1
|
Liang YT, Bai SQ, Zhang YY, Li AY. Theoretical Study on the Coordination and Separation Capacity of Macrocyclic N-Donor Extractants for Am(III)/Eu(III). J Phys Chem A 2023; 127:6865-6880. [PMID: 37583058 DOI: 10.1021/acs.jpca.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Designing ligands that can effectively separate actinide An(III)/lanthanide Ln(III) in the solvent extraction process remains one of the key issues in the treatment of accumulated spent nuclear fuel. Nitrogen donor ligands are considered as promising extractants for the separation of An(III) and Ln(III) due to their environmental friendliness. Four new macrocyclic N-donor hexadentate extractants were designed and their coordination with Am(III) and Eu(III), as well as their extraction selectivity and separation performance for Am(III) and Eu(III), were investigated by scalar relativistic density functional theory. A variety of theoretical methods have been used to evaluate the properties of the four ligands and the coordination structures, bonding properties, and thermodynamic properties of the complexes formed by the four ligands with Am(III) and Eu(III). The results of various wavefunction analysis methods including NBO analysis, quantum theory of atoms in molecules (QTAIM) analysis, and so on show that Am(III) has a stronger coordination ability with the ligands than Eu(III) due to the Am 5f orbitals more involved in bonding with the ligands than the Eu 4f orbitals, and the bonding environment of the N-donor in the ligand has a significant effect on its coordination ability of the metal ions. Thermodynamic analysis of the solvent extraction process shows that all of the four N-containing macrocyclic ligands have good extraction selectivity and separation performance for Am(III) and Eu(III). This study provides theoretical support for designing potential nitrogen-containing macrocyclic extractants with excellent separation performance.
Collapse
Affiliation(s)
- Yu Ting Liang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shan Qin Bai
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yi Ying Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - An Yong Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
2
|
Lei XP, Wu QY, Wang CZ, Lan JH, Chai ZF, Nie CM, Shi WQ. Theoretical Insights into the Substitution Effect of Phenanthroline Derivatives on Am(III)/Eu(III) Separation. Inorg Chem 2023; 62:2705-2714. [PMID: 36724403 DOI: 10.1021/acs.inorgchem.2c03823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Separation of trivalent actinides (An(III)) and lanthanides (Ln(III)) poses a huge challenge in the reprocessing of spent nuclear fuel due to their similar chemical properties. N,N'-Diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen) is a potential ligand for the extraction of An(III) from Ln(III), while there are still few reports on the effect of its substituent including electron-withdrawing and electron-donating groups on An(III)/Ln(III) separation. Herein, the interaction of Et-Tol-DAPhen ligands modified by the electron-withdrawing groups (CF3, Br) and electron-donating groups (OH) with Am(III)/Eu(III) ions was investigated using scalar relativistic density functional theory (DFT). The analyses of bond order, quantum theory of atoms in molecules (QTAIM), and molecular orbital (MO) indicate that the substitution groups have a slight effect on the electronic structures of the [M(L-X)(NO3)3] (X = CF3, Br, OH) complexes. However, the thermodynamic results suggest that a ligand with the electron-donating group (L-OH) improves the extraction ability of metal ions, and the ligand modified by the electron-withdrawing group (L-Br) has the best Am(III)/Eu(III) selectivity. This work could render new insights into understanding the effect of electron-withdrawing and electron-donating groups in tuning the selectivity of Et-Tol-DAPhen derivatives and pave the way for designing new ligands modified by substituted groups with better extraction ability and An(III)/Ln(III) selectivity.
Collapse
Affiliation(s)
- Xia-Ping Lei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wang YL, Li FF, Xiao Z, Wang CZ, Liu Y, Shi WQ, He H. Experimental and theoretical studies on the extraction behavior of Cf(iii) by NTAamide(C8) ligand and the separation of Cf(iii)/Cm(iii). RSC Adv 2023; 13:3781-3791. [PMID: 36756586 PMCID: PMC9890634 DOI: 10.1039/d2ra07660h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/14/2023] [Indexed: 01/27/2023] Open
Abstract
In this work we studied the extraction behaviors of Cf(iii) by NTAamide (N,N,N',N',N'',N''-hexaocactyl-nitrilotriacetamide, C8) in nitric acid medium. Influencing factors such as contact time, concentration of NTAamide(C8), HNO3 and NO3 - as well as temperature were considered. The slope analysis showed that Cf(iii) should be coordinated in the form of neutral molecules, and the extraction complex should be Cf(NO3)3·2L (L = NTAamide(C8)), which can achieve better extraction effect under the low acidity condition. When the concentration of HNO3 was 0.1 mol L-1, the separation factor (SFCf/Cm) was 3.34. The extractant has application prospect to differentiate the trivalent Cf(iii) and Cm(iii) when the concentration of nitric acid is low. On the other hand, density functional theory (DFT) calculations were conducted to explore the coordination mechanism of NTAamide(C8) ligands with Cf/Cm cations. The NTAamide(C8) complexes of Cf(iii)/Cm(iii) have similar geometric structures, and An(iii) is more likely to form a complex with 1 : 2 stoichiometry (metal ion/ligands). In addition, bonding property and thermodynamics analyses showed that NTAamide(C8) ligands had stronger coordination ability with Cf(iii) over Cm(iii). Our work provides meaningful information with regard to the in-group separation of An(iii) in practical systems.
Collapse
Affiliation(s)
- Yi-Lin Wang
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| | - Feng-Feng Li
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| | - Zhe Xiao
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hui He
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| |
Collapse
|
4
|
Wu S, Zhang Y, Li AY. Effects of Electron‐Withdrawing and ‐Donating Substituents in N‐Donor Scorpionate Ligands and the Metal 5
f
/4
f
Orbitals on Am(III)/Eu(III) Complexation and Separation. ChemistrySelect 2022. [DOI: 10.1002/slct.202203622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shouqiang Wu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P.R.China
| | - Yiying Zhang
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P.R.China
| | - An Yong Li
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P.R.China
| |
Collapse
|
5
|
Chen Q, Li B, Wang J, Zhu H, Chen X, Hu Y, Zhou J, Wang W, Zheng W, Yan T. Selective coordination behaviors of Uranium(VI) with novel asymmetrical tetra-alkylcarbamides. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Actinides in complex reactive media: A combined ab initio molecular dynamics and machine learning analytics study of transuranic ions in molten salts. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Greaves N, Kaltsoyannis N. Computational Study of Very High Spin Actinyl Peroxide Matryoshka Nanoclusters. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nicholas Greaves
- Department of Chemistry School of Natural Sciences University of Manchester Oxford Road M13 9PL Manchester United Kingdom
| | - Nikolas Kaltsoyannis
- Department of Chemistry School of Natural Sciences University of Manchester Oxford Road M13 9PL Manchester United Kingdom
| |
Collapse
|
8
|
Wang Y, Gong A, Qiu L, Zhang W, Traore M, Bai Y, Liu Y, Gao G, Zhao W, Qin W, Fan R, You Y, Chen Y. Preparation of pyrrolidinyl diglycolamide bonded silica particles and its rare earth separation properties. J Chromatogr A 2022; 1681:463396. [DOI: 10.1016/j.chroma.2022.463396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
9
|
Extraction of Uranium in Nitric Media with Novel Asymmetric Tetra-Alkylcarbamide. Molecules 2022; 27:molecules27175527. [PMID: 36080293 PMCID: PMC9457804 DOI: 10.3390/molecules27175527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
The use of tetra-alkylcarbamides as novel ligands: N,N-butyl-N’,N’-hexylurea (L1: ABHU), and N,N-butyl-N’,N’-pentylurea (L2: ABPU), for the solvent extraction and complexation behaviors of uranium(VI) was synthesized and investigated in this study. The effects of HNO3 and NO3− concentrations in the aqueous phase on the distribution ratio of U(VI) were examined. Under 5 mol/L HNO3 concentration, DU reached 5.02 and 4.94 respectively without third-phase formation. During the extraction, slope measurements and IR spectral analysis revealed that the U(VI) complexes are a form of UO2(NO3)2·2L for both ligands. In addition, thermodynamic studies showed that the uranium extraction reaction was a spontaneous exothermic reaction. The deep structural analysis of the complexes was realized with DFT calculation. The bond length, bond properties, and topology of the complexes were discussed in detail to analyze the extraction behavior. This study enriches the coordination chemistry of U(VI) by tetra-alkylcarbamides, which may offer new clues for the design and synthesis of novel ligands for the separation, enrichment, and recovery of uranium in the nuclear fuel cycle.
Collapse
|
10
|
Li XB, Wu QY, Wang CZ, Lan JH, Zhang M, Gibson JK, Chai ZF, Shi WQ. Reduction of Np(VI) with hydrazinopropionitrile via water-mediated proton transfer. Phys Chem Chem Phys 2022; 24:17782-17791. [PMID: 35848639 DOI: 10.1039/d2cp01730j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effectively adjusting and controlling the valence state of neptunium (Np) is essential in its separation during spent fuel reprocessing. Hydrazine and its derivatives as free-salts can selectively reduce Np(VI) to Np(V). Reduction mechanisms of Np(VI) with hydrazine and four derivatives have been explored using multiple theoretical methods in our previous works. Herein, we examine the reduction mechanism of Np(VI) with hydrazinopropionitrile (NCCH2N2H3) which exhibits faster kinetics than most other hydrazine derivatives probably due to its σ-π hyperconjugation effect. Free radical ion pathways I, II and III involving the three types of hydrazine H atoms were found that correspond to the experimentally established mechanism of reduction of two Np(VI) via initial oxidation to [NCCH2N2H3]+˙, followed by conversion to NCCH2N2H (+2H3O+) and ultimately to CH3CN + N2. Potential energy profiles suggest that the second redox stage is rate-determining for all three pathways. Pathway I with water-mediated proton transfer is energetically preferred for hydrazinopropionitrile. Analyses using the approaches of localized molecular orbitals (LMOs), quantum theory of atoms in molecules (QTAIM), and intrinsic reaction coordinate (IRC) elucidate the bonding evolution for the structures on the reaction pathways. The results of the spin density reveal that the reduction of the first Np(VI) ion is the outer-sphere electron transfer, while that of the second Np(VI) ion is the hydrogen transfer. This work offers new insights into the nature of reduction of Np(VI) by hydrazinopropionitrile via water-mediated proton transfer, and provides a basis for designing free-salt reductants for Np separations.
Collapse
Affiliation(s)
- Xiao-Bo Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. .,Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng Zhang
- Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Lan W, Wang X, Kong X, Nie C. In‐depth study of the heme‐binding ability to five heavy metals: Hg, Cd, Pb, Cr, and As. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenbo Lan
- School of Public Health Xiangnan University Chenzhou Hunan China
| | - Xiaofeng Wang
- School of Public Health Xiangnan University Chenzhou Hunan China
| | - Xianghe Kong
- School of Chemistry and Chemical Engineering University of South China Hengyang China
| | - Changming Nie
- School of Chemistry and Chemical Engineering University of South China Hengyang China
| |
Collapse
|
12
|
Wang J, Wang CZ, Wu QY, Lan JH, Chai ZF, Nie CM, Shi WQ. Construction of the Largest Metal-Centered Double-Ring Tubular Boron Clusters Based on Actinide Metal Doping. J Phys Chem A 2022; 126:3445-3451. [PMID: 35612436 DOI: 10.1021/acs.jpca.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal doping has been considered to be an effective approach to stabilize various boron clusters. In this work, we constructed a series of largest metal-centered double-ring tubular boron clusters An@B24 (An = Th, Pa, Pu, and Am). Extensive global minimum structural searches combined with density functional theory predicted that the global minima of An@B24 (An = Th, Pu, and Am) are double-ring tubular structures. Formation energy analysis indicates that these boron clusters are highly stable, especially for Th@B24 and Pa@B24. Detailed bonding analysis shows that the significant stability of An@B24 is determined by the covalent character of the An-B bonding, which stems from the interactions of An 5f and 6d orbitals and B 2p orbitals. These results show that actinide metal doping is a feasible route to construct stable large metal-centered double-ring tubular boron clusters, offering the possibility to design boron nanomaterials with special physiochemical properties.
Collapse
Affiliation(s)
- Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Chi XW, Wu QY, Wang CZ, Yu JP, Liu K, Chi RA, Chai ZF, Shi WQ. A Theoretical Study of Unsupported Uranium–Ruthenium Bonds Based on Tripodal Ligands. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao-Wang Chi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Resource & Safety Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ru-An Chi
- School of Resource & Safety Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Bacha RUS, Su DM, Pan QJ. Nitrogen reduction to ammonia triggered by heterobimetallic uranium-group 10 metal complexes of phosphinoaryl oxides: A relativistic DFT study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Ye ZR, Wu QY, Wang CZ, Lan JH, Chai ZF, Wang HQ, Shi WQ. Theoretical Insights into the Selective Separation of Am(III)/Eu(III) Using Hydrophilic Triazolyl-Based Ligands. Inorg Chem 2022; 61:6110-6119. [PMID: 35416038 DOI: 10.1021/acs.inorgchem.2c00232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing ligands with efficient actinide (An(III))/lanthanide (Ln(III)) separation performance is still one of the key issues for the disposal of accumulated radioactive waste and the recovery of minor actinides. Recently, the hydrophilic ligands as promising extractants in the innovative Selective ActiNide Extraction (i-SANEX) process show excellent selectivity for Am(III) over Eu(III), such as hydroxylated-based ligands. In this work, we investigated the selective back-extraction toward Am(III) over Eu(III) with three hydrophilic hydroxylated triazolyl-based ligands (the skeleton of pyridine La, bipyridine Lb, and phenanthroline Lc) using scalar-relativistic density functional theory. The properties of three hydrophilic hydroxylated ligands and the coordination structures, bonding nature, and thermodynamic properties of the Am(III) and Eu(III) complexes with three ligands have been evaluated using multiple theoretical methods. The results of molecular orbitals (MOs), quantum theory of atoms in molecules (QTAIMs), and natural bond orbital (NBO) reveal that Am-N bonds possess more covalent character compared to Eu-N bonds. The thermodynamic results indicate that the complexing ability of Lb and Lc with metal ions is almost the same, which is stronger than that of La. However, La has the best Am(III)/Eu(III) selectivity among three ligands, which is attributed to the largest difference in covalency between Am-Ntrzl and Eu-Ntrzl bonds in MLa(NO3)3. This work provides an in-depth understanding of the preferential selectivity of the hydrophilic hydroxylated ligands with An(III) over Ln(III) and also provides theoretical support for designing potential hydrophilic ligands with excellent separation performance of Am(III)/Eu(III).
Collapse
Affiliation(s)
- Zi-Rong Ye
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Qing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Liu L, Lu Y, Liao L, Xiao X, Nie C. Theoretical Unravelling the Complexation and Separation of Uranyl‐ligand Complexes towards Chiral R/S‐Profenofos. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Linfeng Liu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Yao Lu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Lifu Liao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Xilin Xiao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Changming Nie
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| |
Collapse
|
17
|
Zhang Y, Wu S, Li A. Theoretically investigating the ability of phenanthroline derivatives to separate transuranic elements and their bonding properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj02160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bonding and separation properties of actinide Np3+, Pu3+, Am3+, and Cm3+ complexes formed with phenanthroline derivatives were studied using the DFT method.
Collapse
Affiliation(s)
- Yiying Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shouqiang Wu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Anyong Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
18
|
Lei XP, Wu QY, Wang CZ, Lan JH, Chai ZF, Nie CM, Shi WQ. Theoretical insights into the separation of Am( iii)/Eu( iii): designing ligands based on a preorganization strategy. Dalton Trans 2022; 51:16659-16667. [DOI: 10.1039/d2dt02474h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extraction behaviors of Am(iii) and Eu(iii) were investigated using phenanthroline and bipyridine ligands based on a preorganization strategy.
Collapse
Affiliation(s)
- Xia-Ping Lei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Armstrong S, Malcomson T, Kerridge A. A theoretical investigation of uranyl covalency via symmetry-preserving excited state structures. Phys Chem Chem Phys 2022; 24:26692-26700. [DOI: 10.1039/d2cp02878f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The structures of electronically excited states of uranyl are probed via density-based analysis to deepen understanding of uranium bonding.
Collapse
Affiliation(s)
- Sapphire Armstrong
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster, LA1 4YB, UK
| | - Thomas Malcomson
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Andy Kerridge
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster, LA1 4YB, UK
| |
Collapse
|
20
|
Wang S, Wang C, Yang XF, Yu JP, Tao WQ, Yang SL, Ren P, Yuan LY, Chai ZF, Shi WQ. Selective Separation of Am(III)/Eu(III) by the QL-DAPhen Ligand under High Acidity: Extraction, Spectroscopy, and Theoretical Calculations. Inorg Chem 2021; 60:19110-19119. [PMID: 34860506 DOI: 10.1021/acs.inorgchem.1c02916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although 1,10-phenanthroline-based ligands have recently shown vast opportunities for the separation of trivalent actinides (Ans(III)) from lanthanides (Lns(III)), the optimization and design of the extractant structure based on the phenanthroline framework remain hotspots for further improving the separation. Following the strategy of hard and soft donor atom combination, for the first time, the quinoline group was attached to the 1,10-phenanthroline skeleton, giving a lipophilic ligand, 2,9-diacyl-bis((3,4-dihydroquinoline-1((2H)-yl)-1),10-phenanthroline (QL-DAPhen)), for Am(III)/Eu(III) separation. In the presence of sodium nitrate, the ligand can effectively extract Am(III) over Eu(III) in HNO3 solution, with the separation factor (SFAm/Eu) ranging from 29 to 44. The coordination chemistry of Eu(III) with QL-DAPhen was investigated by slope analysis, NMR titration, UV-vis titration, Fourier transform infrared spectroscopy, electrospray ionization-mass spectrometry, and theoretical calculations. The experimental results unanimously confirm that the ligand forms both 1:1 and 1:2 complexes with Eu(III), and the stability constants (log β) of each of the two complexes were obtained. Density functional theory calculations show that the Am-N bonds have more covalent characteristics than the Eu-N bonds in the complexes, which reveals the reason why the ligand preferentially bonds with Am(III). Meanwhile, the thermodynamic analysis reveals that the 1:1 complex is more thermodynamically stable than the 1:2 complex. The findings of this work have laid a solid theoretical foundation for the application of phenanthroline-based ligands in the separation of An(III) from practical systems.
Collapse
Affiliation(s)
- Shuai Wang
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Cui Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiao-Fan Yang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China.,Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, P.R. China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wu-Qing Tao
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, P.R. China
| | - Su-Liang Yang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, P.R. China
| | - Peng Ren
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi-Fang Chai
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
21
|
Maria L, Bandeira NAG, Marçalo J, Santos IC, Ferreira ASD, Ascenso JR. Experimental and Computational Study of a Tetraazamacrocycle Bis(aryloxide) Uranyl Complex and of the Analogues {E═U═NR} 2+ (E = O and NR). Inorg Chem 2021; 61:346-356. [PMID: 34898186 DOI: 10.1021/acs.inorgchem.1c02934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The reaction of [U(κ6-{(t-Bu2ArO)2Me2-cyclam})I][I] (H2{(t-Bu2ArO)2Me2-cyclam} = 1,8-bis(2-hydroxy-3,5-di-tert-butyl)-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane) with 2 equiv of NaNO2 in acetonitrile results in the isolation of the uranyl complex [UO2{(t-Bu2ArO)2Me2-cyclam}] (3) in 31% yield, which was fully characterized, including by single-crystal X-ray diffraction. Density functional theory (DFT) computations were performed to evaluate and compare the level of covalency within the U═E bonds in 3 and in the analogous trans-bis(imido) [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(NPh)2] (1) and trans-oxido-imido [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(O)(NPh)] (2) complexes. Natural bond orbital (NBO) analysis allowed us to determine the mixing covalency parameter λ, showing that in 2, where both U-Ooxido and U-Nimido bonds are present, the U-Nimido bond registers more covalency with regard to 1, and the opposite is seen for U-Ooxido with respect to 3. However, the covalency driven by orbital overlap in the U-Nimido bond is slightly higher in 1 than in 2. The 15N-labeled complexes [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(15NPh)2] (1-15N) and [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(O)(15NPh)] (2-15N) were prepared and analyzed by solution 15N NMR spectroscopy. The calculated and experimental 15N chemical shifts are in good agreement, displaying the same trend of δN (1-15N) > δN (2-15N) and reveal that the 15N chemical shift may serve as a probe for the covalency of the U═NR bond.
Collapse
Affiliation(s)
- Leonor Maria
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Nuno A G Bandeira
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Joaquim Marçalo
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Isabel C Santos
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Ana S D Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry/Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - José R Ascenso
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1000-049 Lisboa, Portugal
| |
Collapse
|
22
|
Matveev PI, Huang PW, Kirsanova AA, Ananyev IV, Sumyanova TB, Kharcheva AV, Khvorostinin EY, Petrov VG, Shi WQ, Kalmykov SN, Borisova NE. Way to Enforce Selectivity via Steric Hindrance: Improvement of Am(III)/Eu(III) Solvent Extraction by Loaded Diphosphonic Acid Esters. Inorg Chem 2021; 60:14563-14581. [PMID: 34546034 DOI: 10.1021/acs.inorgchem.1c01432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid donor extractants are a promising class of compounds for the separation of trivalent actinides and lanthanides. Here, we investigated a series of sterically loaded diphosphonate ligands based on bipyridine (BiPy-PO-iPr and BiPy-PO-cHex) and phenanthroline (Phen-PO-iPr and Phen-PO-cHex). We studied their complex formation with nitrates of trivalent f-elements in solvent extraction systems (Am and Eu) and homogeneous acetonitrile solutions (Nd, Eu, and Lu). Phenanthroline extractants demonstrated the highest efficiency and selectivity [SF(Am/Eu) up to 14] toward Am(III) extraction from nitric acid solutions among all of the studied diphosphonates of N-heterocycles. The binding constants established by UV-vis titration also indicated stronger binding of sterically impaired diphosphonates compared to the primary substituted diphosphonates. NMR titration and slope analysis during solvent extraction showed the formation of 2:1 complexes at high concentrations (>10-3 mol/L) for phenanthroline-based ligands. According to UV-vis titrations at low concentrations (10-5-10-6 mol/L), the phenanthroline-based ligands formed 1:1 complexes. Bipyridine-based ligands formed 1:1 complexes regardless of the ligand concentration. Luminescence titrations revealed that the quantum yields of the complexes with Eu(III) were 81 ± 8% (BiPy-PO-iPr) and 93 ± 9% (Phen-PO-iPr). Single crystals of the structures [Lu(μ2,κ4-(iPrO)2P(O)Phen(O)2(OiPr))(NO3)2]2 and Eu(Phen-PO-iPr)(NO3)3 were obtained by chemical synthesis with the Phen-PO-iPr ligand. X-ray diffraction studies revealed a closer contact of the f-element with the aromatic N atoms in the case of sterically loaded P═O ligands compared with sterically deficient ligands. Density functional theory calculations allowed us to rationalize the observed selectivity trends in terms of the bond length, Mayer bond order, and preorganization energy.
Collapse
Affiliation(s)
- Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Pin-Wen Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Anna A Kirsanova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Ivan V Ananyev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Avilova St. 28, Moscow 119991, Russian Federation
| | - Tsagana B Sumyanova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Anastasia V Kharcheva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation.,Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/2, Moscow 119991, Russian Federation
| | - Evgenii Yu Khvorostinin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Vladimir G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Wei-Qun Shi
- Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Stepan N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, Moscow 119991, Russian Federation.,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Avilova St. 28, Moscow 119991, Russian Federation
| |
Collapse
|
23
|
Li XB, Wu QY, Wang CZ, Lan JH, Zhang M, Chai ZF, Shi WQ. Theoretical Insights into the Reduction Mechanism of Np(VI) with Phenylhydrazine. J Phys Chem A 2021; 125:6180-6188. [PMID: 34235933 DOI: 10.1021/acs.jpca.1c04198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effectively adjusting and controlling the valence state of neptunium from the spent fuel reprocessing process is essential to separating neptunium. Hydrazine and its derivatives as free-salt reductants have been experimentally demonstrated to effectively reduce Np(VI) to Np(V). We have theoretically investigated the reduction mechanisms of Np(VI) with hydrazine and three derivatives (HOC2H4N2H3, CH3N2H3, and CHON2H3) in previous works. Herein, we further explored the reduction reaction of Np(VI) with phenylhydrazine (C6H5N2H3) including the free radical ion mechanism and the free radical mechanism. Potential energy profiles (PEPs) indicate that the rate-determining step of both mechanisms is the first stage. Moreover, for the free radical ion mechanism, phenylhydrazine possesses better reduction ability to Np(VI) compared to HOC2H4N2H3, CH3N2H3, and CHON2H3, which falls completely in line with the experimental results. Additionally, the analyses of the quantum theory of atoms in molecules (QTAIM), natural bond orbitals (NBOs), electron localization function (ELF), and localized molecular orbitals (LMOs) have been put forward to elucidate the bonding evolution for the structures of the reaction pathways. This work offers insights into the reduction mechanism of Np(VI) with phenylhydrazine from the theory point of view and contributes to design more high-efficiency reductants for the separation of U/Np and Np/Pu in spent fuel reprocessing.
Collapse
Affiliation(s)
- Xiao-Bo Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Yang R, Xiao Y, Tao X, Ma M, Wu Z, Liao L, Xiao X, Nie C. Insights into complexation and enantioselectivity of uranyl‐2‐(2‐hydroxy‐3‐methoxyphenyl)‐9‐(2‐hydroxyphenyl)thiopyrano[3,2‐
h
]thiochromene‐4,7‐dione with
R
/
S
‐organophosphorus pesticides. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rong Yang
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Yang Xiao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Xue‐bing Tao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Ming‐jie Ma
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Zhi‐lin Wu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Li‐fu Liao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Xi‐lin Xiao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Chang‐ming Nie
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| |
Collapse
|
25
|
Li AL, Zhang NX, Wu QY, Wang CZ, Lan JH, Nie CM, Chai ZF, Shi WQ. Theoretical Insights into the Actinide–Silicon Bonding Nature and Stability of a Series of Actinide Complexes with Different Oxidation States. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ai-Lin Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Nai-Xin Zhang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Huang PW, Wang CZ, Wu QY, Lan JH, Chai ZF, Shi WQ. Enhancing the Am 3+/Cm 3+ separation ability by weakening the binding affinity of N donor atoms: a comparative theoretical study of N, O combined extractants. Dalton Trans 2021; 50:3559-3567. [PMID: 33605961 DOI: 10.1039/d0dt04266h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutual separation of trivalent americium (Am3+) and curium (Cm3+) ions through liquid-liquid extraction is challenging due to the similarity in their chemical properties. Three N, O combined extractants 2,6-pyridinedicarboxylic acid di(N-ethyl-4-fluoroanilide) (Et(pFPh)DPA), diphenyl(2-pyridyl)phosphine oxide (Ph2PyPO), and alkyldiamide amine with 2-ethylhexylalkyl chains (ADAAM(EH)) have been identified to exhibit selectivity for Am3+ over Cm3+. In this work, the structures, bonding nature, and thermodynamic behaviors of a series of representative Am- and Cm-complexes with these ligands have been systematically investigated using density functional theory (DFT) calculations. Based on our calculations, the ONO angle formed by three donor atoms of the ligand in the Am-complex is slightly larger than that in its Cm-analogue. The studied ligands show their preference toward Am3+ by opening their "mouths" slightly wider. According to the Mayer bond order and the quantum theory of atoms in molecules (QTAIM) analyses, the interactions between the O donor atoms of these ligands and Am3+ and Cm3+ ions show some weak partial covalent character, and compared to the Am-O bond, there is relatively more covalency in the Cm-O bond in the corresponding complex. However, opposite results can be found in the Am-N and Cm-N bonding for the first two ligands. Particularly, for the better separation ligand ADAAM(EH), the Am-N and Cm-N interactions are extremely weak and no covalent character exists in the bonding. Nevertheless, the difference between the very weak Am-N and Cm-N interactions still leads to a better performance of ADAAM(EH). Based on the comparison of these ligands, we can find that weakening the binding ability of N atoms in the ligand may increase the difference between the Am-N and Cm-N interactions, thus enhancing the Am3+/Cm3+ separation ability of the ligand. Our study might provide new insights into understanding the selectivity of these three N, O combined ligands toward minor actinides and pave the way for designing efficient Am3+/Cm3+ extraction and separation ligands.
Collapse
Affiliation(s)
- Pin-Wen Huang
- Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. and Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Wu QY, Wang CZ, Lan JH, Chai ZF, Shi WQ. Electronic structures and bonding of the actinide halides An(TREN TIPS)X (An = Th-Pu; X = F-I): a theoretical perspective. Dalton Trans 2020; 49:15895-15902. [PMID: 33164010 DOI: 10.1039/d0dt02909b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To evaluate how halogen and actinide atoms affect the electronic structures and bonding nature, we have theoretically investigated a series of the actinide halides An(TRENTIPS)X (An = Th-Pu; X = F-I); several of them have been synthesized by Liddle's group. The An-X bond distances decrease from An = Th to Pu for the same halides, and the harmonic vibrational frequencies for the An-X bonds are more susceptible to being affected by the halogen atoms. The analyses of bonding nature reveal that the An-X bonds have a certain covalency with a polarized character, and the σ-bonding component in the total orbital contribution is greatly larger than the corresponding π-bonding ones based on the analysis of the NOCVs (the natural orbitals for chemical valence). Furthermore, the electronic structures of the thorium complexes are obviously different from those of the uranium and transuranic analogues due to more valence electrons in Th 6d orbitals. In addition, thermodynamic results suggest that the U(TRENTIPS)Br complex is the most stable and U(TRENTIPS)Cl has the highest reactivity based on the halide exchange reaction of U(TRENTIPS)X complexes using Me3SiX. The reduction ability of the tetravalent An(TRENTIPS)X is sensitive to halogen atoms according to the calculated electron affinity of the An(TRENTIPS)X and the reactions An(TRENTIPS)X + K → An(TRENTIPS) + KX. This work presents the effect of the halogen and the actinide atoms on the structures, bonding nature and redox ability of a series of the tetravalent actinide halides with TREN ligand and facilitates our in-depth understanding of f-block elements, which could provide theoretical guidance for experimental work on actinide halides, especially for the synthetic chemistry of transuranic halides.
Collapse
Affiliation(s)
- Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China. and Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Dau PD, Vasiliu M, Wilson RE, Dixon DA, Gibson JK. Hydrolysis of Metal Dioxides Differentiates d-block from f-block Elements: Pa(V) as a 6d Transition Metal; Pr(V) as a 4f “Lanthanyl”. J Phys Chem A 2020; 124:9272-9287. [DOI: 10.1021/acs.jpca.0c08171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Phuong D. Dau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Monica Vasiliu
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Richard E. Wilson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David A. Dixon
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - John K. Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Li XB, Wu QY, Wang CZ, Lan JH, Ning SY, Wei YZ, Chai ZF, Shi WQ. Theoretical Study on the Reduction Mechanism of Np(VI) by Hydrazine Derivatives. J Phys Chem A 2020; 124:3720-3729. [PMID: 32310650 DOI: 10.1021/acs.jpca.0c01504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The key to effective separation of neptunium from the spent fuel reprocessing process is to adjust and control its valence state. Hydrazine and its derivatives have been experimentally confirmed to be effective salt-free reductants for reducing Np(VI) to Np(V). We theoretically studied the reduction reactions of Np(VI) with three hydrazine derivatives (2-hydroxyethyl hydrazine (HOC2H4N2H3), methyl hydrazine (CH3N2H3), and formyl hydrazide (CHON2H3)) and obtained the free radical ion mechanism and the free radical mechanism. Their potential energy profiles (PEPs) suggest that the free radical mechanism is the most probable reaction. Based on the energy barrier of the free radical ion mechanism, the trend of the reduction ability of the three hydrazine derivatives is HOC2H4N2H3 > CH3N2H3 > CHON2H3, which is in excellent agreement with the experimental results. Lastly, the analyses of natural bond orbitals (NBOs), quantum theory of atoms-in-molecules (QTAIM), and electron localization function (ELF) have been carried out to explore the bonding evolution of the structures along the reaction pathways. This work provides an insight into the reduction mechanism of Np(VI) with hydrazine derivatives from the theoretical perspective and helps to design more effective reductants for the separation of U/Np and Np/Pu in spent fuel reprocessing.
Collapse
Affiliation(s)
- Xiao-Bo Li
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shun-Yan Ning
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yue-Zhou Wei
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.,Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Jeong K, Jeong HJ, Woo SM, Bae S. Prediction of Binding Stability of Pu(IV) and PuO 2(VI) by Nitrogen Tridentate Ligands in Aqueous Solution. Int J Mol Sci 2020; 21:ijms21082791. [PMID: 32316430 PMCID: PMC7216098 DOI: 10.3390/ijms21082791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 11/21/2022] Open
Abstract
Plutonium has potential applications in energy production in well-controlled nuclear reactors. Since nuclear power plants have great merit as environmentally friendly energy sources with a recyclable system, a recycling system for extracting Pu from spent fuels using suitable extractants has been proposed. Pu leakage is a potential environmental hazard, hence the need for chemical sensor development. Both extractants and chemical sensors involve metal–ligand interactions and to develop efficient extractants and chemical sensors, structural information about Pu ligands must be obtained by quantum calculations. Herein, six representative nitrogen tridentate ligands were introduced, and their binding stabilities were evaluated. The tridentate L6, which contains tri-pyridine chelate with benzene connectors, showed the highest binding energies for Pu(IV) and PuO2(VI) in water. Analysis based on the quantum theory of atoms in molecular analysis, including natural population analysis and electron density studies, provided insight into the bonding characteristics for each structure. We propose that differences in ionic bonding characteristics account for the Pu-ligand stability differences. These results form a basis for designing novel extractants and organic Pu sensors.
Collapse
Affiliation(s)
- Keunhong Jeong
- Department of Chemistry, Nuclear & WMD Protection Research Center, Korea Military Academy, Seoul 01805, Korea;
- Correspondence: or ; Tel.: +82+2-2197-2823
| | - Hye Jin Jeong
- Department of Chemistry, Nuclear & WMD Protection Research Center, Korea Military Academy, Seoul 01805, Korea;
| | - Seung Min Woo
- Department of Nuclear and Energy Engineering, Jeju National University, Jeju 63243, Korea;
| | - Sungchul Bae
- Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea;
| |
Collapse
|
31
|
Jian T, Yu X, Dan D, Albrecht-Schmitt TE, Autschbach J, Gibson JK. Gas-Phase Complexes of Americium and Lanthanides with a Bis-triazinyl Pyridine: Reactivity and Bonding of Archetypes for F-Element Separations. J Phys Chem A 2020; 124:2982-2990. [PMID: 32207621 DOI: 10.1021/acs.jpca.0c00675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bis-triazinyl pyridines (BTPs) exhibit solution selectivity for trivalent americium over lanthanides (Ln), the origins of which remain uncertain. Here, electrospray ionization was used to generate gas-phase complexes [ML3]3+, where M = La, Lu, or Am and L is EtBTP 2,6-bis(5,6-diethyl-1,2,4-triazin-3-yl)-pyridine. Collision-induced dissociation (CID) of [ML3]3+ in the presence of H2O yielded a protonated ligand [L(H)]+ and hydroxide [ML2(OH)]2+ or hydrate [ML(L-H)(H2O)]2+, where (L-H)- is a deprotonated ligand. Although solution affinities indicate stronger binding of BTPs toward Am3+ versus Ln3+, the observed CID process is contrastingly more facile for M = Am versus Ln. To understand the disparity, density functional theory was employed to compute potential energy surfaces for two possible CID processes, for M = La and Am. In accordance with the CID results, both the rate determining transition state barrier and the net energy are lower for [AmL3]3+ versus [LaL3]3+ and for both product isomers, [ML2(OH)]2+ and [ML(L-H)(H2O)]2+. More facile removal of a ligand from [AmL3]3+ by CID does not necessarily contradict stronger Am3+-L binding, as inferred from solution behavior. In particular, the formation of new bonds in the products can distort kinetics and thermodynamics expected for simple bond cleavage reactions. In addition to correctly predicting the seemingly anomalous CID behavior, the computational results indicate greater participation of Am 5f versus La 4f orbitals in metal-ligand bonding.
Collapse
Affiliation(s)
- Tian Jian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - David Dan
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Thomas E Albrecht-Schmitt
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Chen YM, Wang CZ, Wu QY, Lan JH, Chai ZF, Nie CM, Shi WQ. Theoretical Insights into Modification of Nitrogen-Donor Ligands to Improve Performance on Am(III)/Eu(III) Separation. Inorg Chem 2020; 59:3221-3231. [PMID: 32048832 DOI: 10.1021/acs.inorgchem.9b03604] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrogen-donor ligands have been considered to be promising agents for separating trivalent actinides (An(III)) from lanthanides (Ln(III)). Thereinto, how to decorate these ligands for better extraction performance is urgent to design "perfect" separating extractants. In this work, we systematically explored a series of heterocyclic N-donor ligands (L1 = dipyridazino[4,3-c:3',4'-h]acridine, L2 = dipyridazino[3,4-a:4',3'-j]phenazine, L3 = 2,6-di(cinnolin-3-yl)pyridine)), as well as their substituted derivatives, and compared their extraction and complexation ability toward An(III) and Ln(III) ions by using quasi-relativistic density functional theory (DFT). We found that the pyridazine N atoms probably play a notable role in electron donation to metal cations by molecular orbital (MO) and bond order analyses. Besides, the calculated results clearly verified that these N-donor ligands possess higher coordination affinity toward Am(III) over Eu(III). The rigid ligands (L1 and L2) exhibit higher selective abilities for the Am(III)/Eu(III) separation compared with that of the flexible ligand (L3). For each ligand, the 1:2 (metal/ligand) extraction reaction is predicted to be most probable in the separation process. The introduction of an alkyl group on the lateral chain or an electron-donating group on the main chain gives rise to a better extraction performance of the ligands, and the CyMe4 or MeO substituted ligands show higher extraction and separation ability. Simultaneous introduction of CyMe4 and MeO groups can enhance the extraction ability of the ligand to metal ions, but the separating ability depends on the differences of the extraction capacity of An(III) and Ln(III). This work can help to gain a more in-depth understanding the selectivity differences of similar N-donor ligands and provide more theoretical insights into the design of novel extractants for An(III)/Ln(III) separation.
Collapse
Affiliation(s)
- Yan-Mei Chen
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Chi C, Pan S, Jin J, Meng L, Luo M, Zhao L, Zhou M, Frenking G. Octacarbonyl Ion Complexes of Actinides [An(CO) 8 ] +/- (An=Th, U) and the Role of f Orbitals in Metal-Ligand Bonding. Chemistry 2019; 25:11772-11784. [PMID: 31276242 PMCID: PMC6772027 DOI: 10.1002/chem.201902625] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Indexed: 11/11/2022]
Abstract
The octacarbonyl cation and anion complexes of actinide metals [An(CO)8 ]+/- (An=Th, U) are prepared in the gas phase and are studied by mass-selected infrared photodissociation spectroscopy. Both the octacarbonyl cations and anions have been characterized to be saturated coordinated complexes. Quantum chemical calculations by using density functional theory show that the [Th(CO)8 ]+ and [Th(CO)8 ]- complexes have a distorted octahedral (D4h ) equilibrium geometry and a doublet electronic ground state. Both the [U(CO)8 ]+ cation and the [U(CO)8 ]- anion exhibit cubic structures (Oh ) with a 6 A1g ground state for the cation and a 4 A1g ground state for the anion. The neutral species [Th(CO)8 ] (Oh ; 1 A1g ) and [U(CO)8 ] (D4h ; 5 B1u ) have also been calculated. Analysis of their electronic structures with the help on an energy decomposition method reveals that, along with the dominating 6d valence orbitals, there are significant 5f orbital participation in both the [An]←CO σ donation and [An]→CO π back donation interactions in the cations and anions, for which the electronic reference state of An has both occupied and vacant 5f AOs. The trend of the valence orbital contribution to the metal-CO bonds has the order of 6d≫5f>7s≈7p, with the 5f orbitals of uranium being more important than the 5f orbitals of thorium.
Collapse
Affiliation(s)
- Chaoxian Chi
- School of Chemistry, Biological and Materials Sciences, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
| | - Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular, Engineering, Jiangsu National Synergetic Innovation Center for, Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Jiaye Jin
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Luyan Meng
- School of Chemistry, Biological and Materials Sciences, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
| | - Mingbiao Luo
- School of Chemistry, Biological and Materials Sciences, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular, Engineering, Jiangsu National Synergetic Innovation Center for, Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Mingfei Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular, Engineering, Jiangsu National Synergetic Innovation Center for, Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.,Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| |
Collapse
|
34
|
Interactions of phosphorylated cyclohexapeptides with uranyl: insights from experiments and theoretical calculations. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06697-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Bacha RUS, Bi YT, Xuan LC, Pan QJ. Inverse Trans Influence in Low-Valence Actinide-Group 10 Metal Complexes of Phosphinoaryl Oxides: A Theoretical Study via Tuning Metals and Donor Ligands. Inorg Chem 2019; 58:10028-10037. [PMID: 31298034 DOI: 10.1021/acs.inorgchem.9b01193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recognition and in-depth understanding of inverse trans influence (ITI) have successfully guided the synthesis of novel actinide complexes and enriched actinide chemistry. Those complexes, however, are mainly limited to the involvement of high-valence actinide and/or metal-ligand multiple bonds. Examples containing both low oxidation state actinide and metal-metal single bond remain rare. Herein, more than 20 actinide-transition metal (An-TM) complexes of phosphinoaryl oxide ligands have been designed in accordance with several experimentally known analogs, by changing the metal atoms (An = Th, Pa, U, Np, and Pu; and TM = Ni, Pd, and Pt), actinide oxidation states (IV and III) and metal-metal axial donor ligands (X = Me3SiO, F, Cl, Br, and I). The relativistic density functional theory study of structural (trans-An-X and cis-An-O toward An-TM), bonding (topological electron/energy density), and electronic properties reveals the order of the ITI stabilizing actinide-metal bond. Computed electron affinity (EA) values, related to the electrochemical reduction, linearly correlate with experimentally measured reduction potentials. Although the same ITI order for the ligand donors was shown as in a previous study, the correlation between electrochemical reduction and the ITI was found to be weak when the actinide atoms were changed. For most complexes, the reduction is primarily of an actinide-based mechanism with minor participation of transition metal and phosphinoaryl oxide, whereas that of thorium-nickel complexes is different.
Collapse
Affiliation(s)
- Raza Ullah Shah Bacha
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Yan-Ting Bi
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Li-Chun Xuan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| |
Collapse
|
36
|
Wang C, Wu QY, Kong XH, Wang CZ, Lan JH, Nie CM, Chai ZF, Shi WQ. Theoretical Insights into the Selective Extraction of Americium(III) over Europium(III) with Dithioamide-Based Ligands. Inorg Chem 2019; 58:10047-10056. [DOI: 10.1021/acs.inorgchem.9b01200] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cui Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-He Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Chi XW, Wu QY, Lan JH, Wang CZ, Zhang Q, Chai ZF, Shi WQ. A Theoretical Study on Divalent Heavier Group 14 Complexes as Promising Donor Ligands for Building Uranium–Metal Bonds. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiao-Wang Chi
- College of Mining, Guizhou University, Guiyang, 550025, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Zhang
- College of Mining, Guizhou University, Guiyang, 550025, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
38
|
Bi YT, Li L, Guo YR, Pan QJ. Heterobimetallic Uranium–Nickel/Palladium/Platinum Complexes of Phosphinoaryl Oxide Ligands: A Theoretical Probe for Metal–Metal Bonding and Electronic Spectroscopy. Inorg Chem 2019; 58:1290-1300. [DOI: 10.1021/acs.inorgchem.8b02787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan-Ting Bi
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
39
|
Zheng M, Chen FY, Li L, Guo YR, Pan QJ. Accessibility of Uranyl–Plutonium Complex Supported by a Polypyrrolic Macrocycle: An Implication for Experimental Synthesis. Inorg Chem 2018; 58:950-959. [DOI: 10.1021/acs.inorgchem.8b03112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ming Zheng
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Fang-Yuan Chen
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
40
|
Kong XH, Wu QY, Lan JH, Wang CZ, Chai ZF, Nie CM, Shi WQ. Theoretical Insights into Preorganized Pyridylpyrazole-Based Ligands toward the Separation of Am(III)/Eu(III). Inorg Chem 2018; 57:14810-14820. [DOI: 10.1021/acs.inorgchem.8b02550] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang-He Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Resource and Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Chang-Ming Nie
- School of Resource and Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Kovács A, Dau PD, Marçalo J, Gibson JK. Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States. Inorg Chem 2018; 57:9453-9467. [PMID: 30040397 DOI: 10.1021/acs.inorgchem.8b01450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pentavalent actinyl nitrate complexes AnVO2(NO3)2- were produced by elimination of two NO2 from AnIII(NO3)4- for An = Pu, Am, Cm, Bk, and Cf. Density functional theory (B3LYP) and relativistic multireference (CASPT2) calculations confirmed the AnO2(NO3)2- as AnVO2+ actinyl moieties coordinated by nitrates. Computations of alternative AnIIIO2(NO3)2- and AnIVO2(NO3)2- revealed significantly higher energies. Previous computations for bare AnO2+ indicated AnVO2+ for An = Pu, Am, Cf, and Bk, but CmIIIO2+: electron donation from nitrate ligands has here stabilized the first CmV complex, CmVO2(NO3)2-. Structural parameters and bonding analyses indicate increasing An-NO3 bond covalency from Pu to Cf, in accordance with principles for actinide separations. Atomic ionization energies effectively predict relative stabilities of oxidation states; more reliable energies are needed for the actinides.
Collapse
Affiliation(s)
- Attila Kovács
- European Commission, Joint Research Centre , P.O. Box 2340, 76125 Karlsruhe , Germany
| | - Phuong D Dau
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 United States
| | - Joaquim Marçalo
- Centro de Ciências e Tecnologias Nucleares & Centro de Química Estrutural , Instituto Superior Técnico, Universidade de Lisboa , 2695-066 Bobadela LRS , Portugal
| | - John K Gibson
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 United States
| |
Collapse
|
42
|
Kong XH, Wu QY, Wang CZ, Lan JH, Chai ZF, Nie CM, Shi WQ. Insight into the Extraction Mechanism of Americium(III) over Europium(III) with Pyridylpyrazole: A Relativistic Quantum Chemistry Study. J Phys Chem A 2018; 122:4499-4507. [DOI: 10.1021/acs.jpca.8b00177] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang-He Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Resources Engineering, University of South China, Hengyang 421001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chang-Ming Nie
- School of Nuclear Resources Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
43
|
Selective extraction of plutonium(IV) over uranium(VI), americium(III), europium(III) and zirconium(IV) with bidentate O-phenoxydiamide ligands: experimental and theoretical study. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5836-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Zheng M, Chen FY, Tian JN, Pan QJ. Electron-Transfer-Enhanced Cation–Cation Interactions in Homo- and Heterobimetallic Actinide Complexes: A Relativistic Density Functional Theory Study. Inorg Chem 2018; 57:3893-3902. [DOI: 10.1021/acs.inorgchem.8b00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ming Zheng
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Fang-Yuan Chen
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jia-Nan Tian
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
45
|
Wu QY, Song YT, Ji L, Wang CZ, Chai ZF, Shi WQ. Theoretically unraveling the separation of Am(iii)/Eu(iii): insights from mixed N,O-donor ligands with variations of central heterocyclic moieties. Phys Chem Chem Phys 2018; 19:26969-26979. [PMID: 28956572 DOI: 10.1039/c7cp04625a] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the fast development of nuclear energy, the issue related to spent nuclear fuel reprocessing has been regarded as an imperative task, especially for the separation of minor actinides. In fact, it still remains a worldwide challenge to separate trivalent An(iii) from Ln(iii) because of their similar chemical properties. Therefore, understanding the origin of extractant selectivity for the separation of An(iii)/Ln(iii) by using theoretical methods is quite necessary. In this work, three ligands with similar structures but different bridging frameworks, Et-Tol-DAPhen (La), Et-Tol-BPyDA (Lb) and Et-Tol-PyDA (Lc), have been investigated and compared using relativistic density functional theory. The electrostatic potential and molecular orbitals of the ligands indicate that ligand La is a better electron donor compared to ligands Lb and Lc. The results of QTAIM, NOCV and NBO suggest that the Am-N bonds in the studied complexes have more covalent character compared to the Eu-N bonds. Based on the thermodynamic analysis, [M(NO3)(H2O)8]2+ + L + 2NO3- = [ML(NO3)3] + 8H2O should be the most probable reaction in the solvent extraction system. Our results clearly verify that the relatively harder oxygen atoms offer these ligands higher coordination affinities toward both of the An(iii) and Ln(iii) ions compared to the relatively softer nitrogen atoms. However, the latter possess stronger affinities toward An(iii) over Ln(iii), which partly results in the selectivity of these ligands. This work can afford useful information on achieving efficient An(iii)/Ln(iii) separation through tuning the structural rigidity and hardness or softness of the functional moieties of the ligands.
Collapse
Affiliation(s)
- Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | | | | | | | | | | |
Collapse
|
46
|
Wu QY, Cheng ZP, Lan JH, Wang CZ, Chai ZF, Gibson JK, Shi WQ. Insight into the nature of M–C bonding in the lanthanide/actinide-biscarbene complexes: a theoretical perspective. Dalton Trans 2018; 47:12718-12725. [DOI: 10.1039/c8dt02702a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The An/Ln–C bonding nature was explored using relativistic theory. Inclusion of Np and Pu extends understanding to later actinides bonding.
Collapse
Affiliation(s)
- Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhong-Ping Cheng
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - John K. Gibson
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
47
|
Jeong K, Woo SM, Bae S. DFT study on the bonding properties of Pu(III) and Pu(IV) chloro complexes. J NUCL SCI TECHNOL 2017. [DOI: 10.1080/00223131.2017.1412365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Keunhong Jeong
- Department of Chemistry, Nuclear & WMD Protection Research Center, Korea Military Academy, Seoul, Republic of Korea
| | - Seung Min Woo
- Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA , USA
| | - Sungchul Bae
- Division of Architectural Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Hu KQ, Wu QY, Mei L, Zhang XL, Ma L, Song G, Chen DY, Wang YT, Chai ZF, Shi WQ. Novel Viologen Derivative Based Uranyl Coordination Polymers Featuring Photochromic Behaviors. Chemistry 2017; 23:18074-18083. [DOI: 10.1002/chem.201704478] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Xiao-Lin Zhang
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Lei Ma
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclide Pollution, Control and Resources; School of Environmental Science and Engineering, Guangzhou University; Guangzhou 510006 China
| | - Di-Yun Chen
- Guangdong Provincial Key Laboratory of Radionuclide Pollution, Control and Resources; School of Environmental Science and Engineering, Guangzhou University; Guangzhou 510006 China
| | - Yi-Tong Wang
- China International Engineering Consulting Corporation; Beijing 100089 China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
49
|
Cyanide linkage isomerism in cerium(III) and uranium(III) complexes. A relativistic DFT study. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Lan WB, Gao S, Lin YW, Peng GW, Nie CM. Computational insight into asymmetric uranyl-salophen coordinated with cyclohexenone derivatives. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1209657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Wen-Bo Lan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Sha Gao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Guo-Wen Peng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| |
Collapse
|