechano-Chromic Chiral Coordination Dimer: Formation of Switchable and Metastable Discrete Structure through Chiral Self-Sorting. J Am Chem Soc 2023; 145:25160-25169. [PMID: 37943955 DOI: 10.1021/jacs.3c05866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Although strong chiral self-sorting often emerges in extended covalent or supramolecular polymers, the phenomenon is generally weak in discrete assemblies (e.g., dimers and oligomers) of small molecules due to the lack of a cooperative growth mechanism. Consequently, chiral self-sorting has been overlooked in the design of switchable and metastable discrete supramolecular structures. Here, we report a butyl-benzo[h]quinoline-based iridium(III) complex (Bu-Ir) with helical chirality at its metal center, which forms preferentially a homochiral dimer and exhibits thermo-/mechano-chromism based on a monomer-dimer transformation. While a five-coordinate monomer is formed in a racemic or an enantiopure Bu-Ir solution at 25 °C, a six-coordinate homochiral dimer complex is formed almost exclusively at low temperatures, with a higher degree of dimerization in enantiopure Bu-Ir solution. Estimation of apparent dimerization binding constants (K) and thermodynamic parameters (ΔH and ΔS) based on variable temperature ultraviolet-visible (UV-vis) and 1H NMR spectra reveals a strong preference for homochiral dimerization (largest known value for the coordination complex, Khomo/Khetero > 50). Notably, crystals of the homochiral dimer are metastable, undergoing a distinct color change upon grinding (from yellow to red) due to mechanical cleavage of coordination bonds (i.e., a dimer to monomer transformation). A comparison with control compounds having different substituents (proton, methyl, isopropyl, and phenyl groups) reveals that Bu-Ir dimerization involves both strong homochiral self-sorting preference and connected thermo-/mechano-chromic behavior, which is based on matched propeller-shaped chirality and subtle steric repulsion between alkyl substituents that render the homochiral dimer switchable and metastable. These findings provide substantial insights into the emergence of dynamic functionality based on the rational design of discrete chiral assemblies.
Collapse
Affiliation(s)
- Kazuyoshi Takimoto
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Takumi Shimada
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kazuhiko Nagura
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Nakanishi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hidetaka Yuge
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Shinsuke Ishihara
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jan Labuta
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hisako Sato
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
3
|
Li H, Wang C, Glaser F, Sinha N, Wenger OS. Metal-Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions. J Am Chem Soc 2023; 145:11402-11414. [PMID: 37186558 PMCID: PMC10214436 DOI: 10.1021/jacs.3c02609] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Sensitized triplet-triplet annihilation upconversion is a promising strategy to use visible light for chemical reactions requiring the energy input of UV photons. This strategy avoids unsafe ultraviolet light sources and can mitigate photo-damage and provide access to reactions, for which filter effects hamper direct UV excitation. Here, we report a new approach to make blue-to-UV upconversion more amenable to photochemical applications. The tethering of a naphthalene unit to a cyclometalated iridium(III) complex yields a bichromophore with a high triplet energy (2.68 eV) and a naphthalene-based triplet reservoir featuring a lifetime of 72.1 μs, roughly a factor of 20 longer than the photoactive excited state of the parent iridium(III) complex. In combination with three different annihilators, consistently lower thresholds for the blue-to-UV upconversion to crossover from a quadratic into a linear excitation power dependence regime were observed with the bichromophore compared to the parent iridium(III) complex. The upconversion system composed of the bichromophore and the 2,5-diphenyloxazole annihilator is sufficiently robust under long-term blue irradiation to continuously provide a high-energy singlet-excited state that can drive chemical reactions normally requiring UV light. Both photoredox and energy transfer catalyses were feasible using this concept, including the reductive N-O bond cleavage of Weinreb amides, a C-C coupling reaction based on reductive aryl debromination, and two Paternò-Büchi [2 + 2] cycloaddition reactions. Our work seems relevant in the context of developing new strategies for driving energetically demanding photochemistry with low-energy input light.
Collapse
Affiliation(s)
- Han Li
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Cui Wang
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Felix Glaser
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| |
Collapse
|
4
|
Davidson R, Hsu YT, Fox MA, Aguilar JA, Yufit D, Beeby A. Tuning Emission Lifetimes of Ir(C^N) 2(acac) Complexes with Oligo(phenyleneethynylene) Groups. Inorg Chem 2023; 62:2793-2805. [PMID: 36705986 PMCID: PMC9930119 DOI: 10.1021/acs.inorgchem.2c03934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Emissive compounds with long emission lifetimes (μs to ms) in the visible region are of interest for a range of applications, from oxygen sensing to cellular imaging. The emission behavior of Ir(ppy)2(acac) complexes (where ppy is the 2-phenylpyridyl chelate and acac is the acetylacetonate chelate) with an oligo(para-phenyleneethynylene) (OPE3) motif containing three para-rings and two ethynyl bridges attached to acac or ppy is examined here due to the accessibility of the long-lived OPE3 triplet states. Nine Ir(ppy)2(acac) complexes with OPE3 units are synthesized where the OPE3 motif is at the acac moiety (aOPE3), incorporated in the ppy chelate (pOPE3) or attached to ppy via a durylene link (dOPE3). The aOPE3 and dOPE3 complexes contain OPE3 units that are decoupled from the Ir(ppy)2(acac) core by adopting perpendicular ring-ring orientations, whereas the pOPE3 complexes have OPE3 integrated into the ppy ligand to maximize electronic coupling with the Ir(ppy)2(acac) core. While the conjugated pOPE3 complexes show emission lifetimes of 0.69-32.8 μs similar to the lifetimes of 1.00-23.1 μs for the non-OPE3 Ir(ppy)2(acac) complexes synthesized here, the decoupled aOPE3 and dOPE3 complexes reveal long emission lifetimes of 50-625 μs. The long lifetimes found in aOPE3 and dOPE3 complexes are due to intramolecular reversible electronic energy transfer (REET) where the long-lived triplet-state metal to ligand charge transfer (3MLCT) states exchange via REET with the even longer-lived triplet-state localized OPE3 states. The proposed REET process is supported by changes observed in excitation wavelength-dependent and time-dependent emission spectra from aOPE3 and dOPE3 complexes, whereas emission spectra from pOPE3 complexes remain independent of the excitation wavelength and time due to the well-established 3MLCT states of many Ir(ppy)2(acac) complexes. The long lifetimes, visible emission maxima (524-526 nm), and photoluminescent quantum yields of 0.44-0.60 for the dOPE3 complexes indicate the possibility of utilizing such compounds in oxygen-sensing and cellular imaging applications.
Collapse
|
5
|
Aoki S, Yokoi K, Hisamatsu Y, Balachandran C, Tamura Y, Tanaka T. Post-complexation Functionalization of Cyclometalated Iridium(III) Complexes and Applications to Biomedical and Material Sciences. Top Curr Chem (Cham) 2022; 380:36. [PMID: 35948812 DOI: 10.1007/s41061-022-00401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
Cyclometalated iridium(III) (Ir(III)) complexes exhibit excellent photophysical properties that include large Stokes shift, high emission quantum yields, and microsecond-order emission lifetimes, due to low-lying metal-to-ligand charge transfer (spin-forbidden singlet-triplet (3MLCT) transition). As a result, analogs have been applied for research not only in the material sciences, such as the development of organic light-emitting diodes (OLEDs), but also for photocatalysts, bioimaging probes, and anticancer reagents. Although a variety of methods for the synthesis and the applications of functionalized cyclometalated iridium complexes have been reported, functional groups are generally introduced to the ligands prior to the complexation with Ir salts. Therefore, it is difficult to introduce thermally unstable functional groups such as peptides and sugars due to the harsh reaction conditions such as the high temperatures used in the complexation with Ir salts. In this review, the functionalization of Ir complexes after the formation of cyclometalated Ir complexes and their biological and material applications are described. These methods are referred to as "post-complexation functionalization (PCF)." In this review, applications of PCF to the design and synthesis of Ir(III) complexes that exhibit blue -red and white color emissions, luminescence pH probes, luminescent probes of cancer cells, compounds that induce cell death in cancer cells, and luminescent complexes that have long emission lifetimes are summarized.
Collapse
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan. .,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan.
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yuichi Tamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
6
|
Sasaki Y, Yanai N, Kimizuka N. Osmium Complex-Chromophore Conjugates with Both Singlet-to-Triplet Absorption and Long Triplet Lifetime through Tuning of the Heavy-Atom Effect. Inorg Chem 2022; 61:5982-5990. [PMID: 35080875 DOI: 10.1021/acs.inorgchem.1c03129] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Os(II) complexes showing singlet-to-triplet absorption are of growing interest as a new class of triplet sensitizers that circumvent energy loss during intersystem crossing, and they enable effective utilization of input photon energy in various applications, such as photoredox catalysis, photodynamic therapy, and photon upconversion. However, triplet excited-state lifetimes of Os(II) complexes are often too short (τ < 1 μs) to transfer their energy to neighboring molecules. While the covalent conjugation of chromophores has been known to extend the net excited-state lifetimes through an intramolecular triplet energy transfer (IMET), heavy-atom effects of the central metals on the attached chromophore units have rarely been discussed. Here, we investigate the relationship between the spin-density contribution of the heavy metals and the net triplet excited-state lifetimes for a series of Os(II) and Ru(II) bis(terpyridine) complexes modified with perylene units. Phosphorescence lifetimes of these compounds strongly depend on the lifetimes of the perylenyl group-localized excited states that are shortened by the heavy-atom effect. The degree of heavy-atom effect can be largely circumvented by introducing meta-phenylene bridges, where the perylene unit retains its intrinsic long excited-state lifetime. The thermal activation to the short-lived excited states is suppressed, thanks to sufficient but still small energy losses during the IMET process. Involvement of the metal center was also confirmed by the prolonged lifetime by replacing Os(II) with Ru(II) that possesses a smaller spin-orbit coupling constant. These results indicate the importance of ligand structures that give a minimum heavy-atom effect as well as the sufficient energy gap among the excited states and fast IMET for elongating the triplet excited-state lifetime without sacrificing the excitation energy.
Collapse
Affiliation(s)
- Yoichi Sasaki
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.,PRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Ohyama R, Mishima M, Inagaki A. Syntheses and structure of dinuclear metal complexes containing naphthyl-Ir bichromophore. Dalton Trans 2021; 50:12716-12722. [PMID: 34545880 DOI: 10.1039/d1dt01853a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel metal complexes were synthesized containing an Ir-cyclometalated bichromophore as a visible-light sensitizer. A new bichromophoric unit containing a naphthyl substituent and methyl substituents on the 2-phenylpyridine chelating ligand was synthesized and characterized for the first time. According to the increased crystallinity of the bichromophoric unit, novel Ir-M metal complexes (M = Pd, Mn, and Ir) were synthesized and fully characterized. The novel Ir-Pd complex maintained photocatalytic activity toward styrenes under visible-light irradiation, and polymerization with p-chlorostyrene, copolymerization with styrene and p-chlorostyrene furnished corresponding polymers.
Collapse
Affiliation(s)
- Ryo Ohyama
- Department of Chemistry, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, 192-0397 Tokyo, Japan.
| | - Masaki Mishima
- Department of Molecular Biophysics, Tokyo University of Pharmacy and Life Sciences, School of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akiko Inagaki
- Department of Chemistry, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, 192-0397 Tokyo, Japan.
| |
Collapse
|
8
|
Yu S, Kupryakov A, Lewis JEM, Martí-Centelles V, Goldup SM, Pozzo JL, Jonusauskas G, McClenaghan ND. Damming an electronic energy reservoir: ion-regulated electronic energy shuttling in a [2]rotaxane. Chem Sci 2021; 12:9196-9200. [PMID: 34276950 PMCID: PMC8261707 DOI: 10.1039/d1sc02225c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
We demonstrate the first example of bidirectional reversible electronic energy transfer (REET) between the mechanically bonded components of a rotaxane. Our prototypical system was designed such that photoexcitation of a chromophore in the axle results in temporary storage of electronic energy in a quasi-isoenergetic “reservoir” chromophore in the macrocycle. Over time, the emissive state of the axle is repopulated from this reservoir, resulting in long-lived, delayed luminescence. Importantly, we show that cation binding in the cavity formed by the mechanical bond perturbs the axle chromophore energy levels, modulating the REET process, and ultimately providing a luminescence read-out of cation binding. Modulation of REET processes represents an unexplored mechanism in luminescent molecular sensor development. Delayed emission due to reversible electronic energy transfer (REET) between chromophores in the axle and macrocycle components of a rotaxane is demonstrated. The REET process can be modulated by metal ion binding in the cavity of the rotaxane.![]()
Collapse
Affiliation(s)
- Shilin Yu
- Institut des Sciences Moléculaires, University of Bordeaux/CNRS Talence France .,Department of Chemistry, University of Jyvaskyla 40014 Jyväskylä Finland
| | - Arkady Kupryakov
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux/CNRS Talence France
| | - James E M Lewis
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK .,Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | | | - Stephen M Goldup
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Jean-Luc Pozzo
- Institut des Sciences Moléculaires, University of Bordeaux/CNRS Talence France
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux/CNRS Talence France
| | | |
Collapse
|
9
|
Monti F, Baschieri A, Sambri L, Armaroli N. Excited-State Engineering in Heteroleptic Ionic Iridium(III) Complexes. Acc Chem Res 2021; 54:1492-1505. [PMID: 33617233 PMCID: PMC9292135 DOI: 10.1021/acs.accounts.0c00825] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Iridium(III)
complexes have assumed a prominent role in the areas
of photochemistry and photophysics due to the peculiar properties
of both the metal itself and the ligand environment that can be assembled
around it. Ir(III) is larger, heavier, and bears a higher ionic charge
than its analogue and widely used d6 ions such as Fe(II)
and Ru(II). Accordingly, its complexes exhibit wider ligand-field
d–d orbital splitting with electronic levels centered on the
metal, typically nonemissive and photodissociative, not playing a
relevant role in excited-state deactivations. In other words, iridium
complexes are typically more stable and/or more emissive than Fe(II)
and Ru(II) systems. Additionally, the particularly strong heavy-atom
effect of iridium promotes singlet–triplet transitions, with
characteristic absorption features in the UV–vis and relatively
short excited-state lifetimes of emissive triplet levels. Ir(III)
is also a platform for anchoring ligands of rather different sorts.
Its versatile chemistry includes not only coordination with classic
N∧N neutral ligands but also the binding of negatively
charged chelators, typically having a cyclometalating C∧N anchor. The carbon–metal bond in these systems has some
degree of covalent character, but this does not preclude a localized
description of the excited states of the related complexes, which
can be designated as metal-centered (MC), ligand-centered (LC), or
charge transfer (CT), allowing a simplified description of electronic
and photophysical properties. The possibility of binding different
types of ligands and making heteroleptic complexes is a formidable
tool for finely tuning the nature and energy of the lowest electronic
excited state of cationic Ir(III) complexes by ligand design. Herein
we give an account of our work on several families of iridium complexes
typically equipped with two cyclometalating bidentate ligands (C∧N), in combination with mono or bidentate “ancillary”
ligands with N∧N, C∧N, and C∧C motifs. We have explored new synthesis routes for
both cyclometalating and ancillary ligands, obtaining primarily cationic
complexes but also some neutral or even negatively charged systems.
In the domain of the ancillary ligands, we have explored isocyanides,
carbenes, mesoionic triazolylidenes, and bis-tetrazolic ligands. For
the cyclometalating moiety, we have investigated carbene, mesoionic
triazolylidene, and tetrazolic systems. Key results of our work include
new strategies to modify both cyclometalating and ancillary ligands
by relocating ionic charges, the determination of new factors affecting
the stability of complexes, a demonstration of subtle structural effects
that strongly modify the photophysical properties, new options to
get blue-greenish emitters for optoelectronic devices, and a set of
ligand modifications allowing the optimization of electrochemical
and excited-state properties to obtain new promising Ir(III) complexes
for photoredox catalysis. These results constitute a step forward
in the preparation of custom iridium-based materials crafted by excited-state
engineering, which is achieved through the concerted effort of computational
and synthetic chemistry along with electrochemistry and photochemistry.
Collapse
Affiliation(s)
- Filippo Monti
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (ISOF-CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Andrea Baschieri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (ISOF-CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Letizia Sambri
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Nicola Armaroli
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (ISOF-CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
10
|
Choi J, Ahn M, Lee JH, Ahn DS, Ki H, Oh I, Ahn CW, Choi EH, Lee Y, Lee S, Kim J, Cho DW, Wee KR, Ihee H. Ultrafast excited state relaxation dynamics in a heteroleptic Ir( iii) complex, fac-Ir(ppy) 2(ppz), revealed by femtosecond X-ray transient absorption spectroscopy. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01510e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The experimental and calculation results demonstrate that the 3MLppzCT state generated by the spin-forbidden transition rapidly relaxes to 3MLppyCT through internal conversion process with a time constant of ∼450 fs.
Collapse
|
11
|
Chen K, Hussain M, Razi SS, Hou Y, Yildiz EA, Zhao J, Yaglioglu HG, Donato MD. Anthryl-Appended Platinum(II) Schiff Base Complexes: Exceptionally Small Stokes Shift, Triplet Excited States Equilibrium, and Application in Triplet-Triplet-Annihilation Upconversion. Inorg Chem 2020; 59:14731-14745. [PMID: 32864961 DOI: 10.1021/acs.inorgchem.0c01932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two anthryl platinum(II) N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-benzenediamine Schiff base complexes were synthesized, with the anthryl attached via its 9 position (Pt-9An) or 2 position (Pt-2An) to the platinum (Pt) Schiff base backbone. The complexes show unusually small Stokes shifts (0.23 eV), representing a very small energy loss for the photoexcitation/intersystem crossing process, which is beneficial for applications as triplet photosensitizers. Phosphorescence of the Pt(II) coordination framework (ΦP = 11.0%) is quenched in the anthryl-containing complexes (ΦP = 4.0%) and shows a biexponential decay (τP = 3.4 μs/87% and 18.2 μs/13%) compared to the single-exponential decay of the native Pt(II) Schiff base complex (τP = 3.7 μs). Femtosecond/nanosecond transient absorption spectroscopy suggests an equilibrium between triplet anthracene (3An) and triplet metal-to-ligand charge-transfer (3MLCT) states, with the dark 3An state slightly lower in energy (1.96 eV for Pt-9An and 1.90 eV for Pt-2An) than the emissive 3MLCT state (1.97 eV for Pt-9An and 1.91 eV for Pt-2An). Intramolecular triplet-triplet energy transfer (TTET) and reverse TTET take 4.8 ps/444 ps for Pt-9An and 55 ps/1.7 ns for Pt-2An, respectively. The triplet-state equilibrium extends the triplet-state lifetime of the complexes to 103 μs (Pt-2An) or 163 μs (Pt-9An), in comparison to the native Pt(II) complex, which shows a lifetime of 4.0 μs. The complexes were used for triplet-triplet-annihilation upconversion with perylene as the triplet acceptor. The upconversion quantum yield is up to 15%, and a large anti-Stokes shift (0.75 eV) is achieved by excitation into the singlet metal-to-ligand charge-transfer absorption band (589 nm) of the complexes (anti-Stokes shift is 0.92 eV with 9,10-diphenylanthracene as the acceptor).
Collapse
Affiliation(s)
- Kepeng Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Mushraf Hussain
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Syed S Razi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China.,Department of Chemistry, Gaya College, Gaya, Constituent Unit of Magadh University, Bodhgaya, Bihar 823001, India
| | - Yuqi Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics, Faculty of Engineering, Ankara University, Bes̨evler, Ankara 06100, Turkey
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Halime Gul Yaglioglu
- Department of Engineering Physics, Faculty of Engineering, Ankara University, Bes̨evler, Ankara 06100, Turkey
| | - Mariangela Di Donato
- European Laboratory for Non-Linear Spectroscopy, via North Carrara 1, Sesto Fiorentino, Florence 50019, Italy.,ICCOM-CNR via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
12
|
Zhang X, Hou Y, Xiao X, Chen X, Hu M, Geng X, Wang Z, Zhao J. Recent development of the transition metal complexes showing strong absorption of visible light and long-lived triplet excited state: From molecular structure design to photophysical properties and applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213371] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Yonemoto DT, Papa CM, Mongin C, Castellano FN. Thermally Activated Delayed Photoluminescence: Deterministic Control of Excited-State Decay. J Am Chem Soc 2020; 142:10883-10893. [PMID: 32497428 DOI: 10.1021/jacs.0c03331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thermally activated photophysical processes are ubiquitous in numerous organic and metal-organic molecules, leading to chromophores with excited-state properties that can be considered an equilibrium mixture of the available low-lying states. Relative populations of the equilibrated states are governed by temperature. Such molecules have been devised as high quantum yield emitters in modern organic light-emitting diode technology and for deterministic excited-state lifetime control to enhance chemical reactivity in solar energy conversion and photocatalytic schemes. The recent discovery of thermally activated photophysics at CdSe nanocrystal-molecule interfaces enables a new paradigm wherein molecule-quantum dot constructs are used to systematically generate material with predetermined photophysical response and excited-state properties. Semiconductor nanomaterials feature size-tunable energy level engineering, which considerably expands the purview of thermally activated photophysics beyond what is possible using only molecules. This Perspective is intended to provide a nonexhaustive overview of the advances that led to the integration of semiconductor quantum dots in thermally activated delayed photoluminescence (TADPL) schemes and to identify important challenges moving into the future. The initial establishment of excited-state lifetime extension utilizing triplet-triplet excited-state equilibria is detailed. Next, advances involving the rational design of molecules composed of both metal-containing and organic-based chromophores that produce the desired TADPL are described. Finally, the recent introduction of semiconductor nanomaterials into hybrid TADPL constructs is discussed, paving the way toward the realization of fine-tuned deterministic control of excited-state decay. It is envisioned that libraries of synthetically facile composites will be broadly deployed as photosensitizers and light emitters for numerous synthetic and optoelectronic applications in the near future.
Collapse
Affiliation(s)
- Daniel T Yonemoto
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Christopher M Papa
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Cedric Mongin
- Laboratoire PPSM, ENS Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan CEDEX, France
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
14
|
Kazama A, Imai Y, Okayasu Y, Yamada Y, Yuasa J, Aoki S. Design and Synthesis of Cyclometalated Iridium(III) Complexes-Chromophore Hybrids that Exhibit Long-Emission Lifetimes Based on a Reversible Electronic Energy Transfer Mechanism. Inorg Chem 2020; 59:6905-6922. [PMID: 32352765 DOI: 10.1021/acs.inorgchem.0c00363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the design and synthesis of triscyclometalated iridium (Ir) complexes that contain aryloxy groups at the end of diamino linkers, which exhibit an extraordinarily long-emission lifetime, and were prepared by regioselective substitution reactions of fac-tris-homoleptic cyclometalated Ir complexes, fac-Ir(tpy)3 (tpy = 2-(4'-tolyl)pyridine). It was found that the Ir(tpy)3 complex, equipped with approximately one to six 6-N,N-dimethylamino-2-naphthoic acid (DMANA) groups through the appropriate alkyl linkers, exhibited remarkably long-emission lifetimes of up to 216 μs in DMSO/H2O at room temperature through a reversible electronic energy transfer effect between the Ir complex core and the organic chromophore moieties; however, under the same conditions, the lifetime of fac-Ir(tpy)3 was 1.4 μs. Regarding the mechanistic aspects, the relationship between the emission lifetimes of the Ir complexes and the structures and numbers of the conjugated chromophores, linker lengths, solvents, positions of the chromophores on the Ir(tpy)3 core, and related items are discussed.
Collapse
Affiliation(s)
- Ayami Kazama
- Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuki Imai
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshinori Okayasu
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Junpei Yuasa
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
15
|
Photophysical properties of bichromophoric Fe(II) complexes bearing an aromatic electron acceptor. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2471-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Zhong F, Zhao J, Hayvali M, Elmali A, Karatay A. Effect of Molecular Conformation Restriction on the Photophysical Properties of N^N Platinum(II) Bis(ethynylnaphthalimide) Complexes Showing Close-Lying 3MLCT and 3LE Excited States. Inorg Chem 2019; 58:1850-1861. [PMID: 30672269 DOI: 10.1021/acs.inorgchem.8b02558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using naphthalimide (NI), complexes (Pt-PhNI and Pt-PhMeNI) based on the N^N platinum(II) bis(phenylacetylide) coordination framework were prepared, in which there are two close-lying triplet states, i.e., the metal-to-ligand-charge-transfer (3MLCT) and the NI localized emissive state (3LE). Pt-PhNI has better electronic communication between the Pt coordination center and the NI moiety, whereas in Pt-PhMeNI, they are more isolated by orthogonal geometry. For Pt-PhMeNI, the S0 → 1MLCT and S0 → 1LE absorption bands are separated by 5655 cm-1, while they are more overlapped in Pt-PhNI. The 3MLCT → S0 and 3LE → S0 dual phosphorescence emissions were observed for both Pt-PhNI (in toluene) and Pt-PhMeNI (in benzonitrile). The molecular conformation tunes the 3MLCT/3LE state population ratio, and the orthogonal geometry makes the 3LE state in Pt-PhMeNI basically a dark state (in toluene). Switching of the relative energy levels of the 3MLCT/3LE states by variation of the solvent polarity and temperature was achieved. For Pt-PhMeNI, the energy level of 3MLCT state is higher in a polar solvent; thus, the 3MLCT emission decreases, while the phosphorescence lifetime is prolonged from 9.5 μs (in toluene) to 58 μs (in benzonitrile) because of the different equilibria with the nonemissive 3LE state. Conversely, increasing the temperature enhances the upward transition from the nonemissive 3LE state to the emissive 3MLCT state; as such, the phosphorescence of Pt-PhMeNI was intensified at higher temperature (which is unusual), and the phosphorescence lifetime decreased from 58 μs (298 K) to ca. 5 μs (348 K). The ultrafast intersystem crossing (ca. 0.5 ps) and intramolecular triplet-triplet energy transfer (3-11 ps) were studied by femtosecond transient absorption spectroscopy. These results are useful for an in-depth understanding of the photophysics of multichromophore transition-metal complexes and for the design of external stimuli-responsive sensing materials, for instance, temperature or microenvironment sensing materials.
Collapse
Affiliation(s)
- Fangfang Zhong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling Gong Road , Dalian 116024 , P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling Gong Road , Dalian 116024 , P. R. China
| | | | | | | |
Collapse
|
17
|
Sebata S, Takizawa SY, Ikuta N, Murata S. Photofunctions of iridium(iii) complexes in vesicles: long-lived excited states and visible-light sensitization for hydrogen evolution in aqueous solution. Dalton Trans 2019; 48:14914-14925. [DOI: 10.1039/c9dt03144h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Utilization of DPPC vesicles allows water-insoluble photoactive Ir(iii) complexes to be dispersed in bulk aqueous solution.
Collapse
Affiliation(s)
- Shinogu Sebata
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Shin-ya Takizawa
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Naoya Ikuta
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Shigeru Murata
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| |
Collapse
|
18
|
Davidson R, Hsu YT, Griffiths GC, Li C, Yufit D, Pal R, Beeby A. Highly Linearized Twisted Iridium(III) Complexes. Inorg Chem 2018; 57:14450-14462. [DOI: 10.1021/acs.inorgchem.8b02818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Chenfei Li
- School of Chemistry, University of St. Andrews, St. Andrews KY16 9AJ, Scotland
| | | | | | | |
Collapse
|
19
|
Guo X, Chen Q, Tong Y, Li Y, Liu Y, Zhao D, Ma Y. Enhanced Triplet Sensitizing Ability of an Iridium Complex by Intramolecular Energy-Transfer Mechanism. J Phys Chem A 2018; 122:6963-6969. [DOI: 10.1021/acs.jpca.8b04807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xinyan Guo
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Qi Chen
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yujie Tong
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yao Li
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yiming Liu
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Gao TB, Yan RQ, Metherell AJ, Cao DK, Ye DJ, Ward MD. Coordination mode-induced isomeric cyclometalated [Ir(tpy)(nbi)Cl](PF 6) complexes: distinct luminescence, self-assembly and cellular imaging behaviors. Dalton Trans 2018; 46:16787-16791. [PMID: 29168515 DOI: 10.1039/c7dt03523c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two isomeric Ir(iii) complexes Ir-O and Ir-R arising from the different coordination mode of a naphthalene-containing ligand, show distinct luminescence, self-assembly ability and cellular imaging behaviors.
Collapse
Affiliation(s)
- Tai-Bao Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
| | - Run-Qi Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
| | | | - Deng-Ke Cao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
| | - De-Ju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
| | - Michael D Ward
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK. and Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
21
|
Liu XY, Zhang YH, Fang WH, Cui G. Early-Time Excited-State Relaxation Dynamics of Iridium Compounds: Distinct Roles of Electron and Hole Transfer. J Phys Chem A 2018; 122:5518-5532. [PMID: 29874071 DOI: 10.1021/acs.jpca.8b04392] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ya-Hui Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
22
|
La Rosa M, Denisov SA, Jonusauskas G, McClenaghan ND, Credi A. Designed Long-Lived Emission from CdSe Quantum Dots through Reversible Electronic Energy Transfer with a Surface-Bound Chromophore. Angew Chem Int Ed Engl 2018; 57:3104-3107. [PMID: 29383800 PMCID: PMC5873259 DOI: 10.1002/anie.201712403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/25/2018] [Indexed: 11/12/2022]
Abstract
The size-tunable emission of luminescent quantum dots (QDs) makes them highly interesting for applications that range from bioimaging to optoelectronics. For the same applications, engineering their luminescence lifetime, in particular, making it longer, would be as important; however, no rational approach to reach this goal is available to date. We describe a strategy to prolong the emission lifetime of QDs through electronic energy shuttling to the triplet excited state of a surface-bound molecular chromophore. To implement this idea, we made CdSe QDs of different sizes and carried out self-assembly with a pyrene derivative. We observed that the conjugates exhibit delayed luminescence, with emission decays that are prolonged by more than 3 orders of magnitude (lifetimes up to 330 μs) compared to the parent CdSe QDs. The mechanism invokes unprecedented reversible quantum dot to organic chromophore electronic energy transfer.
Collapse
Affiliation(s)
- Marcello La Rosa
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Sergey A. Denisov
- Institut des Sciences Moléculaires, CNRS UMR 5255Université de Bordeaux33405TalenceFrance
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine, CNRS UMR 5798Université de Bordeaux33405TalenceFrance
| | - Nathan D. McClenaghan
- Institut des Sciences Moléculaires, CNRS UMR 5255Université de Bordeaux33405TalenceFrance
| | - Alberto Credi
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna and Consiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| |
Collapse
|
23
|
Liu D, Zhao Y, Wang Z, Xu K, Zhao J. Exploiting the benefit of S 0→ T 1 excitation in triplet-triplet annihilation upconversion to attain large anti-stokes shifts: tuning the triplet state lifetime of a tris(2,2'-bipyridine) osmium(ii) complex. Dalton Trans 2018; 47:8619-8628. [PMID: 29512677 DOI: 10.1039/c7dt04803c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Os(ii) complexes are particularly interesting for triplet-triplet annihilation (TTA) upconversion, due to the strong direct S0→ T1 photoexcitation, as in this way, energy loss is minimized and large anti-Stokes shift can be achieved for TTA upconversion. However, Os(bpy)3 has an intrinsic short T1 state lifetime (56 ns), which is detrimental for the intermolecular triplet-triplet energy transfer (TTET), one of the crucial steps in TTA upconversion. In order to prolong the triplet state lifetime, we prepared an Os(ii) tris(bpy) complex with a Bodipy moiety attached, so that an extended T1 state lifetime is achieved by excited state electronic configuration mixing or triplet state equilibrium between the coordination center-localized state (3MLCT state) and Bodipy ligand-localized state (3IL state). With steady-state and time-resolved transient absorption/emission spectroscopy, we proved that the 3MLCT is slightly above the 3IL state (by 0.05 eV), and the triplet state lifetime was prolonged by 31-fold (from 56 ns to 1.73 μs). The TTA upconversion quantum yield was increased by 4-fold as compared to that of the unsubstituted Os(ii) complex.
Collapse
Affiliation(s)
- Dongyi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Rd., Dalian 116024, P. R. China.
| | | | | | | | | |
Collapse
|
24
|
La Rosa M, Denisov SA, Jonusauskas G, McClenaghan ND, Credi A. Designed Long-Lived Emission from CdSe Quantum Dots through Reversible Electronic Energy Transfer with a Surface-Bound Chromophore. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marcello La Rosa
- CLAN-Center for Light Activated Nanostructures; Università di Bologna and Consiglio Nazionale delle Ricerche; Via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari; Università di Bologna; Viale Fanin 50 40127 Bologna Italy
| | - Sergey A. Denisov
- Institut des Sciences Moléculaires, CNRS UMR 5255; Université de Bordeaux; 33405 Talence France
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine, CNRS UMR 5798; Université de Bordeaux; 33405 Talence France
| | - Nathan D. McClenaghan
- Institut des Sciences Moléculaires, CNRS UMR 5255; Université de Bordeaux; 33405 Talence France
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures; Università di Bologna and Consiglio Nazionale delle Ricerche; Via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari; Università di Bologna; Viale Fanin 50 40127 Bologna Italy
| |
Collapse
|
25
|
Takizawa SY, Kano R, Ikuta N, Murata S. An anionic iridium(iii) complex as a visible-light absorbing photosensitizer. Dalton Trans 2018; 47:11041-11046. [DOI: 10.1039/c8dt02477d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new anionic Ir(iii) photosensitizer bearing coumarin dyes has been developed and applied to the visible-light-driven hydrogen generation.
Collapse
Affiliation(s)
- Shin-ya Takizawa
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Ryoto Kano
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Naoya Ikuta
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Shigeru Murata
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| |
Collapse
|
26
|
|
27
|
Yi C, Xu S, Wang J, Zhao F, Xia H, Wang Y. Prolonging the Emissive Lifetimes of Copper(I) Complexes with3MLCT and3(π-π*) State Equilibria - A Fluorene Moiety as an “Energy Reservoir”. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Yi
- School of Chemistry and Chemical Engineering; Jiangxi Science and Technology Normal University; Fenglin Street Nanchang 330013 Jiangxi P. R. China
| | - Shengxian Xu
- School of Chemistry and Chemical Engineering; Jiangxi Science and Technology Normal University; Fenglin Street Nanchang 330013 Jiangxi P. R. China
| | - Jinglan Wang
- School of Chemistry and Chemical Engineering; Jiangxi Science and Technology Normal University; Fenglin Street Nanchang 330013 Jiangxi P. R. China
| | - Feng Zhao
- School of Chemistry and Chemical Engineering; Jiangxi Science and Technology Normal University; Fenglin Street Nanchang 330013 Jiangxi P. R. China
| | - Hongying Xia
- School of Chemistry and Chemical Engineering; Jiangxi Science and Technology Normal University; Fenglin Street Nanchang 330013 Jiangxi P. R. China
| | - Yibo Wang
- Key Laboratory of Guizhou High Performance Computational Chemistry; Guizhou University; 550025 Department of Chemistry P. R. China
| |
Collapse
|
28
|
Asano MS, Shibuki M, Otsuka T. Prolonged Lifetime of Near-IR Emission due to a Reservoir State in a Phenylene-linked Copper(II) Porphyrin–Zinc(II) Porphyrin Dimer. CHEM LETT 2016. [DOI: 10.1246/cl.160442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Vonlanthen M, Cevallos-Vallejo A, Aguilar-Ortíz E, Ruiu A, Porcu P, Rivera E. Synthesis, characterization and photophysical studies of novel pyrene labeled ruthenium (II) trisbipyridine complex cored dendrimers. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.06.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Henwood AF, Zysman-Colman E. Luminescent Iridium Complexes Used in Light-Emitting Electrochemical Cells (LEECs). Top Curr Chem (Cham) 2016; 374:36. [PMID: 27573388 PMCID: PMC5480411 DOI: 10.1007/s41061-016-0036-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/09/2016] [Indexed: 11/04/2022]
Abstract
Cationic iridium(III) complexes represent the single largest class of emitters used in light emitting electrochemical cells (LEECs). In this chapter, we highlight the state-of-the-art emitters in terms of efficiency and stability in LEEC devices, highlighting blue, green, yellow/orange, red and white devices, and provide an outlook to the future of LEECs.
Collapse
Affiliation(s)
- Adam F Henwood
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
31
|
Jiang X, Guo X, Peng J, Zhao D, Ma Y. Triplet-Triplet Annihilation Photon Upconversion in Polymer Thin Film: Sensitizer Design. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11441-11449. [PMID: 27082767 DOI: 10.1021/acsami.6b01339] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Efficient visible-to-UV photon upconversion via triplet-triplet annihilation (TTA) is accomplished in polyurethane (PU) films by developing new, powerful photosensitizers fully functional in the solid-state matrix. These rationally designed triplet sensitizers feature a bichromophoric scaffold comprising a tris-cyclometalated iridium(III) complex covalently tethered to a suitable organic small molecule. The very rapid intramolecular triplet energy transfer from the former to the latter is pivotal for achieving the potent sensitizing ability, because this process out-competes the radiative and nonradiative decays inherent to the metal complex and produces long-lived triplet excitons localized with the acceptor moiety readily available for intermolecular transfer and TTA. Nonetheless, compared to the solution state, the molecular diffusion is greatly limited in solid matrices, which even creates difficulty for the Dexter-type intramolecular energy transfer. This is proven by the experimental results showing that the sensitizing performance of the bichromophoric molecules strongly depends on the spatial distance separating the donor (D) and acceptor (A) units and that incorporating a longer linker between the D and A evidently curbs the TTA upconversion efficiency in PU films. Using a rationally optimized sensitizer structure in combination with 2,7-di-tert-butylpyrene as the annihilator/emitter, the doped polyurethane (PU) films demonstrate effective visible-to-UV upconverted emission signal under noncoherent-light irradiation, attaining an upconversion quantum yield of 2.6%. Such quantum efficiency is the highest value so far reported for the visible-to-UV TTA systems in solid matrices.
Collapse
Affiliation(s)
- Xinpeng Jiang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Xinyan Guo
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Jiang Peng
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| |
Collapse
|
32
|
Kondrashov M, Provost D, Wendt OF. Regioselectivity in C-H activation: reagent control in cyclometallation of 2-(1-naphthyl)-pyridine. Dalton Trans 2016; 45:525-31. [PMID: 26597047 DOI: 10.1039/c5dt04068j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
2-(1-Naphthyl)-pyridine () possesses sp(2) C-H bonds in both the γ- and δ-positions and is therefore a suitable substrate for studying the cyclometallation selectivity with different reagents and conditions. Such selectivity studies are reported. Based on deuterium-exchange experiments it is concluded that cycloruthenation with RuCl2(p-cymene) dimer is reversible with kinetic and thermodynamic preference for γ-substitution. Electrophilic cycloborylation, on the other hand, shows unusual δ-substitution. The previously published cyclopalladation and cycloauration of the substrate was studied in detail and was shown to be irreversible; they proceed under kinetic control and give γ- and δ-substitution for palladium and gold, respectively.
Collapse
Affiliation(s)
- Mikhail Kondrashov
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, S-221 00 Lund, Sweden.
| | - David Provost
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, S-221 00 Lund, Sweden.
| | - Ola F Wendt
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P. O. Box 124, S-221 00 Lund, Sweden.
| |
Collapse
|
33
|
Denisov SA, Yu S, Pozzo JL, Jonusauskas G, McClenaghan ND. Harnessing Reversible Electronic Energy Transfer: From Molecular Dyads to Molecular Machines. Chemphyschem 2016; 17:1794-804. [PMID: 26945897 DOI: 10.1002/cphc.201600137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 01/09/2023]
Abstract
Reversible electronic energy transfer (REET) may be instilled in bi-/multichromophoric molecule-based systems, following photoexcitation, upon judicious structural integration of matched chromophores. This leads to a new set of photophysical properties for the ensemble, which can be fully characterized by steady-state and time-resolved spectroscopic methods. Herein, we take a comprehensive look at progress in the development of this type of supermolecule in the last five years, which has seen systems evolve from covalently tethered dyads to synthetic molecular machines, exemplified by two different pseudorotaxanes. Indeed, REET holds promise in the control of movement in molecular machines, their assembly/disassembly, as well as in charge separation.
Collapse
Affiliation(s)
- Sergey A Denisov
- Institut des Sciences Moléculaires, Université Bordeaux/ CNRS, 351 crs de la liberation, 33405, Talence cedex, France.,Laboratoire Ondes et Matière O'Aquitaine, Université Bordeaux/ CNRS, 351 crs de la liberation, 33405, Talence cedex, France
| | - Shinlin Yu
- Institut des Sciences Moléculaires, Université Bordeaux/ CNRS, 351 crs de la liberation, 33405, Talence cedex, France
| | - Jean-Luc Pozzo
- Institut des Sciences Moléculaires, Université Bordeaux/ CNRS, 351 crs de la liberation, 33405, Talence cedex, France
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière O'Aquitaine, Université Bordeaux/ CNRS, 351 crs de la liberation, 33405, Talence cedex, France
| | - Nathan D McClenaghan
- Institut des Sciences Moléculaires, Université Bordeaux/ CNRS, 351 crs de la liberation, 33405, Talence cedex, France.
| |
Collapse
|
34
|
Yarnell JE, McCusker CE, Leeds AJ, Breaux JM, Castellano FN. Exposing the Excited-State Equilibrium in an IrIIIBichromophore: A Combined Time Resolved Spectroscopy and Computational Study. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Jiang X, Peng J, Wang J, Guo X, Zhao D, Ma Y. Iridium-Based High-Sensitivity Oxygen Sensors and Photosensitizers with Ultralong Triplet Lifetimes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3591-600. [PMID: 26592255 DOI: 10.1021/acsami.5b07860] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The photophysics of a series of bichromophoric molecules featuring an intramolecular triplet energy transfer between a triscyclometalated iridium(III) complex and covalently linked organic group are studied. By systematically varying the energy gap (0.1-0.3 eV) between the donor (metal complex) and acceptor (pyrene unit), reversible triplet energy transfer processes with equilibrium constant K ranging from ca. 500 to 40 000 are established. Unique photophysical consequences of such large K values are observed. Because of the highly imbalanced forward and backward energy transfer rates, triplet excitons dominantly populate the acceptor moiety in the steady state, giving rise to ultralong luminescence lifetimes up to 1-4 ms. Because the triscyclometalated Ir and triplet pyrene groups both impart relatively small nonradiative energy loss, decent phosphorescence quantum yields (Φ = 0.1-0.6) are attained in spite of the exceptionally prolonged excited states. By virtue of such precious combination of long-lived triplet state and high Φ, these bichromophoric molecules can serve as highly sensitive luminescent sensors for detecting trace amount of O2 and as potent photosensitizers for producing singlet oxygen even under low-oxygen content conditions.
Collapse
Affiliation(s)
- Xinpeng Jiang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Jiang Peng
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Jianchun Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Xinyan Guo
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| |
Collapse
|
36
|
Stacey OJ, Ward BD, Coles SJ, Horton PN, Pope SJA. Chromophore-labelled, luminescent platinum complexes: syntheses, structures, and spectroscopic properties. Dalton Trans 2016; 45:10297-307. [DOI: 10.1039/c6dt01335j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ligands based upon 4-carboxamide-2-phenylquinoline have been functionalised with naphthyl, anthracenyl and pyrenyl chromophores. The pyrene appended Pt(ii) complex shows excited state equilibration and a long emission lifetime.
Collapse
Affiliation(s)
| | | | - Simon J. Coles
- K National Crystallographic Service
- Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- Southampton
| | - Peter N. Horton
- K National Crystallographic Service
- Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- Southampton
| | | |
Collapse
|
37
|
Medina-Rodríguez S, Denisov SA, Cudré Y, Male L, Marín-Suárez M, Fernández-Gutiérrez A, Fernández-Sánchez JF, Tron A, Jonusauskas G, McClenaghan ND, Baranoff E. High performance optical oxygen sensors based on iridium complexes exhibiting interchromophore energy shuttling. Analyst 2016; 141:3090-7. [DOI: 10.1039/c6an00497k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible electronic energy transfer is used for sensing oxygen traces and results in very high sensitivity.
Collapse
Affiliation(s)
| | | | - Yanouk Cudré
- School of Chemistry
- University of Birmingham
- Edgbaston B15 2TT
- UK
| | - Louise Male
- School of Chemistry
- University of Birmingham
- Edgbaston B15 2TT
- UK
| | - Marta Marín-Suárez
- Department of Analytical Chemistry
- Faculty of Sciences
- University of Granada
- 18071 Granada
- Spain
| | | | | | - Arnaud Tron
- Université Bordeaux/CNRS
- ISM
- 33405 Talence Cedex
- France
| | | | | | | |
Collapse
|
38
|
Radwan YK, Maity A, Teets TS. Manipulating the Excited States of Cyclometalated Iridium Complexes with β-Ketoiminate and β-Diketiminate Ligands. Inorg Chem 2015; 54:7122-31. [DOI: 10.1021/acs.inorgchem.5b01401] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yousf K. Radwan
- Department
of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| | - Ayan Maity
- Department
of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| | - Thomas S. Teets
- Department
of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| |
Collapse
|
39
|
Aboshi R, Takizawa SY, Murata S. Visible-light-driven Electron Transport across Vesicle Membrane Sensitized by Cationic Iridium Complexes. CHEM LETT 2015. [DOI: 10.1246/cl.141203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryo Aboshi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo
| | - Shin-ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo
| | - Shigeru Murata
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo
| |
Collapse
|
40
|
Kondrashov M, Raman S, Wendt OF. Metal controlled regioselectivity in the cyclometallation of 2-(1-naphthyl)-pyridine. Chem Commun (Camb) 2015; 51:911-3. [DOI: 10.1039/c4cc07962k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclometallations of 2-(1-naphthyl)-pyridine with gold and palladium salts proceed with completely orthogonal regioselectivities.
Collapse
Affiliation(s)
- Mikhail Kondrashov
- Centre for Analysis and Synthesis
- Department of Chemistry
- 22100 Lund
- Sweden
| | - Sudarkodi Raman
- Centre for Analysis and Synthesis
- Department of Chemistry
- 22100 Lund
- Sweden
| | - Ola F. Wendt
- Centre for Analysis and Synthesis
- Department of Chemistry
- 22100 Lund
- Sweden
| |
Collapse
|
41
|
McCusker CE, Hablot D, Ziessel R, Castellano FN. Triplet state formation in homo- and heterometallic diketopyrrolopyrrole chromophores. Inorg Chem 2014; 53:12564-71. [PMID: 25394202 DOI: 10.1021/ic502169a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis, structural characterization, and excited-state dynamics of series of diketopyrrolopyrrole (DPP) bridged homodinuclear Ir(III) and heterodinuclear Ir(III)/Pt(II) complexes is described. Steady-state and time-resolved photoluminescence along with transient absorption measurements were used to probe the nature of the emissive and long-lived excited states. Upon excitation into the (1)DPP ligand-localized excited state in the presence of coordinated Ir(III) or Pt(II) metal centers, the intersystem crossing is enhanced, leading to a quenching of the (1)DPP fluorescence and the formation of the long-lived (τ ≈ 30-40 μs) (3)DPP excited state in all instances.
Collapse
Affiliation(s)
- Catherine E McCusker
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | | | | | | |
Collapse
|
42
|
Howarth AJ, Davies DL, Lelj F, Wolf MO, Patrick BO. Tuning the emission lifetime in bis-cyclometalated iridium(III) complexes bearing iminopyrene ligands. Inorg Chem 2014; 53:11882-9. [PMID: 25347609 DOI: 10.1021/ic501032t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bis-cyclometalated Ir(III) complexes with the general formula Ir(ppz)2(X^NPyrene), where ppz = 1-phenylpyrazole and X^NPyrene is a bidentate chelate with X = N or O, are reported. Modifications on the ancillary ligand containing pyrene drastically affect the emission lifetimes observed (0.329 to 104 μs). Extended emission lifetimes in these complexes compared to model complexes result from reversible electronic energy transfer or the observation of dual emission containing along-lived pyrene ligand-centered triplet ((3)LC) component. A combination of steady-state and time-resolved spectroscopic techniques are used to observe reversible electronic energy transfer in solution between the iridium core and pyrene moiety in the complex [Ir(ppz)2(NMe^NCH2Pyr)][PF6] (2), where NMe^NCH2Pyr = N-(pyren-1-ylmethyl)-1-(pyridin-2-yl)ethaneimine. Studies on [Ir(ppz)2(NMe^NCH2Pyr)][PF6] in a poly(methyl methacrylate) (PMMA) film reveal that reversible energy transfer is no longer effective, and instead, dual emission with a long-lived (3)LC component from pyrene is observed. Dual emission is observed in additional cyclometalated iridium complexes bearing pyrene-containing ancillary ligands N^NPyrene and O^NPyrene when the complexes are dispersed in a PMMA film.
Collapse
Affiliation(s)
- Ashlee J Howarth
- Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | | | |
Collapse
|
43
|
McCusker CE, Chakraborty A, Castellano FN. Excited State Equilibrium Induced Lifetime Extension in a Dinuclear Platinum(II) Complex. J Phys Chem A 2014; 118:10391-9. [DOI: 10.1021/jp503827e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Catherine E. McCusker
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Arnab Chakraborty
- Department of Chemistry & Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Felix N. Castellano
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|