1
|
Starodub T, Michalkiewicz S. TCNQ and Its Derivatives as Electrode Materials in Electrochemical Investigations-Achievement and Prospects: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5864. [PMID: 39685299 DOI: 10.3390/ma17235864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
7,7',8,8'-tetracyanoquinodimethane (TCNQ) is one of the most widely used effective surface electron acceptors in organic electronics and sensors, which opens up a very interesting field in electrochemical applications. In this review article, we outline the historical context of electrochemically stable selective electrode materials based on TCNQ and its derivatives and their development, their electrochemical characteristics, and the experimental aspects of their electrochemical applications. TCNQ-modified electrodes are characterized by long-term stability, reproducibility, and a low detection limit compared to other sensors; thus, their use can increase determination speed and flexibility and reduce investigation costs. TCNQ and its derivatives can also be successfully combined with other detector materials for cancer-related clinical diagnostic testing. Examples of simple, rapid, and sensitive detection procedures for various analytes are provided. Applications of new electrochemically stable TCNQ-based metal/covalent-organic hybrid frameworks, with exceptionally large surface areas, tunable pore sizes, diverse functionality, and high electrical conductivity, are also presented. As a result, they also offer enormous potential as revolutionary catalysts, drug carrier systems, and smart materials, as well as for use in gas storage. The use of TCNQ compounds as promising active electrode materials in high-power organic batteries/energy storage devices is discussed. We hope that the information featured in this review will provide readers with a good understanding of the chemistry of TCNQ and, more importantly, help to find good ways to prepare new micro-/nanoelectrode materials for rational sensor design.
Collapse
Affiliation(s)
- Tetiana Starodub
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka St. 7G, PL-25406 Kielce, Poland
| | - Slawomir Michalkiewicz
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka St. 7G, PL-25406 Kielce, Poland
| |
Collapse
|
2
|
Šterbinská S, Holub M, Čižmár E, Černák J, Falvello LR, Tomás M. An Old Crystallization Technique as a Fast, Facile, and Adaptable Method for Obtaining Single Crystals of Unstable "Li 2TCNQF 4" and New Compounds of TCNQ or TCNQF 4: Syntheses, Crystal Structures, and Magnetic Properties. CRYSTAL GROWTH & DESIGN 2023; 23:4357-4369. [PMID: 37304399 PMCID: PMC10251768 DOI: 10.1021/acs.cgd.3c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Indexed: 06/13/2023]
Abstract
Detailed structural information is essential for understanding the properties of TCNQ and TCNQF4 compounds (TCNQ = 7,7,8,8-tetracyanoquinodimethane; TCNQF4 = 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane). The ineludible requirement of obtaining crystals of a size and quality sufficient to yield a successful X-ray diffraction analysis has been challenging to satisfy because of the instability of many of these compounds in solution. Crystals of two new complexes of TCNQ, [trans-M(2ampy)2(TCNQ)2] [M = Ni (1), Zn (2); 2ampy = 2-aminomethylpyridine], as well as unstable [Li2(TCNQF4)(CH3CN)4]·CH3CN (3), can be prepared in minutes by a horizontal diffusion technique and can be harvested easily for X-ray structural studies. Compound 3, previously described as "Li2TCNQF4," forms a one-dimensional (1D) ribbon. Compounds 1 and 2 can also be obtained as microcrystalline solids from methanolic solutions of MCl2/LiTCNQ/2ampy. Their variable-temperature magnetic studies confirmed a contribution of strongly antiferromagnetically coupled pairs of TCNQ•- anion radicals at higher temperatures with exchange coupling J/kB = -1206 K and J/kB = -1369 K for 1 and 2, respectively, estimated using a spin dimer model. The presence of magnetically active anisotropic Ni(II) atoms with S = 1 in 1 was confirmed, and the magnetic behavior of 1, representing an infinite chain of alternating S = 1 sites and S = 1/2 dimers, was described by a spin-ring model suggesting ferromagnetic exchange coupling between Ni(II) sites and anion radicals.
Collapse
Affiliation(s)
- Slavomíra Šterbinská
- Faculty
of Sciences, Institute of Chemistry, Department of Inorganic Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
- Instituto
de Nanociencia y Materiales de Aragón (INMA) and Departamento
de Química Inorgánica, CSIC-Universidad
de Zaragoza, Zaragoza 50009, Spain
| | - Mariia Holub
- Faculty
of Sciences, Institute of Physics, P. J.
Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Erik Čižmár
- Faculty
of Sciences, Institute of Physics, P. J.
Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Juraj Černák
- Faculty
of Sciences, Institute of Chemistry, Department of Inorganic Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
| | - Lawrence Rocco Falvello
- Instituto
de Nanociencia y Materiales de Aragón (INMA) and Departamento
de Química Inorgánica, CSIC-Universidad
de Zaragoza, Zaragoza 50009, Spain
| | - Milagros Tomás
- Instituto
de Síntesis Quimica y Catálisis Homogénea (ISQCH),
Departamento de Química Inorgánica, Pedro Cerbuna 12, University of Zaragoza−CSIC, E-50009 Zaragoza, Spain
| |
Collapse
|
3
|
Tang A, Li Y, Wang R, Yang J, Ma C, Li Z, Zou Q, Li H. Charge transport of F4TCNQ with different electronic states in single-molecule junctions. Chem Commun (Camb) 2023; 59:1305-1308. [PMID: 36633258 DOI: 10.1039/d2cc06341g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The molecular conductance of 2,3,5,6-tetrafluoro-7,7,8,8,-tetracyano-quinodimethane (F4TCNQ) with different electronic states (neutral, radical anion, and dianion) was investigated by the scanning tunneling microscope break junction (STM-BJ) technique. These electronic states have distinct conductance, and the conductance decreases in the order of neutral > radical anion > dianion. Surprisingly, the molecular conductance of the neutral F4TCNQ junction reaches 10-1.17G0, attributed to its LUMO energy level being close to the Fermi level of the gold electrode. Moreover, we found that neutral F4TCNQ can be gradually reduced to radical anions under a relatively low bias voltage of 100 mV. These results will advance the development of organic optoelectronic devices and molecule electronics.
Collapse
Affiliation(s)
- Ajun Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yunpeng Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Rui Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Jiawei Yang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chaoqi Ma
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Zhi Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Qi Zou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
4
|
Tetraruthenium Macrocycles with Laterally Extended Bis(alkenyl)quinoxaline Ligands and Their F4TCNQ•− Salts. INORGANICS 2022. [DOI: 10.3390/inorganics10060082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We report on the tetraruthenium macrocycles Ru4-5 and -6 with a π-conjugated pyrene-appended 5,8-divinylquinoxaline ligand and either isophthalate or thiophenyl-2,5-dicarboxylate linkers and their charge-transfer salts formed by oxidation with two equivalents of F4TCNQ. Both macrocyclic complexes were characterized by NMR spectroscopy, mass spectrometry, cyclic and square-wave voltammetry, and by IR, UV–vis–NIR, and EPR spectroscopy in their various oxidation states.
Collapse
|
5
|
Das R, Linseis M, Schupp SM, Schmidt‐Mende L, Winter RF. Electron-Rich Diruthenium Complexes with π-Extended Alkenyl Ligands and Their F 4 TCNQ Charge-Transfer Salts. Chemistry 2022; 28:e202104403. [PMID: 35235235 PMCID: PMC9310581 DOI: 10.1002/chem.202104403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/07/2022]
Abstract
The synthesis of dinuclear ruthenium alkenyl complexes with {Ru(CO)(Pi Pr3 )2 (L)} entities (L=Cl- in complexes Ru2 -3 and Ru2 -7; L=acetylacetonate (acac- ) in complexes Ru2 -4 and Ru2 -8) and with π-conjugated 2,7-divinylphenanthrenediyl (Ru2 -3, Ru2 -4) or 5,8-divinylquinoxalinediyl (Ru2 -7, Ru2 -8) as bridging ligands are reported. The bridging ligands are laterally π-extended by anellating a pyrene (Ru2 -7, Ru2 -8) or a 6,7-benzoquinoxaline (Ru2 -3, Ru2 -4) π-perimeter. This was done with the hope that the open π-faces of the electron-rich complexes will foster association with planar electron acceptors via π-stacking. The dinuclear complexes were subjected to cyclic and square-wave voltammetry and were characterized in all accessible redox states by IR, UV/Vis/NIR and, where applicable, by EPR spectroscopy. These studies signified the one-electron oxidized forms of divinylphenylene-bridged complexes Ru2 -7, Ru2 -8 as intrinsically delocalized mixed-valent species, and those of complexes Ru2 -3 and Ru2 -4 with the longer divinylphenanthrenediyl linker as partially localized on the IR, yet delocalized on the EPR timescale. The more electron-rich acac- congeners formed non-conductive 1 : 1 charge-transfer (CT) salts on treatment with the F4 TCNQ electron acceptor. All spectroscopic techniques confirmed the presence of pairs of complex radical cations and F4 TCNQ.- radical anions in these CT salts, but produced no firm evidence for the relevance of π-stacking to their formation and properties.
Collapse
Affiliation(s)
- Rajorshi Das
- Fachbereich ChemieUniversität KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Michael Linseis
- Fachbereich ChemieUniversität KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Stefan M. Schupp
- Fachbereich PhysikUniversität KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Lukas Schmidt‐Mende
- Fachbereich PhysikUniversität KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Rainer F. Winter
- Fachbereich ChemieUniversität KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
6
|
Hussain Z, Nafady A, Anderson SR, Al-Enizi AM, Alothman AA, Ramanathan R, Bansal V. Increased Crystallization of CuTCNQ in Water/DMSO Bisolvent for Enhanced Redox Catalysis. NANOMATERIALS 2021; 11:nano11040954. [PMID: 33917931 PMCID: PMC8068373 DOI: 10.3390/nano11040954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 04/03/2021] [Indexed: 11/21/2022]
Abstract
Controlling the kinetics of CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) crystallization has been a major challenge, as CuTCNQ crystallizing on Cu foil during synthesis in conventional solvents such as acetonitrile simultaneously dissolves into the reaction medium. In this work, we address this challenge by using water as a universal co-solvent to control the kinetics of crystallization and growth of phase I CuTCNQ. Water increases the dielectric constant of the reaction medium, shifting the equilibrium toward CuTCNQ crystallization while concomitantly decreasing the dissolution of CuTCNQ. This allows more CuTCNQ to be controllably crystallized on the surface of the Cu foil. Different sizes of CuTCNQ crystals formed on Cu foil under different water/DMSO admixtures influence the solvophilicity of these materials. This has important implications in their catalytic performance, as water-induced changes in the surface properties of these materials can make them highly hydrophilic, which allows the CuTCNQ to act as an efficient catalyst as it brings the aqueous reactants in close vicinity of the catalyst. Evidently, the CuTCNQ synthesized in 30% (v/v) water/DMSO showed superior catalytic activity for ferricyanide reduction with 95% completion achieved within a few minutes in contrast to CuTCNQ synthesized in DMSO that took over 92 min.
Collapse
Affiliation(s)
- Zakir Hussain
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, P.O. Box 2476, Melbourne, VIC 3000, Australia; (Z.H.); (S.R.A.)
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.-E.); (A.A.A.)
- Correspondence: (A.N.); (R.R.); (V.B.); Tel.: +61-3-9925-2887 (R.R.); +61-3-9925-2121 (V.B.)
| | - Samuel R. Anderson
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, P.O. Box 2476, Melbourne, VIC 3000, Australia; (Z.H.); (S.R.A.)
| | - Abdullah M. Al-Enizi
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.-E.); (A.A.A.)
| | - Asma A. Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.-E.); (A.A.A.)
| | - Rajesh Ramanathan
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, P.O. Box 2476, Melbourne, VIC 3000, Australia; (Z.H.); (S.R.A.)
- Correspondence: (A.N.); (R.R.); (V.B.); Tel.: +61-3-9925-2887 (R.R.); +61-3-9925-2121 (V.B.)
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, P.O. Box 2476, Melbourne, VIC 3000, Australia; (Z.H.); (S.R.A.)
- Correspondence: (A.N.); (R.R.); (V.B.); Tel.: +61-3-9925-2887 (R.R.); +61-3-9925-2121 (V.B.)
| |
Collapse
|
7
|
Watts KE, Clary KE, Lichtenberger DL, Pemberton JE. FTIR Spectroelectrochemistry of F4TCNQ Reduction Products and Their Protonated Forms. Anal Chem 2020; 92:7154-7161. [PMID: 32357003 DOI: 10.1021/acs.analchem.0c00615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tetrafluorinated derivative of 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), is of interest for charge transfer complex formation and as a p-dopant in organic electronic materials. Fourier transform infrared (FTIR) spectroscopy is commonly employed to understand the redox properties of F4TCNQ in the matrix of interest; specifically, the ν(C≡N) region of the F4TCNQ spectrum is exquisitely sensitive to the nature of the charge transfer between F4TCNQ and its matrix. However, little work has been done to understand how these vibrational modes change in the presence of possible acid/base chemistry. Here, FTIR spectroelectrochemistry is coupled with density functional theory spectral simulation for study of the electrochemically generated F4TCNQ radical anion and dianion species and their protonation products with acids. Vibrational modes of HF4TCNQ-, formed by proton-coupled electron transfer, are identified, and we demonstrate that this species is readily formed by strong acids, such as trifluoroacetic acid, and to a lesser extent, by weak acids, such as water. The implications of this chemistry for use of F4TCNQ as a p-dopant in organic electronic materials is discussed.
Collapse
Affiliation(s)
- Kristen E Watts
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Kayla E Clary
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Dennis L Lichtenberger
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Vo NT, Bond AM, Martin LL. Systematic and non-systematic substituent effects gleaned from studies on CuTCNQFn (n = 0, 1, 2, 4): Electrocrystallisation and characterisation of CuTCNQF. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Vo NT, Bond AM, Martin LL. Electrochemically Directed Synthesis of Cobalt(II) and Nickel(II) TCNQF21–/2– Coordination Polymers: Solubility and Substituent Effects in the TCNQFn (n=0, 1, 2, 4) Series of Complexes. Aust J Chem 2020. [DOI: 10.1071/ch20187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The reversible diffusion controlled cyclic voltammetry for the reduction of TCNQFn0/1–/2– (where n=0, 1, 2, 4) changes significantly on addition of Co2+ and Ni2+ transition metal ions (M2+) because the kinetics associated with electrocrystallisation of the resulting coordination polymers [M(TCNQF2)2(H2O)2] and [M(TCNQF2)] are rapid on the voltammetric time scale. The voltammetry of solutions containing M2+ and TCNQF2 was undertaken in acetonitrile (0.1M Bu4NPF6) at both GC and ITO electrodes. New one electron reduced TCNQF2 materials prepared via electrochemically directed synthesis were shown to have the formula [M(TCNQF2)2(H2O)2], assessed by vibrational (IR and Raman) spectroscopy, elemental analysis and thermogravimetric analysis. The solubility of [Ni(TCNQF2)2(H2O)2] (Ksp=8.29×10−11 M3) was significantly higher than the [Co(TCNQF2)2(H2O)2] (Ksp=1.43×10−11M3). Cyclic voltammetric data suggest the electrocrystallisation of two phases of [Ni(TCNQF2)2(H2O)2] occurs, which is not evident for [Co(TCNQF2)2(H2O)2]. Electrocrystallisation of the highly insoluble [M(TCNQF2)] was achieved at low M2+ and TCNQF2 concentrations. A comparison with published data on the voltammetry of TCNQFn (n=0, 1, 2 and 4) for the series of TCNQFn (n=0, 1, 2 and 4) containing M2+ is provided. An assessment of the electronic impact of the fluorine substituent of the underlying redox reactions also is established. Predictions are made for the voltammetric behaviour expected for the other transition metal cations with reduced TCNQFn derivatives.
Collapse
|
10
|
Tran MD, Lu J, Mai BV, Vo NT, Le HT, Bond AM, Martin LL. Electrochemical and Chemical Synthesis of [ZnTCNQF
4
(DMF)
2
]
·
2DMF – A 2D Network Coordination Polymer. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manh D. Tran
- School of Chemistry Monash University 3800 Clayton, V IC Australia
- Department of Chemistry The University of Danang University of Science and Education Danang Vietnam
| | - Jinzhen Lu
- School of Chemistry Monash University 3800 Clayton, V IC Australia
| | - Bay V. Mai
- Department of Chemistry The University of Danang University of Science and Education Danang Vietnam
| | - Nguyen T. Vo
- School of Chemistry Monash University 3800 Clayton, V IC Australia
- Department of Chemistry The University of Danang University of Science and Education Danang Vietnam
| | - Hai T. Le
- Department of Chemistry The University of Danang University of Science and Education Danang Vietnam
| | - Alan M. Bond
- School of Chemistry Monash University 3800 Clayton, V IC Australia
| | | |
Collapse
|
11
|
Vo NT, Martin LL, Bond AM. Electrochemistry of TCNQF2 in acetonitrile in the presence of [Cu(CH3CN)4]+: Electrocrystallisation and characterisation of CuTCNQF2. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ahmed SM, Bond AM, Martin LL. Voltammetric, Spectroscopic, and Microscopic Investigation of the Oxidation of Solid and Solution Phases of Tetrathiafulvalene (TTF) to (TTF)
2
MO
4
(M=Mo, W). ChemElectroChem 2018. [DOI: 10.1002/celc.201700463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shaimaa M. Ahmed
- School of Chemistry Monash University Clayton, Victoria 3800 Australia
| | - Alan M. Bond
- School of Chemistry Monash University Clayton, Victoria 3800 Australia
| | | |
Collapse
|
13
|
Vo N, Haworth NL, Bond AM, Martin LL. Investigation of the Redox and Acid‐Base properties of TCNQF and TCNQF
2
: Electrochemistry, Vibrational Spectroscopy, and Substituent Effects. ChemElectroChem 2018. [DOI: 10.1002/celc.201701387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nguyen Vo
- School of Chemistry Monash University, Clayton 3800 Victoria Australia
- Danang University of Education Danang Vietnam
| | - Naomi L. Haworth
- School of Chemistry Monash University, Clayton 3800 Victoria Australia
- School of Chemistry University of Sydney NSW 2006 Australia
| | - Alan M. Bond
- School of Chemistry Monash University, Clayton 3800 Victoria Australia
| | | |
Collapse
|
14
|
Abrahams BF, Elliott RW, Hudson TA, Robson R, Sutton AL. X4TCNQ2− dianions: versatile building blocks for supramolecular systems. CrystEngComm 2018. [DOI: 10.1039/c8ce00413g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic approach has led to the incorporation of TCNQ and F4TCNQ dianions into a wide variety of structures.
Collapse
Affiliation(s)
| | | | | | - Richard Robson
- School of Chemistry
- University of Melbourne
- Parkville
- Australia
| | | |
Collapse
|
15
|
La DD, Ramanathan R, Kumar D, Ahmed T, Walia S, Anuradha, Berean KJ, Bhosale SV, Bansal V. Galvanic Replacement of Semiconducting CuTCNQF
4
with Ag
+
Ions to Enhance Electron Transfer Reaction. ChemistrySelect 2017. [DOI: 10.1002/slct.201701597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Duong D. La
- School of Science RMIT University GPO Box 2476 Melbourne VIC 3001 Australia
| | - Rajesh Ramanathan
- Ian Potter NanoBioSensing Facility NanoBiotechnology Research Laboratory School of Science RMIT University GPO Box 2476 Melbourne VIC 3001 Australia
| | - Dipesh Kumar
- Ian Potter NanoBioSensing Facility NanoBiotechnology Research Laboratory School of Science RMIT University GPO Box 2476 Melbourne VIC 3001 Australia
| | - Taimur Ahmed
- Functional Materials and Microsystems Research Group and Micro Nano Research Facility School of Engineering RMIT University GPO Box 2476 Melbourne VIC 3001 Australia
| | - Sumeet Walia
- Functional Materials and Microsystems Research Group and Micro Nano Research Facility School of Engineering RMIT University GPO Box 2476 Melbourne VIC 3001 Australia
| | - Anuradha
- School of Science RMIT University GPO Box 2476 Melbourne VIC 3001 Australia
| | - Kyle J. Berean
- School of Engineering RMIT University GPO Box 2476 Melbourne VIC 3001 Australia
| | | | - Vipul Bansal
- Ian Potter NanoBioSensing Facility NanoBiotechnology Research Laboratory School of Science RMIT University GPO Box 2476 Melbourne VIC 3001 Australia
| |
Collapse
|
16
|
Broderick MK, Yang C, Pike RD, Nicholas A, May D, Patterson HH. Copper(I) oligomers and polymers with dicyanobenzene and cyanopyridine ligands. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Sutton AL, Abrahams BF, D'Alessandro DM, Hudson TA, Robson R, Usov PM. Structural and optical investigations of charge transfer complexes involving the radical anions of TCNQ and F4TCNQ. CrystEngComm 2016. [DOI: 10.1039/c6ce02015a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
La DD, Ramanathan R, Rananaware A, Bansal V, Bhosale SV. Nanostructured charge transfer complex of CuTCNQF4 for efficient photo-removal of hexavalent chromium. RSC Adv 2016. [DOI: 10.1039/c6ra02636b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fabrication of a nanostructured CuTCNQF4 organic charge transfer complex on copper foil by employing a facile redox reaction in acetonitrile and its ability to promote catalytic reduction of toxic Cr6+ to its non-toxic Cr3+ counterpart.
Collapse
Affiliation(s)
- Duong Duc La
- School of Science
- RMIT University
- Melbourne
- Australia
| | - Rajesh Ramanathan
- Ian Potter NanoBioSensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| | | | - Vipul Bansal
- Ian Potter NanoBioSensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| | | |
Collapse
|