1
|
Michalski R, Smulik-Izydorczyk R, Pięta J, Rola M, Artelska A, Pierzchała K, Zielonka J, Kalyanaraman B, Sikora AB. The Chemistry of HNO: Mechanisms and Reaction Kinetics. Front Chem 2022; 10:930657. [PMID: 35864868 PMCID: PMC9294461 DOI: 10.3389/fchem.2022.930657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Azanone (HNO, also known as nitroxyl) is the protonated form of the product of one-electron reduction of nitric oxide (•NO), and an elusive electrophilic reactive nitrogen species of increasing pharmacological significance. Over the past 20 years, the interest in the biological chemistry of HNO has increased significantly due to the numerous beneficial pharmacological effects of its donors. Increased availability of various HNO donors was accompanied by great progress in the understanding of HNO chemistry and chemical biology. This review is focused on the chemistry of HNO, with emphasis on reaction kinetics and mechanisms in aqueous solutions.
Collapse
Affiliation(s)
- Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | | | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Monika Rola
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Adam Bartłomiej Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
- *Correspondence: Adam Bartłomiej Sikora,
| |
Collapse
|
2
|
Wei X, Liu C, Li Z, Zhang D, Zhang W, Li Y, Shi J, Wang X, Zhai X, Gong Y, Zou X. A cell-based electrochemical sensor for assessing immunomodulatory effects by atrazine and its metabolites. Biosens Bioelectron 2022; 203:114015. [DOI: 10.1016/j.bios.2022.114015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/28/2021] [Accepted: 01/15/2022] [Indexed: 12/22/2022]
|
3
|
Xu J, Bai Y, Ma Q, Sun J, Tian M, Li L, Zhu N, Liu S. Ratiometric Determination of Nitroxyl Utilizing a Novel Fluorescence Resonance Energy Transfer-Based Fluorescent Probe Based on a Coumarin-Rhodol Derivative. ACS OMEGA 2022; 7:5264-5273. [PMID: 35187341 PMCID: PMC8851634 DOI: 10.1021/acsomega.1c06403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/25/2022] [Indexed: 05/15/2023]
Abstract
Nitroxyl (HNO) is a member of the reactive nitrogen species, and how to detect it quickly and accurately is a challenging task. In this work, we designed and prepared a fluorescent ratiometric probe based on the fluorescence resonance energy transfer (FRET) mechanism, which can detect HNO with high selectivity. The coumarin derivative was used as an energy donor, the rhodol derivative was applied as an energy receptor, and 2-(diphenylphosphine)benzoate was utilized as the recognition group to detect nitroxyl. In the absence of HNO, the rhodol derivative exists in a non-fluorescent spironolactone state, and the FRET process is inhibited. Upon adding HNO, the closed spironolactone form is transformed into a conjugated xanthene structure and the FRET process occurs. This probe could specifically recognize nitroxyl, showing high sensitivity and selectivity. When the HNO concentration was changed from 3.0 × 10-7 to 2.0 × 10-5 mol·L-1, I 543nm/I 470nm exhibited a satisfactory linear correlation with the concentration of HNO. A detection limit of 7.0 × 10-8 mol·L-1 was obtained. In addition, almost no cell toxicity had been verified for the probe. The probe had been successfully applied to the ratiometric fluorescence imaging of HNO in HepG2 cells.
Collapse
Affiliation(s)
- Junhong Xu
- Department
of Dynamical Engineering, North China University
of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Yu Bai
- School
of Pharmacy and Chemical Engineering, Zhengzhou
University of Industrial Technology, Zhengzhou 450011, PR China
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
| | - Qiujuan Ma
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
- . Tel.: +86-371-65676656. Fax: +86-371-65680028
| | - Jingguo Sun
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
| | - Meiju Tian
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
| | - Linke Li
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
| | - Nannan Zhu
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
| | - Shuzhen Liu
- School
of Pharmacy, Henan University of Chinese
Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
4
|
Smulik-Izydorczyk R, Dębowska K, Rostkowski M, Adamus J, Michalski R, Sikora A. Kinetics of Azanone (HNO) Reactions with Thiols: Effect of pH. Cell Biochem Biophys 2021; 79:845-856. [PMID: 33950351 PMCID: PMC8558164 DOI: 10.1007/s12013-021-00986-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2021] [Indexed: 11/04/2022]
Abstract
HNO (nitroxyl, IUPAC name azanone) is an electrophilic reactive nitrogen species of growing pharmacological and biological significance. Here, we present data on the pH-dependent kinetics of azanone reactions with the low molecular thiols glutathione and N-acetylcysteine, as well as with important serum proteins: bovine serum albumin and human serum albumin. The competition kinetics method used is based on two parallel HNO reactions: with RSH/RS- or with O2. The results provide evidence that the reaction of azanone with the anionic form of thiols (RS-) is favored over reactions with the protonated form (RSH). The data are supported with quantum mechanical calculations. A comprehensive discussion of the HNO reaction with thiolates is provided.
Collapse
Affiliation(s)
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Michał Rostkowski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jan Adamus
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland.
| |
Collapse
|
5
|
Gallego CM, Mazzeo A, Vargas P, Suárez S, Pellegrino J, Doctorovich F. Azanone (HNO): generation, stabilization and detection. Chem Sci 2021; 12:10410-10425. [PMID: 34447533 PMCID: PMC8356739 DOI: 10.1039/d1sc02236a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
HNO (nitroxyl, azanone), joined the 'biologically relevant reactive nitrogen species' family in the 2000s. Azanone is impossible to store due to its high reactivity and inherent low stability. Consequently, its chemistry and effects are studied using donor compounds, which release this molecule in solution and in the gas phase upon stimulation. Researchers have also tried to stabilize this elusive species and its conjugate base by coordination to metal centers using several ligands, like metalloporphyrins and pincer ligands. Given HNO's high reactivity and short lifetime, several different strategies have been proposed for its detection in chemical and biological systems, such as colorimetric methods, EPR, HPLC, mass spectrometry, fluorescent probes, and electrochemical analysis. These approaches are described and critically compared. Finally, in the last ten years, several advances regarding the possibility of endogenous HNO generation were made; some of them are also revised in the present work.
Collapse
Affiliation(s)
- Cecilia Mariel Gallego
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Agostina Mazzeo
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Paola Vargas
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Sebastián Suárez
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| |
Collapse
|
6
|
Polaczek J, Subedi H, Orzeł Ł, Lisboa LS, Cink RB, Stochel G, Brasch NE, van Eldik R. Mechanistic Studies on the Reaction between Aquacobalamin and the HNO Donor Piloty's Acid over a Wide pH Range in Aqueous Solution. Inorg Chem 2021; 60:2964-2975. [PMID: 33513014 DOI: 10.1021/acs.inorgchem.0c02968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detailed kinetic and mechanistic studies have been carried out on the reaction between aquacobalamin/hydroxocobalamin (CblOH2+/CblOH) and nitroxyl (HNO) generated by Piloty's acid (PA, N-hydroxybenzenesulfonamide) over a wide pH range (3.5-13). The resulting data showed that in a basic solution HNO can react with hydroxocobalamin to form nitrosylcobalamin despite the inert nature of CblOH. It was shown that at low PA concentrations the rate-determining step is the decomposition of PhSO2NHO- to release HNO, whereas the reaction between CblOH and HNO becomes the rate-determining step at high PA concentrations. Data from kinetic studies on the reaction of CblOH with an excess of HNO enabled us to experimentally determine the pKa(HNO) value from initial rate data as a function of pH, giving pKa(HNO) = 11.47 ± 0.04. An especially interesting observation was made in the neutral pH range, where PA is stable and does not produce HNO. Under such conditions, rapid formation of CblNO was observed in the studied system. The obtained data suggest that CblOH2+ reacts directly with PA to form a Piloty's acid-bound cobalamin intermediate, which deprotonates rapidly at neutral pH followed by rate-determining S-N bond cleavage to give CblNO and release PhSO2-.
Collapse
Affiliation(s)
- Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Harishchandra Subedi
- Division of Health and Life Sciences, Piedmont Virginia Community College, 501 College Drive, Charlottesville, Virginia 22902-7589, United States
| | - Łukasz Orzeł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Lynn S Lisboa
- School of Science, Auckland University of Technology, Auckland 1142, New Zealand
| | - Ruth B Cink
- School of Science, Auckland University of Technology, Auckland 1142, New Zealand.,The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Nicola E Brasch
- School of Science, Auckland University of Technology, Auckland 1142, New Zealand.,The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.,Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany.,Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
7
|
Bezner BJ, Ryan LS, Lippert AR. Reaction-Based Luminescent Probes for Reactive Sulfur, Oxygen, and Nitrogen Species: Analytical Techniques and Recent Progress. Anal Chem 2019; 92:309-326. [DOI: 10.1021/acs.analchem.9b04990] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Batinic-Haberle I, Tome ME. Thiol regulation by Mn porphyrins, commonly known as SOD mimics. Redox Biol 2019; 25:101139. [PMID: 31126869 PMCID: PMC6859569 DOI: 10.1016/j.redox.2019.101139] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/18/2019] [Accepted: 02/07/2019] [Indexed: 01/27/2023] Open
Abstract
Superoxide dismutases play an important role in human health and disease. Three decades of effort have gone into synthesizing SOD mimics for clinical use. The result is the Mn porphyrins which have SOD-like activity. Several clinical trials are underway to test the efficacy of these compounds in patients, particularly as radioprotectors of normal tissue during cancer treatment. However, aqueous chemistry data indicate that the Mn porphyrins react equally well with multiple redox active species in cells including H2O2, O2•-, ONOO-, thiols, and ascorbate among others. The redox potential of the Mn porphyrins is midway between the potentials for the oxidation and reduction of O2•-. This positions them to react equally well as oxidants and reductants in cells. The result of this unique chemistry is that: 1) the species the Mn porphyrins react with in vivo will depend on the relative concentrations of the reactive species and Mn porphyrins in the cell of interest, and 2) the Mn porphyrins will act as catalytic (redox cycling) agents in vivo. The ability of the Mn porphyrins to catalyze protein S-glutathionylation means that Mn porphyrins have the potential to globally modulate cellular redox regulatory signaling networks. The purpose of this review is to summarize the data that indicate the Mn porphyrins have diverse reactions in vivo that are the basis of the observed biological effects. The ability to catalyze multiple reactions in vivo expands the potential therapeutic use of the Mn porphyrins to disease models that are not SOD based.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Margaret E Tome
- Departments of Pathology and Pharmacology, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
9
|
Confer AM, Vilbert AC, Dey A, Lancaster KM, Goldberg DP. A Mononuclear, Nonheme Fe II-Piloty's Acid (PhSO 2NHOH) Adduct: An Intermediate in the Production of {FeNO} 7/8 Complexes from Piloty's Acid. J Am Chem Soc 2019; 141:7046-7055. [PMID: 30994347 DOI: 10.1021/jacs.9b01700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reaction of the mononuclear nonheme complex [FeII(CH3CN)(N3PyS)]BF4 (1) with an HNO donor, Piloty's acid (PhSO2NHOH, P.A.), at low temperature affords a high-spin ( S = 2) FeII-P.A. intermediate (2), characterized by 57Fe Mössbauer and Fe K-edge X-ray absorption (XAS) spectroscopies, with interpretation of both supported by DFT calculations. The combined methods indicate that P.A. anion binds as the N-deprotonated tautomer (PhSO2NOH-) to [FeII(N3PyS)]+, leading to 2. Complex 2 is the first spectroscopically characterized example, to our knowledge, of P.A. anion bound to a redox-active metal center. Warming of 2 above -60 °C yields the stable {FeNO}7 complex [Fe(NO)(N3PyS)]BF4 (4), as evidenced by 1H NMR, ATR-IR, and Mössbauer spectroscopies. Isotope labeling experiments with 15N-labeled P.A. confirm that the nitrosyl ligand in 4 derives from P.A. In contrast, addition of a second equivalent of a strong base leads to S-N cleavage and production of an {FeNO}8 species, the deprotonated analog of an Fe-HNO complex. This work has implications for the targeted delivery of HNO/NO-/NO· to nonheme Fe centers in biological and synthetic applications, and suggests a new role for nonheme FeII complexes in the assisted degradation of HNO donor molecules.
Collapse
Affiliation(s)
- Alex M Confer
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Avery C Vilbert
- Baker Laboratory, Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Aniruddha Dey
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kyle M Lancaster
- Baker Laboratory, Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - David P Goldberg
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
10
|
Shi Y, Zhang Y. Mechanisms of HNO Reactions with Ferric Heme Proteins. Angew Chem Int Ed Engl 2018; 57:16654-16658. [PMID: 30347123 PMCID: PMC6522253 DOI: 10.1002/anie.201807699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Many HNO-scavenging pathways exist to regulate its biological and pharmacological activities. Such reactions often involve ferric heme proteins and form an important basis for HNO probe development. However, mechanisms of HNO reactions with ferric heme proteins are largely unknown. We performed a computational investigation using metmyoglobin and catalase as representative ferric heme proteins with neutral and negatively charged axial ligands to provide the first detailed pathways. The results reproduced experimental barriers well with an average error of 0.11 kcal mol-1 . The rate-limiting step was found to be dissociation of the resting ligand or HNO coordination when there is no resting ligand. For both heme proteins, in contrast to the non-heme case, the reductive nitrosylation step was found to be barrierless proton-coupled electron transfer, which provides the major thermodynamic driving force for the overall reaction. The origin of the difference in reactivity between metmyoglobin and catalase was also revealed.
Collapse
Affiliation(s)
- Yelu Shi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| |
Collapse
|
11
|
|
12
|
Smulik-Izydorczyk R, Dębowska K, Pięta J, Michalski R, Marcinek A, Sikora A. Fluorescent probes for the detection of nitroxyl (HNO). Free Radic Biol Med 2018; 128:69-83. [PMID: 29704623 DOI: 10.1016/j.freeradbiomed.2018.04.564] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/19/2022]
Abstract
Nitroxyl (HNO), which according to the IUPAC recommended nomenclature should be named azanone, is the protonated one-electron reduction product of nitric oxide. Recently, it has gained a considerable attention due to the interesting pharmacological effects of its donors. Although there has been great progress in the understanding of HNO chemistry and chemical biology, it still remains the most elusive reactive nitrogen species, and its selective detection is a real challenge. The development of reliable methodologies for the direct detection of azanone is essential for the understanding of important signaling properties of this reactive intermediate and its pharmacological potential. Over the last decade, there has been considerable progress in the development of low-molecular-weight fluorogenic probes for the detection of HNO, and therefore, in this review, we have focused on the challenges and limitations of and perspectives on nitroxyl detection based on the use of such probes.
Collapse
Affiliation(s)
- Renata Smulik-Izydorczyk
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Andrzej Marcinek
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
13
|
A kinetic study on the reactivity of azanone ( HNO ) toward its selected scavengers: Insight into its chemistry and detection. Nitric Oxide 2017; 69:61-68. [DOI: 10.1016/j.niox.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/29/2022]
|
14
|
Carrone G, Pellegrino J, Doctorovich F. Rapid generation of HNO induced by visible light. Chem Commun (Camb) 2017; 53:5314-5317. [DOI: 10.1039/c7cc02186k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The first method for HNO controlled generation induced by visible light using a pH-dependent HNO donor activated by a Ru complex is reported.
Collapse
Affiliation(s)
- G. Carrone
- Departamento de Química Inorgánica
- Analítica y Química Física
- INQUIMAE
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| | - J. Pellegrino
- Departamento de Química Inorgánica
- Analítica y Química Física
- INQUIMAE
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| | - F. Doctorovich
- Departamento de Química Inorgánica
- Analítica y Química Física
- INQUIMAE
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| |
Collapse
|
15
|
Khade RL, Yang Y, Shi Y, Zhang Y. HNO-Binding in Heme Proteins: Effects of Iron Oxidation State, Axial Ligand, and Protein Environment. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608539] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rahul L. Khade
- Department of Biomedical Engineering; Chemistry and Biological Sciences; Stevens Institute of Technology; 1 Castle Point on Hudson Hoboken NJ 07030 USA
| | - Yuwei Yang
- Department of Biomedical Engineering; Chemistry and Biological Sciences; Stevens Institute of Technology; 1 Castle Point on Hudson Hoboken NJ 07030 USA
| | - Yelu Shi
- Department of Biomedical Engineering; Chemistry and Biological Sciences; Stevens Institute of Technology; 1 Castle Point on Hudson Hoboken NJ 07030 USA
| | - Yong Zhang
- Department of Biomedical Engineering; Chemistry and Biological Sciences; Stevens Institute of Technology; 1 Castle Point on Hudson Hoboken NJ 07030 USA
| |
Collapse
|
16
|
Khade RL, Yang Y, Shi Y, Zhang Y. HNO-Binding in Heme Proteins: Effects of Iron Oxidation State, Axial Ligand, and Protein Environment. Angew Chem Int Ed Engl 2016; 55:15058-15061. [PMID: 27797441 DOI: 10.1002/anie.201608539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Indexed: 11/06/2022]
Abstract
HNO plays significant roles in many biological processes. Numerous heme proteins bind HNO, an important step for its biological functions. A systematic computational study was performed to provide the first detailed trends and origins of the effects of iron oxidation state, axial ligand, and protein environment on HNO binding. The results show that HNO binds much weaker with ferric porphyrins than corresponding ferrous systems, offering strong thermodynamic driving force for experimentally observed reductive nitrosylation. The axial ligand was found to influence HNO binding through its trans effect and charge donation effect. The protein environment significantly affects the HNO hydrogen bonding structures and properties. The predicted NMR and vibrational data are in excellent agreement with experiment. This broad range of results shall facilitate studies of HNO binding in many heme proteins, models, and related metalloproteins.
Collapse
Affiliation(s)
- Rahul L Khade
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Yuwei Yang
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Yelu Shi
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Yong Zhang
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| |
Collapse
|
17
|
Walter MR, Dzul SP, Rodrigues AV, Stemmler TL, Telser J, Conradie J, Ghosh A, Harrop TC. Synthesis of CoII–NO– Complexes and Their Reactivity as a Source of Nitroxyl. J Am Chem Soc 2016; 138:12459-71. [DOI: 10.1021/jacs.6b05896] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Melody R. Walter
- Department
of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Stephen P. Dzul
- Departments
of Pharmaceutical Sciences, Biochemistry, and Molecular Biology, Wayne State University, Detroit, Michigan 48201, United States
| | - Andria V. Rodrigues
- Departments
of Pharmaceutical Sciences, Biochemistry, and Molecular Biology, Wayne State University, Detroit, Michigan 48201, United States
| | - Timothy L. Stemmler
- Departments
of Pharmaceutical Sciences, Biochemistry, and Molecular Biology, Wayne State University, Detroit, Michigan 48201, United States
| | - Joshua Telser
- Department
of Biological, Chemical, and Physical Sciences, Roosevelt University, 430 South Michigan Avenue, Chicago, Illinois 60605, United States
| | - Jeanet Conradie
- Department
of Chemistry, University of the Free State, 9300 Bloemfontein, Republic of South Africa
| | - Abhik Ghosh
- Department
of Chemistry and Center for Theoretical and
Computational Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Todd C. Harrop
- Department
of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Conradie J, Ghosh A. Metalloporphyrin–Nitroxyl Interactions: The Low-Energy States of Reduced Manganese, Iron, and Cobalt Porphyrin Nitrosyls. J Phys Chem B 2016; 120:4972-9. [DOI: 10.1021/acs.jpcb.6b04983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeanet Conradie
- Department of Chemistry and Center for Theoretical and
Computational Chemistry, UiT − The Arctic University of Norway, 9037 Tromsø, Norway
- Department of Chemistry, University of the Free State, 9300 Bloemfontein, Republic of South Africa
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and
Computational Chemistry, UiT − The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
19
|
Subedi H, Brasch NE. Mechanistic studies of the reactions of the reduced vitamin B12 derivatives with the HNO donor Piloty's acid: further evidence for oxidation of cob(I)alamin by (H)NO. Dalton Trans 2016; 45:352-60. [PMID: 26618754 DOI: 10.1039/c5dt03459k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There is accumulating evidence for the existence of HNO in biological systems. Compared with NO (˙NO), much less is known about the chemical and biochemical reactivity of HNO. Kinetic and mechanistic studies have been carried out on the reaction between the vitamin B12-derived radical complex cob(II)alamin (Cbl(II)˙, Cbl(II)) with the widely used HNO donor Piloty's acid (PA). A stoichiometry of 1 : 2 Cbl(II) : PA was obtained and PA decomposition to HNO and benzenesulfinate (C6H5SO2(-)) is the rate-determining step. No evidence was found for nitrite (Griess assay), ammonia (Nessler's test) or NH2OH (indooxine test) in the product solution, and it is likely that HNO is instead reduced to N2. A mechanism is proposed in which reduction of Cbl(II) by (H)NO results in formation of cob(I)alamin (Cbl(I)(-)) and ˙NO. The Cbl(I)(-) intermediate is subsequently oxidized back to Cbl(II) by a second (H)NO molecule, and Cbl(II) reacts rapidly with ˙NO to form nitroxylcobalamin (NOCbl). Separate studies on the reaction between Cbl(I)(-) and PA shows that this system involves an additional step in which Cbl(I)(-) is first oxidized by (H)NO to Cbl(II), which reacts further with (H)NO to form NOCbl, with an overall stoichiometry of 1 : 3 Cbl(I)(-) : PA. Experiments in the presence of nitrite for both systems support the involvement of a Cbl(I)(-) intermediate in the Cbl(II)/PA reaction. These systems provide the second example of oxidation of cob(I)alamin by (H)NO.
Collapse
Affiliation(s)
- Harishchandra Subedi
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA and Division of Science, Mathematics, and Physical Education, Western Nebraska Community College, Scottsbluff, Nebraska 69361, USA
| | - Nicola E Brasch
- School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| |
Collapse
|
20
|
Mn Porphyrin-Based Redox-Active Therapeutics. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Tovmasyan A, Maia CGC, Weitner T, Carballal S, Sampaio RS, Lieb D, Ghazaryan R, Ivanovic-Burmazovic I, Ferrer-Sueta G, Radi R, Reboucas JS, Spasojevic I, Benov L, Batinic-Haberle I. A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics. Free Radic Biol Med 2015; 86:308-21. [PMID: 26026699 PMCID: PMC4554972 DOI: 10.1016/j.freeradbiomed.2015.05.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 01/20/2023]
Abstract
Because of the increased insight into the biological role of hydrogen peroxide (H2O2) under physiological and pathological conditions and the role it presumably plays in the action of natural and synthetic redox-active drugs, there is a need to accurately define the type and magnitude of reactions that may occur with this intriguing and key species of redoxome. Historically, and frequently incorrectly, the impact of catalase-like activity has been assigned to play a major role in the action of many redox-active drugs, mostly SOD mimics and peroxynitrite scavengers, and in particular MnTBAP(3-) and Mn salen derivatives. The advantage of one redox-active compound over another has often been assigned to the differences in catalase-like activity. Our studies provide substantial evidence that Mn(III) N-alkylpyridylporphyrins couple with H2O2 in actions other than catalase-related. Herein we have assessed the catalase-like activities of different classes of compounds: Mn porphyrins (MnPs), Fe porphyrins (FePs), Mn(III) salen (EUK-8), and Mn(II) cyclic polyamines (SOD-active M40403 and SOD-inactive M40404). Nitroxide (tempol), nitrone (NXY-059), ebselen, and MnCl2, which have not been reported as catalase mimics, were used as negative controls, while catalase enzyme was a positive control. The dismutation of H2O2 to O2 and H2O was followed via measuring oxygen evolved with a Clark oxygen electrode at 25°C. The catalase enzyme was found to have kcat(H2O2)=1.5×10(6)M(-1) s(-1). The yield of dismutation, i.e., the maximal amount of O2 evolved, was assessed also. The magnitude of the yield reflects an interplay between the kcat(H2O2) and the stability of compounds toward H2O2-driven oxidative degradation, and is thus an accurate measure of the efficacy of a catalyst. The kcat(H2O2) values for 12 cationic Mn(III) N-substituted (alkyl and alkoxyalkyl) pyridylporphyrin-based SOD mimics and Mn(III) N,N'-dialkylimidazolium porphyrin, MnTDE-2-ImP(5+), ranged from 23 to 88M(-1) s(-1). The analogous Fe(III) N-alkylpyridylporphyrins showed ~10-fold higher activity than the corresponding MnPs, but the values of kcat(H2O2) are still ~4 orders of magnitude lower than that of the enzyme. While the kcat(H2O2) values for Fe ethyl and n-octyl analogs were 803.5 and 368.4M(-1) s(-1), respectively, the FePs are more prone to H2O2-driven oxidative degradation, therefore allowing for similar yields in H2O2 dismutation as analogous MnPs. The kcat(H2O2) values are dependent on the electron deficiency of the metal site as it controls the peroxide binding in the first step of the dismutation process. SOD-like activities depend on electron deficiency of the metal site also, as it controls the first step of O2(●-) dismutation. In turn, the kcat(O2(●-)) parallels the kcat(H2O2). Therefore, the electron-rich anionic non-SOD mimic MnTBAP(3-) has essentially very low catalase-like activity, kcat(H2O2)=5.8M(-1) s(-1). The catalase-like activities of Mn(III) and Fe(III) porphyrins are at most, 0.0004 and 0.05% of the enzyme activity, respectively. The kcat(H2O2) values of 8.2 and 6.5M(-1) s(-1) were determined for electron-rich Mn(II) cyclic polyamine-based compounds, M40403 and M40404, respectively. The EUK-8, with modest SOD-like activity, has only slightly higher kcat(H2O2)=13.5M(-1) s(-1). The biological relevance of kcat(H2O2) of MnTE-2-PyP(5+), MnTDE-2-ImP(5+), MnTBAP(3-), FeTE-2-PyP(5+), M40403, M40404, and Mn salen was evaluated in wild-type and peroxidase/catalase-deficient E. coli.
Collapse
Affiliation(s)
- Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Clarissa G C Maia
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA; Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Joao Pessoa, PB 58051-900, Brazil
| | - Tin Weitner
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sebastián Carballal
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Romulo S Sampaio
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA; Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Joao Pessoa, PB 58051-900, Brazil
| | - Dominik Lieb
- Friedrich-Alexander Universitat, Erlangen-Nurnberg, Germany
| | - Robert Ghazaryan
- Department of Organic Chemistry, Faculty of Pharmacy, Yerevan State Medical University, Armenia
| | | | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Julio S Reboucas
- Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Joao Pessoa, PB 58051-900, Brazil
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Cancer Institute, Pharmaceutical Research Shared Resource, PK/PD Core Laboratory, Durham, NC 27710, USA
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Hamer M, Suarez SA, Neuman NI, Alvarez L, Muñoz M, Marti MA, Doctorovich F. Discussing Endogenous NO•/HNO Interconversion Aided by Phenolic Drugs and Vitamins. Inorg Chem 2015; 54:9342-50. [DOI: 10.1021/acs.inorgchem.5b01347] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mariana Hamer
- Departamento
de Química Analítica y Fisicoquímica, Facultad
de Farmacia y Bioquímica (IQUIFIB-CONICET), Universidad de Buenos Aires, Junin 956, Buenos Aires, Argentina
| | - Sebastian A. Suarez
- Gerencia
de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales (INQUIMAE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos
Aires, Argentina
| | - Nicolás I. Neuman
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales (INQUIMAE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos
Aires, Argentina
- Departamento
de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina
| | - Lucía Alvarez
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales (INQUIMAE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos
Aires, Argentina
| | - Martina Muñoz
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales (INQUIMAE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos
Aires, Argentina
| | - Marcelo A. Marti
- Departamento
de Química Biológica, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires, Argentina
| | - Fabio Doctorovich
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales (INQUIMAE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos
Aires, Argentina
| |
Collapse
|
23
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins--From superoxide dismutation to H2O2-driven pathways. Redox Biol 2015; 5:43-65. [PMID: 25827425 PMCID: PMC4392060 DOI: 10.1016/j.redox.2015.01.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Most of the SOD mimics thus far developed belong to the classes of Mn-(MnPs) and Fe porphyrins(FePs), Mn(III) salens, Mn(II) cyclic polyamines and metal salts. Due to their remarkable stability we have predominantly explored Mn porphyrins, aiming initially at mimicking kinetics and thermodynamics of the catalysis of O2(-) dismutation by SOD enzymes. Several MnPs are of potency similar to SOD enzymes. The in vivo bioavailability and toxicity of MnPs have been addressed also. Numerous in vitro and in vivo studies indicate their impressive therapeutic efficacy. Increasing insight into complex cellular redox biology has been accompanied by increasing awareness of complex redox chemistry of MnPs. During O2(-) dismutation process, the most powerful Mn porphyrin-based SOD mimics reduce and oxidize O2(-) with close to identical rate constants. MnPs reduce and oxidize other reactive species also (none of them specific to MnPs), acting as reductants (antioxidant) and pro-oxidants. Distinction must be made between the type of reactions of MnPs and the favorable therapeutic effects we observe; the latter may be of either anti- or pro-oxidative nature. H2O2/MnP mediated oxidation of protein thiols and its impact on cellular transcription seems to dominate redox biology of MnPs. It has been thus far demonstrated that the ability of MnPs to catalyze O2(-) dismutation parallels all other reactivities (such as ONOO(-) reduction) and in turn their therapeutic efficacies. Assuming that all diseases have in common the perturbation of cellular redox environment, developing SOD mimics still seems to be the appropriate strategy for the design of potent redox-active therapeutics.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA.
| | - Artak Tovmasyan
- Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA; PK/PD BioAnalytical Duke Cancer Institute Shared Resource, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
24
|
Orzeł Ł, Polaczek J, Procner M. Review: Recent advances in the investigations of NO activation on cobalt and manganese porphyrins: a brief review. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1068303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Łukasz Orzeł
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | | | |
Collapse
|
25
|
Suarez SA, Neuman NI, Muñoz M, Álvarez L, Bikiel DE, Brondino CD, Ivanović-Burmazović I, Miljkovic JL, Filipovic MR, Martí MA, Doctorovich F. Nitric Oxide Is Reduced to HNO by Proton-Coupled Nucleophilic Attack by Ascorbate, Tyrosine, and Other Alcohols. A New Route to HNO in Biological Media? J Am Chem Soc 2015; 137:4720-7. [DOI: 10.1021/ja512343w] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sebastián A. Suarez
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, (C1428EGA) Buenos Aires, Argentina
| | - Nicolás I. Neuman
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, (C1428EGA) Buenos Aires, Argentina
- Departamento
de Física, Facultad de Bioquímica y Ciencias Biológicas,
Universidad Nacional del Litoral, Ciudad Universitaria, Paraje
El Pozo, Santa Fe 3000, Argentina
| | - Martina Muñoz
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, (C1428EGA) Buenos Aires, Argentina
| | - Lucı́a Álvarez
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, (C1428EGA) Buenos Aires, Argentina
| | - Damián E. Bikiel
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, (C1428EGA) Buenos Aires, Argentina
| | - Carlos D. Brondino
- Departamento
de Física, Facultad de Bioquímica y Ciencias Biológicas,
Universidad Nacional del Litoral, Ciudad Universitaria, Paraje
El Pozo, Santa Fe 3000, Argentina
| | - Ivana Ivanović-Burmazović
- Department
of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Jan Lj. Miljkovic
- Department
of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Milos R. Filipovic
- Department
of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Marcelo A. Martí
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, (C1428EGA) Buenos Aires, Argentina
- Departamento
de Química Biológica, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, (C1428EGA) Buenos Aires, Argentina
| | - Fabio Doctorovich
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, (C1428EGA) Buenos Aires, Argentina
| |
Collapse
|
26
|
Doctorovich F, Bikiel DE, Pellegrino J, Suárez SA, Martí MA. Reactions of HNO with metal porphyrins: underscoring the biological relevance of HNO. Acc Chem Res 2014; 47:2907-16. [PMID: 25238532 DOI: 10.1021/ar500153c] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Azanone ((1)HNO, nitroxyl) shows interesting yet poorly understood chemical and biological effects. HNO has some overlapping properties with nitric oxide (NO), sharing its biological reactivity toward heme proteins, thiols, and oxygen. Despite this similarity, HNO and NO show significantly different pharmacological effects. The high reactivity of HNO means that studies must rely on the use of donor molecules such as trioxodinitrate (Angeli's salt). It has been suggested that azanone could be an intermediate in several reactions and that it may be an enzymatically produced signaling molecule. The inherent difficulty in detecting its presence unequivocally prevents evidence from yielding definite answers. On the other hand, metalloporphyrins are widely used as chemical models of heme proteins, providing us with invaluable tools for the study of the coordination chemistry of small molecules, like NO, CO, and O2. Studies with transition metal porphyrins have shown diverse mechanistic, kinetic, structural, and reactive aspects related to the formation of nitrosyl complexes. Porphyrins are also widely used in technical applications, especially when coupled to a surface, where they can be used as electrochemical gas sensors. Given their versatility, they have not escaped their role as key players in chemical studies involving HNO. This Account presents the research performed during the last 10 years in our group concerning azanone reactions with iron, manganese, and cobalt porphyrins. We begin by describing their HNO trapping capabilities, which result in formation of the corresponding nitrosyl complexes. Kinetic and mechanistic studies of these reactions show two alternative operating mechanisms: reaction of the metal center with HNO or with the donor. Moreover, we have also shown that azanone can be stabilized by coordination to iron porphyrins using electron-attracting substituents attached to the porphyrin ring, which balance the negatively charged NO¯. Second, we describe an electrochemical HNO sensing device based on the covalent attachment of a cobalt porphyrin to gold. A surface effect affects the redox potentials and allows discrimination between HNO and NO. The reaction with the former is fast, efficient, and selective, lacking spurious signals due to the presence of reactive nitrogen and oxygen species. The sensor is both biologically compatible and highly sensitive (nanomolar). This time-resolved detection allows kinetic analysis of reactions producing HNO. The sensor thus offers excellent opportunities to be used in experiments looking for HNO. As examples, we present studies concerning (a) HNO donation capabilities of new HNO donors as assessed by the sensor, (b) HNO detection as an intermediate in O atom abstraction to nitrite by phosphines, and (c) NO to HNO interconversion mediated by alcohols and thiols. Finally, we briefly discuss the key experiments required to demonstrate endogenous HNO formation to be done in the near future, involving the in vivo use of the HNO sensing device.
Collapse
Affiliation(s)
- Fabio Doctorovich
- Departamento de Química Inorgánica,
Analítica
y Química Física/INQUIMAE-CONICET and †Departamento de Química
Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (1428), Buenos Aires, Argentina
| | - Damian E. Bikiel
- Departamento de Química Inorgánica,
Analítica
y Química Física/INQUIMAE-CONICET and †Departamento de Química
Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (1428), Buenos Aires, Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica,
Analítica
y Química Física/INQUIMAE-CONICET and †Departamento de Química
Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (1428), Buenos Aires, Argentina
| | - Sebastián A. Suárez
- Departamento de Química Inorgánica,
Analítica
y Química Física/INQUIMAE-CONICET and †Departamento de Química
Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (1428), Buenos Aires, Argentina
| | - Marcelo A. Martí
- Departamento de Química Inorgánica,
Analítica
y Química Física/INQUIMAE-CONICET and †Departamento de Química
Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (1428), Buenos Aires, Argentina
| |
Collapse
|
27
|
Celic T, Španjol J, Bobinac M, Tovmasyan A, Vukelic I, Reboucas JS, Batinic-Haberle I, Bobinac D. Mn porphyrin-based SOD mimic, MnTnHex-2-PyP(5+), and non-SOD mimic, MnTBAP(3-), suppressed rat spinal cord ischemia/reperfusion injury via NF-κB pathways. Free Radic Res 2014; 48:1426-42. [PMID: 25185063 DOI: 10.3109/10715762.2014.960865] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein we have demonstrated that both superoxide dismutase (SOD) mimic, cationic Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)), and non-SOD mimic, anionic Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin (MnTBAP(3-)), protect against oxidative stress caused by spinal cord ischemia/reperfusion via suppression of nuclear factor kappa B (NF-κB) pro-inflammatory pathways. Earlier reports showed that Mn(III) N-alkylpyridylporphyrins were able to prevent the DNA binding of NF-κB in an aqueous system, whereas MnTBAP(3-) was not. Here, for the first time, in a complex in vivo system-animal model of spinal cord injury-a similar impact of MnTBAP(3-), at a dose identical to that of MnTnHex-2-PyP(5+), was demonstrated in NF-κB downregulation. Rats were treated subcutaneously at 1.5 mg/kg starting at 30 min before ischemia/reperfusion, and then every 12 h afterward for either 48 h or 7 days. The anti-inflammatory effects of both Mn porphyrins (MnPs) were demonstrated in the spinal cord tissue at both 48 h and 7 days. The downregulation of NF-κB, a major pro-inflammatory signaling protein regulating astrocyte activation, was detected and found to correlate well with the suppression of astrogliosis (as glial fibrillary acidic protein) by both MnPs. The markers of oxidative stress, lipid peroxidation and protein carbonyl formation, were significantly reduced by MnPs. The favorable impact of both MnPs on motor neurons (Tarlov score and inclined plane test) was assessed. No major changes in glutathione peroxidase- and SOD-like activities were demonstrated, which implies that none of the MnPs acted as SOD mimic. Increasing amount of data on the reactivity of MnTBAP(3-) with reactive nitrogen species (RNS) (.NO/HNO/ONOO(-)) suggests that RNS/MnTBAP(3-)-driven modification of NF-κB protein cysteines may be involved in its therapeutic effects. This differs from the therapeutic efficacy of MnTnHex-2-PyP(5+) which presumably occurs via reactive oxygen species and relates to NF-κB thiol oxidation; the role of RNS cannot be excluded.
Collapse
Affiliation(s)
- T Celic
- Department of Anatomy, Faculty of Medicine, University of Rijeka , Rijeka , Croatia
| | | | | | | | | | | | | | | |
Collapse
|