1
|
Hu SX, Zhang L, Zhou K, Zhang P. Understanding solvent polarity effects on the separation of uranyl porphyrin-derivative complexes. Dalton Trans 2024. [PMID: 39466597 DOI: 10.1039/d4dt02382j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Solvation is a crucial task in developing efficient and selective extractants for actinide elements, but an understanding and perspective of solvent effects on the extraction of uranyl are still lacking. Herein, we present investigations into solvent effects on the geometry, stability and bonding properties of five uranyl porphyrin derivative complexes (UO2(L)) in four solvents via relativistic quantum chemical calculations, and reveal some trends in the influence of solvent polarity on uranyl compounds. All five [L]2- ligands equatorially coordinate [UO2]2+ in a hexa-dentate (κ6) fashion. Thus, the uranium center is bound to six N atoms by U-N bonds, and the properties of the U-N bond are affected by the ligands rather than by the solvent. The relative stability of these UO2(L) complexes is obviously affected by the solvent polarity; lower polar solvents stabilize more UO2(L) complexes from higher polar solvents, resulting in more extensive interaction of U-N. By computing the reaction energy, we track the conversion of pure [UO2]2+ to UO2(L) complexes in different solvents; the uranyl dipentafluorobenziamethyrin species exhibit the greatest selectivity to higher polarity solvents, with significant orbital interactions of U-N accounting for this stability and selectivity. This study provides a general procedure for theoretical screening of the binding ability and solvent selectivity of macrocyclic ligands towards uranyl, and searching for suitable ligands and solvents that will later be applied in nuclear science disciplines.
Collapse
Affiliation(s)
- Shu-Xian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Computational Science Research Center, Beijing 100193, China.
| | - Lu Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Ke Zhou
- College of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
2
|
Jennifer G A, Gao Y, Schreckenbach G, Varathan E. Periodic Trends in the Stabilization of Actinyls in Their Higher Oxidation States Using Pyrrophen Ligands. Inorg Chem 2023; 62:6920-6933. [PMID: 37104857 DOI: 10.1021/acs.inorgchem.3c00022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Owing to the prominent existence and unique chemistry of actinyls, their complexation with suitable ligands is of significant interest. The complexation of high-valent actinyl moieties (An = U, Np, Pu and Am) with the acyclic sal-porphyrin analogue called "pyrrophen" (L(1)) and its dimethyl derivative (L(2)) with four nitrogen and two oxygen donor atoms was studied using relativistic density functional theory. Based on the periodic trends, the [UVO2-L(1)/L(2)]1- complexes show shorter bond lengths and higher bond orders that increase across the series of pentavalent actinyl complexes mainly due to the localization of the 5f orbitals. Among the hexavalent complexes, the [UVIO2-L(1)/L(2)] complexes have the shortest bonds. Following the uranyl complex, due to the plutonium turn, the [AmVIO2-L(1)/L(2)] complexes exhibit comparable properties with those of the former. Charge analysis suggests the complexation to be facilitated through ligand-to-metal charge transfer (LMCT) mainly through σ donation. Thermodynamic feasibility of complexation was modeled using hydrated actinyl moieties in aqueous medium and was found to be spontaneous. The dimethylated pyrrophen (L(2)) shows higher magnitudes of thermodynamic parameters indicating increased feasibility compared to the unsubstituted ligand (L(1)). Energy decomposition analysis (EDA) along with extended transition-state-natural orbitals for chemical valence theory (ETS-NOCV) analysis shows that the dominant electrostatic contributions decrease across the series and are counteracted by Pauli repulsion. Slight but considerable covalency is provided to hexavalent actinyl complexes by orbital contributions; this was confirmed by molecular orbital (MO) analysis that suggests strong covalency in americyl (VI) complexes. In addition to the pentavalent and hexavalent actinyl moieties, heptavalent actinyl species of neptunyl, plutonyl, and americyl were studied. Beyond the influence of the charges, the geometric and electronic properties point to the stabilization of neptunyl (VII) in the pyrrophen ligand environment, while the others shift to a lower (+VI) and relatively stable OS on complexation.
Collapse
Affiliation(s)
- Abigail Jennifer G
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Yang Gao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621010, China
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Elumalai Varathan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
3
|
Wang C, Hu SX, Zhang L, Wang K, Liu HT, Zhang P. Trends in the Electronic Structure and Chemical Bonding of a Series of Porphyrinoid-Uranyl Complexes. Inorg Chem 2023; 62:5376-5386. [PMID: 36990449 DOI: 10.1021/acs.inorgchem.2c03986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
In this paper, we have explored the relativistic density functional theory study on a series of deprotonated porphyrinoid (Ln) complexes of uranyl to investigate the geometrical structures and chemical bonding. The ligands bound with uranyl in the 1:1 complexes [UO2(Ln)]x (n = 4, 5, 6; x = 0, -1, -2), showing more thermodynamic stability for "in-cavity" structures of L5 and L6 than that of the "side-on" structure of L4 and an increase in stability with the increase of negative charges, L2- < L3- < L4-. Among the six ligands, the cyclo[6]pyrrole presents the best selectivity toward uranyl. Based on chemical bonding analyses, the U-NL bond in the in-cavity complexes adopts a typical dative NL → U bond with mainly ionic bonding and significant covalency, which comes from the significant orbital interaction of U 5fϕ6dδ7s hybrid AOs and NL 2p-based MOs. This work provides a systematic understanding of the coordination chemistry in uranyl pyrrole-containing macrocycle complexes and the nature of chemical bonding in such systems, which may provide inspirations for the future design of synthetic targets that could be relevant to actinide separations or in the remediation of spent nuclear fuel.
Collapse
Affiliation(s)
- Cong Wang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Shu-Xian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Lu Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Wang
- Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Hai-Tao Liu
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
4
|
Gao Y, Jennifer G A, Varathan E, Schreckenbach G. Understanding the Coordination Chemistry of Am III/Cm III in the DOTA Cavity: Insights from Energetics and Electronic Structure Theory. Inorg Chem 2023; 62:3229-3237. [PMID: 36748113 DOI: 10.1021/acs.inorgchem.2c04235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The minor actinides Am/Cm show multiple possibilities for coordination, providing great opportunities for their extraction and adsorption separation. Herein, we report complexation in an aqueous medium of AmIII/CmIII in the DOTA (H4DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cavity with axial ligands (OH-, F-, and H2O), based on the energetics and electronic structure properties using density functional theory (DFT). The formation and substitution reactions of OH--capped complexes are more likely to occur due to their enhanced hydration Gibbs free energies, followed by F-, and then H2O. Both the longer An-ODOTA bond lengths and the larger bite angle (∠O-An-O) in the OH--capped complexes reflect the enhanced coordination provided by the axial ligand, slightly less so for F-. Energy decomposition analysis based on the electronic structure supports the preference for OH--capped complexes with a near-perfect balance between attractive and repulsive contributions toward the interaction. Furthermore, molecular orbital analysis revealed that the frontier molecular orbitals of Am and Cm complexes are substantially different; that is, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) compositions of the Am complexes are all contributed by 5f, while the HOMO and LUMO compositions of the Cm complexes are derived from 5f and 6d, respectively. Finally, the metal-exchange reactions demonstrate competitive complexation of DOTA toward AmIII over CmIII for the OH--capped system. These results imply the importance of coordination chemistry in actinide chemistry in general and specifically in AmIII/CmIII solution chemistry.
Collapse
Affiliation(s)
- Yang Gao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.,National Health Commission Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China.,Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Abigail Jennifer G
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Elumalai Varathan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
5
|
Zhang WJ, Wang C, Wang K, Zhang P, Hu SX. The stability and chemical bonding of a series tridentate ligand-actinyl complexes: [AnO2(L)2]2+ (An: U and Am). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Jennifer G A, Gao Y, Schreckenbach G, Varathan E. Chemical bonding in actinyl(V/VI) dipyriamethyrin complexes for the actinide series from americium to californium: a computational investigation. Dalton Trans 2022; 51:10006-10019. [PMID: 35703365 DOI: 10.1039/d2dt01142e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation of minor actinides in their dioxocation (i.e., actinyl) form in high-valence oxidation states requires efficient ligands for their complexation. In this work, we evaluate the complexation properties of actinyls including americyl, curyl, berkelyl, and californyl in their pentavalent and hexavalent oxidation states with the dipyriamethyrin ligand (L) using density functional theory calculations. The calculated bond parameters show shorter AnOyl bonds with covalent character and longer An-N bonds with ionic character. The bonding between the actinyl cation and the ligand anion shows a flow of charges from the ligand to actinyl in all [AnV/VIO2-L]1-/0 complexes. However, across the series, backdonation of charges from the metal to the ligand becomes prominent and stabilizes the complexes. The thermodynamic parameters in the gas phase and solution suggest that the complex formation reaction is spontaneous for [CfV/VIO2-L]1-/0 complexes and spontaneous at elevated temperatures (>298.15 K) for all other complexes. Spin-orbit corrections have a quantitative impact while the overall trend remains the same. Energy decomposition analysis (EDA) reveals that the interaction between actinyl and the ligand is mainly due to electrostatic contributions that decrease from Am to Cf along with an increase in orbital contributions due to the backdonation of charges from the actinyl metal center to the ligand that greatly stabilizes the Cf complex. The repulsive Pauli energy contribution is observed to increase in the case of [AnVO2-L]1- complexes from Am to Cf while a decrease is observed among [AnVIO2-L]0 complexes, showing minimum repulsion in [CfVIO2-L]0 complex formation. Overall, the hexavalent actinyl complexes show greater stability (increasing from Am to Cf) than their pentavalent counterparts.
Collapse
Affiliation(s)
- Abigail Jennifer G
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| | - Yang Gao
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada. .,Institut National de La Recherche Scientifique (INRS)-Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Elumalai Varathan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| |
Collapse
|
7
|
Chattaraj S, Bhattacharyya A, Sadhu B. Role of O Substitution in Expanded Porphyrins on Uranyl Complexation: Orbital- and Density-Based Analyses. Inorg Chem 2021; 60:15351-15363. [PMID: 34586785 DOI: 10.1021/acs.inorgchem.1c01981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Search for new U(VI) sequestering macrocyclic ligands is an important area of research due to manifold applications. Besides hard- or soft-donor-based ligands, mixed-donor ligands are also gaining popularity in achieving optimized performances. However, how the combination of hard-soft-donor centers alters the bonding interactions with U(VI) is still not well-understood. Moreover, a consensus is yet to be reached on the nature and role of underlying covalent interactions in mixed N,O-donor ligands. In this work, using the relativistic density functional theory (DFT), we attempted to address these intriguing issues by investigating the subtle change in bonding characteristics of the uranyl ion upon binding with an expanded porphyrin, viz. sapphyrin, with subsequent O substitutions at the cavity. The results obtained from a range of modern analysis tools suggest that in the O-substituted sapphyrin variants, UO22+ prefers to bind with N over O, and an increase in the number of O-donor sites at the cavity prompts UO22+ to have a better interaction with the rest of the N-donor-centers. Although O donors are involved in more numbers of mixed molecular orbitals, the variation in the amplitude of overlap and the better σ-donation ability favor N to have stronger bonding interactions with uranyl. Molecular orbital (MO) and density of states (DOS) analyses show favorable participation of U(d), and the involvement of U(f) orbitals in bonding is of a low extent but non-negligible. Although electrostatic interaction dominates at U-O/N bonds in the equatorial plane, the quantum theory of atoms in molecules descriptors, MO analysis, and overlap-integral calculations confirm the presence of underlying near-degeneracy-driven covalent interactions.
Collapse
Affiliation(s)
- Saparya Chattaraj
- Health Physics Division, Health Safety and Environment Group, Bhabha Atomic Research Center, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Arunasis Bhattacharyya
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.,Radiochemistry Division, Radiochemistry and Isotope Group, Bhabha Atomic Research Center, Mumbai 400085, India
| | - Biswajit Sadhu
- Health Physics Division, Health Safety and Environment Group, Bhabha Atomic Research Center, Mumbai 400085, India
| |
Collapse
|
8
|
Varathan E, Gao Y, Schreckenbach G. Computational Study of Actinyl Ion Complexation with Dipyriamethyrin Macrocyclic Ligands. J Phys Chem A 2021; 125:920-932. [PMID: 33476158 DOI: 10.1021/acs.jpca.0c08760] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Relativistic density functional theory has been employed to characterize [AnO2(L)]0/-1 complexes, where An = U, Np, Pu, and Am, and L is the recently reported hexa-aza porphyrin analogue, termed dipyriamethyrin, which contains six nitrogen donor atoms (four pyrrolic and two pyridine rings). Shorter axial (An═O) and longer equatorial (An-N) bond lengths are observed when going from AnVI to AnV. The actinide to pyrrole nitrogen bonds are shorter as compared to the bonds to the pyridine nitrogens; the former also play a dominant role in the formation of the actinyl (VI and V) complexes. Natural population analysis shows that the pyrrole nitrogen atoms in all the complexes carry higher negative charges than the pyridine nitrogens. Upon binding actinyl ions with the ligand a significant ligand-to-metal charge transfer takes place in all the actinyl (VI and V) complexes. The formation energy of the actinyl(VI,V) complexes in the gas-phase is found to decrease in the order of UO2L > PuO2L > NpO2L > AmO2L. This trend is consistent with results for the formation of complexes in dichloromethane solution. The calculated ΔG and ΔH values are negative for all the complexes. Energy decomposition analysis (EDA) indicates that the interactions between actinyl(V/VI) and ligand are mainly controlled by electrostatic components over covalent orbital interactions, and the covalent character gradually decreases from U to Am for both pentavalent and hexavalent actinyl complexes.
Collapse
Affiliation(s)
- Elumalai Varathan
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Yang Gao
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
9
|
Hu SX, Jian J, Li J, Gibson JK. Destruction of the Uranyl Moiety in a U(V) “Cation–Cation” Interaction. Inorg Chem 2019; 58:10148-10159. [DOI: 10.1021/acs.inorgchem.9b01265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shu-Xian Hu
- Beijing Computational Science Research Center, Beijing 100193, China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jiwen Jian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - John K. Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Tatosian IJ, Iacovino AC, Van Stipdonk MJ. Collision-induced dissociation of [U VI O 2 (ClO 4 )] + revisited: Production of [U VI O 2 (Cl)] + and subsequent hydrolysis to create [U VI O 2 (OH)] . RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1085-1091. [PMID: 29645301 DOI: 10.1002/rcm.8135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE In a previous study [Rapid Commun Mass Spectrom. 2004;18:3028-3034], collision-induced dissociation (CID) of [UVI O2 (ClO4 )]+ appeared to be influenced by the high levels of background H2 O in a quadrupole ion trap. The CID of the same species was re-examined here with the goal of determining whether additional, previously obscured dissociation pathways would be revealed under conditions in which the level of background H2 O was lower. METHODS Water- and methanol-coordinated [UVI O2 (ClO4 )]+ precursor ions were generated by electrospray ionization. Multiple-stage tandem mass spectrometry (MSn ) for CID and ion-molecule reaction (IMR) studies was performed using a linear ion trap mass spectrometer. RESULTS Under conditions of low background H2 O, CID of [UVI O2 (ClO4 )]+ generates [UVI O2 (Cl)]+ , presumably by elimination of two O2 molecules. Using low isolation/reaction times, we found that [UVI O2 (Cl)]+ will undergo an IMR with H2 O to generate [UVI O2 (OH)]+ . CONCLUSIONS With lower levels of background H2 O, CID experiments reveal that the intrinsic dissociation pathway for [UVI O2 (ClO4 )]+ leads to [UVI O2 (Cl)]+ , apparently by loss of two O2 molecules. We propose that the results reported in the earlier CID study reflected a two-step process: initial formation of [UVI O2 (Cl)]+ by CID, followed by a very rapid hydrolysis reaction to leave [UVI O2 (OH)]+ .
Collapse
Affiliation(s)
- Irena J Tatosian
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Anna C Iacovino
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Michael J Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| |
Collapse
|
11
|
Van Stipdonk MJ, Iacovino A, Tatosian I. Influence of Background H 2O on the Collision-Induced Dissociation Products Generated from [UO 2NO 3]<sup/>. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1416-1424. [PMID: 29654536 DOI: 10.1007/s13361-018-1947-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/18/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2+ when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michael J Van Stipdonk
- Department of Chemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Anna Iacovino
- Department of Chemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Irena Tatosian
- Department of Chemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| |
Collapse
|
12
|
Jian J, Hu SX, Li WL, van Stipdonk MJ, Martens J, Berden G, Oomens J, Li J, Gibson JK. Uranyl/12-crown-4 Ether Complexes and Derivatives: Structural Characterization and Isomeric Differentiation. Inorg Chem 2018; 57:4125-4134. [DOI: 10.1021/acs.inorgchem.8b00306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiwen Jian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shu-Xian Hu
- Beijing Computational Science Research Center, Beijing 100193, People’s Republic of China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Wan-Lu Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Michael J. van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
- van‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, People’s Republic of China
| | - John K. Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Hu SX, Liu JJ, Gibson JK, Li J. Periodic Trends in Actinyl Thio-Crown Ether Complexes. Inorg Chem 2018; 57:2899-2907. [DOI: 10.1021/acs.inorgchem.7b03277] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shu-Xian Hu
- Beijing Computational Science Research Center, Beijing 100193, China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jing-Jing Liu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - John K. Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Hu SX, Li WL, Dong L, Gibson JK, Li J. Crown ether complexes of actinyls: a computational assessment of AnO2(15-crown-5)2+ (An = U, Np, Pu, Am, Cm). Dalton Trans 2017; 46:12354-12363. [DOI: 10.1039/c7dt02825c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational characterization of AnO22+–(15-crown-5) complexes (An = U, Np, Pu, Am, and Cm) reveals actinyl insertion coordination to crown ether.
Collapse
Affiliation(s)
- Shu-Xian Hu
- Beijing Computational Science Research Center
- Beijing 100193
- China
| | - Wan-Lu Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| | - Liang Dong
- Institute of Nuclear Physics and Chemistry
- China Academy of Engineering Physics
- Sichuan 621900
- China
| | - John K. Gibson
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
15
|
Hu SX, Gibson JK, Li WL, Van Stipdonk MJ, Martens J, Berden G, Redlich B, Oomens J, Li J. Electronic structure and characterization of a uranyl di-15-crown-5 complex with an unprecedented sandwich structure. Chem Commun (Camb) 2016; 52:12761-12764. [DOI: 10.1039/c6cc07205d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A uranyl–di-15-crown-5 complex with a unique slipped sandwich structure was synthesized and characterized by infrared spectroscopy and quantum-chemical methods.
Collapse
Affiliation(s)
- Shu-Xian Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| | - John K. Gibson
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Wan-Lu Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| | | | - Jonathan Martens
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525ED Nijmegen
- The Netherlands
| | - Giel Berden
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525ED Nijmegen
- The Netherlands
| | - Britta Redlich
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525ED Nijmegen
- The Netherlands
| | - Jos Oomens
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525ED Nijmegen
- The Netherlands
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
16
|
Qin Z, Shi S, Yang C, Wen J, Jia J, Zhang X, Yu H, Wang X. The coordination of amidoxime ligands with uranyl in the gas phase: a mass spectrometry and DFT study. Dalton Trans 2016; 45:16413-16421. [DOI: 10.1039/c6dt02543a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The coordination of three amidoxime ligands (NAO, GIO, and GDO) with uranyl was compared by MS studies and DFT calculations in the gas phase to reveal the structural information.
Collapse
Affiliation(s)
- Zhen Qin
- Institute of Materials
- China Academy of Engineering Physics
- Mianyang
- China
| | - Siwei Shi
- Institute of Materials
- China Academy of Engineering Physics
- Mianyang
- China
| | - Chuting Yang
- Institute of Nuclear Physics and Chemistry
- China Academy of Engineering Physics
- Mianyang
- China
| | - Jun Wen
- Institute of Nuclear Physics and Chemistry
- China Academy of Engineering Physics
- Mianyang
- China
| | - Jianping Jia
- Institute of Materials
- China Academy of Engineering Physics
- Mianyang
- China
| | - Xiaofang Zhang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials
- Anhui University
- Hefei
- China
| | - Haizhu Yu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials
- Anhui University
- Hefei
- China
| | - Xiaolin Wang
- Institute of Materials
- China Academy of Engineering Physics
- Mianyang
- China
- Institute of Nuclear Physics and Chemistry
| |
Collapse
|
17
|
Lan JH, Wang CZ, Wu QY, Wang SA, Feng YX, Zhao YL, Chai ZF, Shi WQ. A Quasi-relativistic Density Functional Theory Study of the Actinyl(VI, V) (An = U, Np, Pu) Complexes with a Six-Membered Macrocycle Containing Pyrrole, Pyridine, and Furan Subunits. J Phys Chem A 2015. [DOI: 10.1021/acs.jpca.5b06370] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian-Hui Lan
- Laboratory
of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects
of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory
of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects
of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory
of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects
of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Ao Wang
- School
of Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative
Innovation Center of Radiation Medicine of Jiangsu Higher Education
Institutions, Soochow University, Suzhou 215123, China
| | - Yi-Xiao Feng
- Laboratory
of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects
of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Liang Zhao
- Laboratory
of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects
of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory
of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects
of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School
of Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative
Innovation Center of Radiation Medicine of Jiangsu Higher Education
Institutions, Soochow University, Suzhou 215123, China
| | - Wei-Qun Shi
- Laboratory
of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects
of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|