1
|
Schreiner SHF, Göhler F, Almquist CC, Rüffer T, Piers WE, Seyller T, Kretschmer R. Accessing Homo- and Heterobimetallic Complexes with a Dianionic Pentadentate Ligand. Inorg Chem 2024; 63:19665-19675. [PMID: 39377374 DOI: 10.1021/acs.inorgchem.4c02833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The tetrapyrazolylpyridyl diborate (B2Pz4Py) ligand provides a suitable platform for the isolation of heterobimetallic main-group element compounds as well as homotetrametallic copper complexes. The heterobimetallic tin(II)-lithium(I) (1) and tin(II)-thallium(I) (2) complexes have been synthesized, isolated, and fully characterized including single-crystal X-ray diffraction analysis. When reacted with copper(I) sources, complex 2 grants access to a homotetrametallic copper(I) complex (4). Upon subsequent oxidation, 4 gives rise to the bimetallic copper(II) complex 5, in which the two copper(II) centers are connected via a bridging bromido ligand (CuII-μ-Br-CuII).
Collapse
Affiliation(s)
- Simon H F Schreiner
- Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany
| | - Fabian Göhler
- Institut für Physik, Technische Universität Chemnitz, Chemnitz 09126, Germany
- Centre for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz 09126, Germany
| | - C Christopher Almquist
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, AB, Canada
| | - Tobias Rüffer
- Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany
| | - Warren E Piers
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, AB, Canada
| | - Thomas Seyller
- Institut für Physik, Technische Universität Chemnitz, Chemnitz 09126, Germany
- Centre for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz 09126, Germany
| | - Robert Kretschmer
- Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany
- Jena Center of Soft Matter, Friedrich-Schiller-Universität Jena, Philosophenweg 7, Jena 07443, Germany
| |
Collapse
|
2
|
Ren BP, Yang G, Lv ZY, Liu ZY, Zhang H, Si LP, Liu HY. First application of Sn (IV) corrole as electrocatalyst in hydrogen evolution reaction. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
3
|
Nayak P, Nayak M, Meena K, Kar S. Oxo(corrolato)vanadium( iv) catalyzed epoxidation: oxo(peroxo)(corrolato)vanadium( v) is the true catalytic species. NEW J CHEM 2022. [DOI: 10.1039/d1nj06015e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxo(corrolato)vanadium(iv) complexes are highly efficient oxidizers in the presence of H2O2 and KHCO3, and oxo(peroxo)(corrolato)vanadium(v) complexes are the catalytic intermediate.
Collapse
Affiliation(s)
- Panisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Manisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kiran Meena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
4
|
|
5
|
Sharma VK, Mahammed A, Mizrahi A, Morales M, Fridman N, Gray HB, Gross Z. Dimeric Corrole Analogs of Chlorophyll Special Pairs. J Am Chem Soc 2021; 143:9450-9460. [PMID: 34014656 PMCID: PMC8249354 DOI: 10.1021/jacs.1c02362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chlorophyll special pairs in photosynthetic reaction centers function as both exciton acceptors and primary electron donors. Although the macrocyclic natural pigments contain Mg(II), the central metal in most synthetic analogs is Zn(II). Here we report that insertion of either Al(III) or Ga(III) into an imidazole-substituted corrole affords an exceptionally robust photoactive dimer. Notably, attractive electronic interactions between dimer subunits are relatively strong, as documented by signature changes in NMR and electronic absorption spectra, as well as by cyclic voltammetry, where two well-separated reversible redox couples were observed. EPR spectra of one-electron oxidized dimers closely mimic those of native special pairs, and strong through-space interactions between corrole subunits inferred from spectroscopic and electrochemical data are further supported by crystal structure analyses (3 Å interplanar distances, 5 Å lateral shifts, and 6 Å metal to metal distances).
Collapse
Affiliation(s)
- Vinay K. Sharma
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Atif Mahammed
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Amir Mizrahi
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
- Department of Chemistry, Nuclear Research Center Negev, Beer Sheva, 9001, Israel
| | - Maryann Morales
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
6
|
Lee W, Zhan X, Palma J, Vestfrid J, Gross Z, Churchill DG. Minding our P-block and Q-bands: paving inroads into main group corrole research to help instil broader potential. Chem Commun (Camb) 2021; 57:4605-4641. [PMID: 33881055 DOI: 10.1039/d1cc00105a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Main group chemistry is often considered less "dynamic" than transition metal (TM) chemistry because of predictable VSEPR-based central atom geometries, relatively slower redox switching and lack of electronic d-d transitions. However, we delineate what has been made possible with main group chemistry to give it its proper due and up-to-date treatment. The huge untapped potential regarding photophysical properties and functioning hereby spurred us to review a range of corrole reports addressing primarily photophysical trends, synthetic aspects, and important guidelines regarding substitution and inorganic principles. We also look at Ag and Au systems and also consider substitutions such as CF3, halogens, additives and also counterions. Throughout, as well as at the end of this review, we suggest various future directions; further future industrial catalytic and health science research is encouraged.
Collapse
Affiliation(s)
- Woohyun Lee
- Korea Advanced Institute of Science and Technology (KAIST), Department of Chemistry, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Xuan Zhan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Jaymee Palma
- Korea Advanced Institute of Science and Technology (KAIST), Department of Chemistry, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jenya Vestfrid
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel. and Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S3E5, Canada.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - David G Churchill
- Korea Advanced Institute of Science and Technology (KAIST), Department of Chemistry, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Republic of Korea and KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering Section), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Elinburg JK, Hyre AS, McNeely J, Alam TM, Klenner S, Pöttgen R, Rheingold AL, Doerrer LH. Formation of monomeric Sn(ii) and Sn(iv) perfluoropinacolate complexes and their characterization by 119Sn Mössbauer and 119Sn NMR spectroscopies. Dalton Trans 2020; 49:13773-13785. [PMID: 33000834 DOI: 10.1039/d0dt02837a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of a series of Sn(ii) and Sn(iv) complexes supported by the highly electron-withdrawing dianionic perfluoropinacolate (pinF) ligand are reported herein. Three analogs of [SnIV(pinF)3]2- with NEt3H+ (1), K+ (2), and {K(18C6)}+ (3) counter cations and two analogs of [SnII(pinF)2]2- with K+ (4) and {K(15C5)2}+ (5) counter cations were prepared and characterized by standard analytical methods, single-crystal X-ray diffraction, and 119Sn Mössbauer and NMR spectroscopies. The six-coordinate SnIV(pinF) complexes display 119Sn NMR resonances and 119Sn Mössbauer spectra similar to SnO2 (cassiterite). In contrast, the four-coordinate SnII(pinF) complexes, featuring a stereochemically-active lone pair, possess low 119Sn NMR chemical shifts and relatively high quadrupolar splitting. Furthermore, the Sn(ii) complexes are unreactive towards both Lewis bases (pyridine, NEt3) and acids (BX3, Et3NH+). Calculations confirm that the Sn(ii) lone pair is localized within the 5s orbital and reveal that the Sn 5px LUMO is energetically inaccessible, which effectively abates reactivity.
Collapse
Affiliation(s)
- Jessica K Elinburg
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Shahabadi N, Jamshidi Z, Hadidi S, Shiri F, Fatahi N. Intercalation of manganese-mefenamic acid complex into double stranded of calf thymus DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:901-919. [PMID: 31172862 DOI: 10.1080/15257770.2019.1625379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The interaction of the [Mn(mef)2(phen)H2O] complex in which mef is mefenamic acid drug and phen is 1,10 phenanthrolin ligand with calf thymus DNA (ct-DNA) was studied by using different spectroscopic methods, molecular docking and viscometery. The competitive fluorescence and UV-Vis absorption spectroscopy indicated that the complex interacted with ctDNA via intercalating binding mode with the binding constant of 1.16 × 104 Lmol-1. The thermodynamic studies showed that the reaction between the complex and ctDNA is exothermic. Furthermore, the complex induced changes in DNA viscosity. Circular dichroism spectroscopy (CD) was employed to measure the conformational changes of ctDNA in the presence of the complex and verified intercalation binding mode. The molecular modeling results illustrated that the complex interacted via intercalation by relative binding energy of -28.45 kJ mol-1.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University , Kermanshah , Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Zeinab Jamshidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University , Kermanshah , Iran
| | - Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University , Kermanshah , Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Farshad Shiri
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University , Kermanshah , Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Navid Fatahi
- Kermanshah University of Medical Science, Pharmacy College , Iran
| |
Collapse
|
9
|
Babu B, Prinsloo E, Mack J, Nyokong T. Synthesis, characterization and photodynamic activity of Sn(iv) triarylcorroles with red-shifted Q bands. NEW J CHEM 2019. [DOI: 10.1039/c9nj03391b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tin(iv)corrole with meso-thien-2-yl rings has significantly red-shifted Q bands and is found to have favourable photodynamic therapy activity.
Collapse
Affiliation(s)
- Balaji Babu
- Institute for Nanotechnology Innovation
- Department of Chemistry
- Rhodes University
- Makhanda 6140
- South Africa
| | - Earl Prinsloo
- Biotechnology Innovation Centre
- Rhodes University
- Makhanda 6140
- South Africa
| | - John Mack
- Institute for Nanotechnology Innovation
- Department of Chemistry
- Rhodes University
- Makhanda 6140
- South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation
- Department of Chemistry
- Rhodes University
- Makhanda 6140
- South Africa
| |
Collapse
|
10
|
Xie AN, Zhang Z, Wang HH, Ali A, Zhang DX, Wang H, Ji LN, Liu HY. DNA-binding, photocleavage and anti-cancer activity of tin(IV) corrole. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new tin(IV) corrole, 5,10,15-tris(4-methoxycarbonylphenyl) corrole tin(IV) (1-Sn) was synthesized and characterized. The DNA binding, photocleavage and anti-cancer activity were studied and compared with its free-base. The interaction of 1-Sn and its free-base 1 with calf thymus DNA had been investigated by spectroscopic methods, viscosity measurements and molecular docking analysis. The results revealed that 1-Sn and 1 could interact with calf thymus DNA via an outside groove binding mode. Furthermore, although 1 displayed no photonuclease activity, 1-Sn exhibited good photonuclease activity as indicated by agarose gel electrophoresis, and superoxide anion might be the active intermediate for the DNA scission. Finally, 1 was nontoxic but 1-Sn displayed cytotoxicity towards A549 tumor cell lines.
Collapse
Affiliation(s)
- An-Na Xie
- Department of Chemistry, South China University of Technology, Guangzhou 510640, P.R. China
| | - Zhao Zhang
- Department of Chemistry, South China University of Technology, Guangzhou 510640, P.R. China
| | - Hua-Hua Wang
- Department of Chemistry, South China University of Technology, Guangzhou 510640, P.R. China
| | - Atif Ali
- Department of Chemistry, South China University of Technology, Guangzhou 510640, P.R. China
| | - Dong-Xu Zhang
- Department of Chemistry, South China University of Technology, Guangzhou 510640, P.R. China
| | - Hui Wang
- State Key Laboratory of Optoelectronics Materials and Technologies, Sun-Yat Sen University, Guangzhou 510275, P.R. China
| | - Liang-Nian Ji
- State Key Laboratory of Optoelectronics Materials and Technologies, Sun-Yat Sen University, Guangzhou 510275, P.R. China
| | - Hai-Yang Liu
- Department of Chemistry, South China University of Technology, Guangzhou 510640, P.R. China
| |
Collapse
|
11
|
Wang Z, Yao Z, Lyu Z, Xiong Q, Wang B, Fu X. Thermodynamic and reactivity studies of a tin corrole-cobalt porphyrin heterobimetallic complex. Chem Sci 2018; 9:4999-5007. [PMID: 29938028 PMCID: PMC5994744 DOI: 10.1039/c8sc01269e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
A heterobimetallic complex, (TPFC)Sn-Co(TAP) (TPFC = 5,10,15-tris(pentafluorophenyl)corrole, TAP = 5,10,15,20-tetrakis(p-methoxyphenyl)porphyrin), was synthesized. The complex featured a Sn-Co bond with a bond dissociation enthalpy (BDE) of 30.2 ± 0.9 kcal mol-1 and a bond dissociation Gibbs free energy (BDFE) of 21.0 ± 0.2 kcal mol-1, which underwent homolysis to produce the (TPFC)Sn radical and (TAP)CoII under either heat or visible light irradiation. The novel tin radical (TPFC)Sn, being the first four-coordinate tin radical observed at room temperature, was studied spectroscopically and computationally. (TPFC)Sn-Co(TAP) promoted the oligomerization of aryl alkynes to give the insertion products (TPFC)Sn-(CH 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 C(Ar)) n -Co(TAP) (n = 1, 2, or 3) as well as 1,3,5-triarylbenzenes. Mechanistic studies revealed a radical chain mechanism involving the (TPFC)Sn radical as the key intermediate.
Collapse
Affiliation(s)
- Zikuan Wang
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China . ;
| | - Zhengmin Yao
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China . ;
| | - Zeyu Lyu
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China . ;
| | - Qinsi Xiong
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China . ;
| | - Bingwu Wang
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China . ;
| | - Xuefeng Fu
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China . ;
| |
Collapse
|
12
|
Lemon CM, Hwang SJ, Maher AG, Powers DC, Nocera DG. Halogen Photoelimination from SbV Dihalide Corroles. Inorg Chem 2018; 57:5333-5342. [DOI: 10.1021/acs.inorgchem.8b00314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Christopher M. Lemon
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Seung Jun Hwang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Andrew G. Maher
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - David C. Powers
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
13
|
Ghosh A. Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chem Rev 2017; 117:3798-3881. [PMID: 28191934 DOI: 10.1021/acs.chemrev.6b00590] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Presented herein is a comprehensive account of the electronic structure of corrole derivatives. Our knowledge in this area derives from a broad range of methods, including UV-vis-NIR absorption and MCD spectroscopies, single-crystal X-ray structure determination, vibrational spectroscopy, NMR and EPR spectroscopies, electrochemistry, X-ray absorption spectroscopy, and quantum chemical calculations, the latter including both density functional theory and ab initio multiconfigurational methods. The review is organized according to the Periodic Table, describing free-base and main-group element corrole derivatives, then transition-metal corroles, and finally f-block element corroles. Like porphyrins, corrole derivatives with a redox-inactive coordinated atom follow the Gouterman four-orbital model. A key difference from porphyrins is the much wider prevalence of noninnocent electronic structures as well as full-fledged corrole•2- radicals among corrole derivatives. The most common orbital pathways mediating ligand noninnocence in transition-metal corroles are the metal(dz2)-corrole("a2u") interaction (most commonly observed in Mn and Fe corroles) and the metal(dx2-y2)-corrole(a2u) interaction in coinage metal corroles. Less commonly encountered is the metal(dπ)-corrole("a1u") interaction, a unique feature of formal d5 metallocorroles. Corrole derivatives exhibit a rich array of optical properties, including substituent-sensitive Soret maxima indicative of ligand noninnocence, strong fluorescence in the case of lighter main-group element complexes, and room-temperature near-IR phosphorescence in the case of several 5d metal complexes. The review concludes with an attempt at identifying gaps in our current knowledge and potential future directions of electronic-structural research on corrole derivatives.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , 9037 Tromsø, Norway
| |
Collapse
|
14
|
Sinha W, Sommer MG, Hettmanczyk L, Patra B, Filippou V, Sarkar B, Kar S. Ruthenium-Ruthenium-Bonded [Bis{corrolato-ruthenium(III)}]n(n=0, +1, −1) Complexes: Model Compounds for the Photosynthetic Special Pair. Chemistry 2017; 23:2396-2404. [DOI: 10.1002/chem.201604901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Woormileela Sinha
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); Bhubaneswar, Khordha 752050 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400094 India
| | - Michael G. Sommer
- Institut für Chemie und Biochemie; Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Lara Hettmanczyk
- Institut für Chemie und Biochemie; Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Bratati Patra
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); Bhubaneswar, Khordha 752050 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400094 India
| | - Vasileios Filippou
- Institut für Anorganische Chemie; Universität Stuttgart; Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie; Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Sanjib Kar
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); Bhubaneswar, Khordha 752050 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400094 India
| |
Collapse
|
15
|
Ziegler JA, Buckley HL, Arnold J. Synthesis and reactivity of tantalum corrole complexes. Dalton Trans 2017; 46:780-785. [PMID: 27996068 DOI: 10.1039/c6dt04265a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the free base corrole (Mes2(p-OMePh)corrole)H3 with tantalum trialkyl precursors TaMe3Cl2 and TaBn3NtBu resulted in the formation of the tantalum dichloride (1) and tantalum imido (4) corrole complexes via alkane elimination. The X-ray crystal structures of these two compounds have been determined and the structural parameters are discussed. The Ta centre of 1 was found to sit out of the plane of the corrole ring by 0.903 Å and is cis-ligated, similarly to what has been reported for group 4 porphyrin complexes. From complex 1 we synthesized the dimethyl derivative (2), the reactivity of which is compared to an analogous tantalum dimethyl porphyrin cation. The imido complex 4 reacted with triphenylmethanol and 4-methylbenzyl alcohol, resulting in different extents of protonation of the imido group.
Collapse
Affiliation(s)
- Jessica A Ziegler
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Heather L Buckley
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
16
|
Barata JFB, Neves MGPMS, Faustino MAF, Tomé AC, Cavaleiro JAS. Strategies for Corrole Functionalization. Chem Rev 2016; 117:3192-3253. [PMID: 28222602 DOI: 10.1021/acs.chemrev.6b00476] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This review covers the functionalization reactions of meso-arylcorroles, both at the inner core, as well as the peripheral positions of the macrocycle. Experimental details for the synthesis of all known metallocorrole types and for the N-alkylation reactions are presented. Key peripheral functionalization reactions such as halogenation, formylation, carboxylation, nitration, sulfonation, and others are discussed in detail, particularly the nucleophilic aromatic substitution and the participation of corroles in cycloaddition reactions as 2π or 4π components (covering Diels-Alder and 1,3-dipolar cycloadditions). Other functionalizations of corroles include a large diversity of reactions, namely Wittig reactions, reactions with methylene active compounds, formation of amines, amides, and imines, and metal catalyzed reactions. At the final section, the reactions involving oxidation and ring expansion of the corrole macrocycle are described comprehensively.
Collapse
Affiliation(s)
- Joana F B Barata
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - M Graça P M S Neves
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - M Amparo F Faustino
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - Augusto C Tomé
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - José A S Cavaleiro
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Abstract
Corroles are exceptionally promising platforms for the development of agents for simultaneous cancer-targeting imaging and therapy. Depending on the element chelated by the corrole, these theranostic agents may be tuned primarily for diagnostic or therapeutic function. Versatile synthetic methodologies allow for the preparation of amphipolar derivatives, which form stable noncovalent conjugates with targeting biomolecules. These conjugates can be engineered for imaging and targeting as well as therapeutic function within one theranostic assembly. In this review, we begin with a brief outline of corrole chemistry that has been uniquely useful in designing corrole-based anticancer agents. Then we turn attention to the early literature regarding corrole anticancer activity, which commenced one year after the first scalable synthesis was reported (1999-2000). In 2001, a major advance was made with the introduction of negatively charged corroles, as these molecules, being amphipolar, form stable conjugates with many proteins. More recently, both cellular uptake and intracellular trafficking of metallocorroles have been documented in experimental investigations employing advanced optical spectroscopic as well as magnetic resonance imaging techniques. Key results from work on both cellular and animal models are reviewed, with emphasis on those that have shed new light on the mechanisms associated with anticancer activity. In closing, we predict a very bright future for corrole anticancer research, as it is experiencing exponential growth, taking full advantage of recently developed imaging and therapeutic modalities.
Collapse
Affiliation(s)
- Ruijie D Teo
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Jae Youn Hwang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science & Technology , Daegu, Republic of Korea
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope , 1500 East Duarte Road, Duarte, California 91010, United States
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , Haifa 32000, Israel
| | - Harry B Gray
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
18
|
Pomarico G, Tortora L, Fronczek FR, Smith KM, Paolesse R. Selective nitration and bromination of surprisingly ruffled phosphorus corroles. J Inorg Biochem 2016; 158:17-23. [DOI: 10.1016/j.jinorgbio.2016.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/16/2015] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
|
19
|
Sinha W, Sommer MG, van der Meer M, Plebst S, Sarkar B, Kar S. Structural, electrochemical and spectroelectrochemical study on the geometric and electronic structures of [(corrolato)AuIII]n (n = 0, +1, −1) complexes. Dalton Trans 2016; 45:2914-23. [DOI: 10.1039/c5dt03737a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV-vis-NIR/EPR spectroelectrochemical investigations on AuIII corroles display NIR electrochromism, the origins of which are all on corrole-centered processes.
Collapse
Affiliation(s)
- Woormileela Sinha
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- Bhubaneswar – 751005
- India
| | | | | | - Sebastian Plebst
- Institut für Anorganische Chemie
- Universität Stuttgart
- Stuttgart
- Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Berlin
- Germany
| | - Sanjib Kar
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- Bhubaneswar – 751005
- India
| |
Collapse
|
20
|
Ricciardi G, Cicero DO, Lentini S, Nardis S, Paolesse R, Rosa A. NMR spectroscopy of the phenyl derivative of germanium(IV) 5,10,15-tritolylcorrole. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A thoroughly structural characterization of (TTC)GePh (TTC [Formula: see text] 5,10,15-tritolylcorrole; Ph [Formula: see text] phenyl) in solution has been carried out through a combination of 2D NMR (1H-1H COSY, 1H-1H ROESY, 1H-[Formula: see text]C HSQC and 1H-[Formula: see text]C HMBC) experiments and density functional theory (DFT) calculations of the molecular and electronic structure and the shielding constants. The 1H and [Formula: see text]C chemical shifts computed at DFT-S12g and DFT-SAOP levels of theory nicely reproduce the experimental values, the agreement between theory and experiment being especially good for the DFT-S12g results. The calculations prove to be able to capture the fine details of the NMR spectra and to resolve some assignment ambiguities related to the inherent conformational flexibility of the macrocycle. The calculations also provide an explanation of the observed chemical shift trends in terms of diamagnetic and paramagnetic components of the shielding tensor.
Collapse
Affiliation(s)
- Giampaolo Ricciardi
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali (SAFE), Università della Basilicata, 85100 Potenza, Italy
| | - Daniel O. Cicero
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Sara Lentini
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Sara Nardis
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Angela Rosa
- Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
21
|
Chatterjee T, Lee WZ, Ravikanth M. Stabilization of hexa-coordinated P(v) corroles by axial silyloxy groups. Dalton Trans 2016; 45:7815-22. [DOI: 10.1039/c6dt00842a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report the stabilization of the hexa-coordination environment for P(v) corroles using alkyl/aryl substituted silyloxy groups as axial ligands. The P(v) corroles are highly fluorescent and highly stable under electrochemical conditions.
Collapse
Affiliation(s)
- Tamal Chatterjee
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400 076
- India
| | - Way-Zen Lee
- Instrumentation Center
- Department of Chemistry
- National Taiwan Normal University
- Taipei
- Taiwan
| | | |
Collapse
|
22
|
Sinha W, Ravotto L, Ceroni P, Kar S. NIR-emissive iridium(iii) corrole complexes as efficient singlet oxygen sensitizers. Dalton Trans 2015; 44:17767-73. [DOI: 10.1039/c5dt03041b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The observed phosphorescence of the studied Ir(iii)corroles at ambient temperature appears at much longer wavelengths than the previously reported Ir(iii) porphyrin/corrole derivatives. Efficiencies of these compounds in the generation of singlet oxygen are also studied for the first time.
Collapse
Affiliation(s)
- Woormileela Sinha
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- Bhubaneswar – 751005
- India
| | - Luca Ravotto
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
| | - Paola Ceroni
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
| | - Sanjib Kar
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- Bhubaneswar – 751005
- India
| |
Collapse
|
23
|
Lu E, Liddle ST. Uranium-mediated oxidative addition and reductive elimination. Dalton Trans 2015; 44:12924-41. [DOI: 10.1039/c5dt00608b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This Perspective article summarises the emerging research topic of uranium-mediated oxidative addition and reductive elimination.
Collapse
Affiliation(s)
- Erli Lu
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | - Stephen T. Liddle
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| |
Collapse
|
24
|
Sinha W, Kar S. Reactions of Grignard Reagents with Tin-Corrole Complexes: Demetalation Strategy and σ-Methyl/Phenyl Complexes. Organometallics 2014. [DOI: 10.1021/om500861p] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Woormileela Sinha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar − 751005, India
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar − 751005, India
| |
Collapse
|
25
|
Teo RD, Gray HB, Lim P, Termini J, Domeshek E, Gross Z. A cytotoxic and cytostatic gold(iii) corrole. Chem Commun (Camb) 2014; 50:13789-92. [DOI: 10.1039/c4cc06577h] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The bis-sulfonated Au(iii) corrole (1-Au) was found to be much more cytotoxic and cytostatic than its Ga(iii) analog 1-Ga, which might be attributed to the lower affinity of 1-Au to serum albumin.
Collapse
Affiliation(s)
- Ruijie D. Teo
- Division of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena, USA
- Department of Molecular Medicine
- Beckman Research Institute of the City of Hope
| | - Harry B. Gray
- Division of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena, USA
| | - Punnajit Lim
- Department of Molecular Medicine
- Beckman Research Institute of the City of Hope
- Duarte, USA
| | - John Termini
- Department of Molecular Medicine
- Beckman Research Institute of the City of Hope
- Duarte, USA
| | - Elena Domeshek
- Schulich Faculty of Chemistry
- Technion—Israel Institute of Technology
- Haifa 32000, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry
- Technion—Israel Institute of Technology
- Haifa 32000, Israel
| |
Collapse
|