1
|
Huo Q, Li R, Chen C, Wang C, Long T, Liu X. Study on potential microbial community to the waste water treatment from bauxite desilication process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15438-15453. [PMID: 36169826 DOI: 10.1007/s11356-022-23150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Discharging waste water from the bauxite desilication process will bring potential environmental risk from the residual ions and organic compounds, especially hydrolyzed polyacrylamide. Characterization of the microbial community diversity in waste water plays an important role in the biological treatment of waste water. In this study, eight waste water samples from five flotation plants in China were investigated. The microbial community and functional profiles within the waste water were analyzed by a metagenomic sequencing method and associated with geochemical properties. The results revealed that Proteobacteria and Firmicutes were the dominant bacterial phyla. Both phylogenetical and clusters of orthologous groups' analyses indicated that Tepidicella, Paracoccus, Pseudomonas, and Exiguobacterium could be the dominant bacterial genera in the waste water from bauxite desilication process for their abilities to biodegrade complex organic compounds. The results of the microbial community diversity and functional gene compositions analyses provided a beneficial orientation for the biotreatment of waste water, as well as regenerative using of water resources. Besides, this study revealed that waste water from bauxite desilication process was an ideal ecosystem to find novel microorganisms, such as efficient strains for bio-desilication and bio-desulfurization of bauxite.
Collapse
Affiliation(s)
- Qiang Huo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, No. 1, Yanzhong Road, Guilin, 541006, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, No. 1, Yanzhong Road, Guilin, 541006, China
- College of Environment and Resources, Guangxi Normal University, No. 1, Yanzhong Road, Guilin, 541006, China
| | - Ruoyang Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, No. 1, Yanzhong Road, Guilin, 541006, China
- College of Environment and Resources, Guangxi Normal University, No. 1, Yanzhong Road, Guilin, 541006, China
| | - Chunqiang Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, No. 1, Yanzhong Road, Guilin, 541006, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, No. 1, Yanzhong Road, Guilin, 541006, China
- College of Environment and Resources, Guangxi Normal University, No. 1, Yanzhong Road, Guilin, 541006, China
| | - Chenquan Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, No. 1, Yanzhong Road, Guilin, 541006, China
- College of Environment and Resources, Guangxi Normal University, No. 1, Yanzhong Road, Guilin, 541006, China
| | - Tengfa Long
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, No. 1, Yanzhong Road, Guilin, 541006, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, No. 1, Yanzhong Road, Guilin, 541006, China
- College of Environment and Resources, Guangxi Normal University, No. 1, Yanzhong Road, Guilin, 541006, China
| | - Xi Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, No. 1, Yanzhong Road, Guilin, 541006, China.
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, No. 1, Yanzhong Road, Guilin, 541006, China.
- School of Economics and Management, Guangxi Normal University, Guilin, 541006, China.
| |
Collapse
|
2
|
Di Rocco G, Battistuzzi G, Borsari M, Bortolotti CA, Ranieri A, Sola M. The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Li B, Steindel P, Haddad N, Elliott SJ. Maximizing (Electro)catalytic CO 2 Reduction with a Ferredoxin-Based Reduction Potential Gradient. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Bin Li
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Phillip Steindel
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Narmien Haddad
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sean J. Elliott
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
4
|
Nazemi Z, Prasad P, Chakraborty S. Kinetics of Oxygen Reduction by a Beta Barrel Heme Protein on Hyrid Bioelectrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.201901945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zahra Nazemi
- Department of Chemistry and BiochemistryUniversity of Mississippi, University Mississippi MS 38677 USA
| | - Pallavi Prasad
- Department of Chemistry and BiochemistryUniversity of Mississippi, University Mississippi MS 38677 USA
| | - Saumen Chakraborty
- Department of Chemistry and BiochemistryUniversity of Mississippi, University Mississippi MS 38677 USA
| |
Collapse
|
5
|
Klünemann T, Preuß A, Adamczack J, Rosa LF, Harnisch F, Layer G, Blankenfeldt W. Crystal Structure of Dihydro-Heme d1 Dehydrogenase NirN from Pseudomonas aeruginosa Reveals Amino Acid Residues Essential for Catalysis. J Mol Biol 2019; 431:3246-3260. [DOI: 10.1016/j.jmb.2019.05.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
|
6
|
Versantvoort W, Pol A, Daumann LJ, Larrabee JA, Strayer AH, Jetten MS, van Niftrik L, Reimann J, Op den Camp HJ. Characterization of a novel cytochrome c as the electron acceptor of XoxF-MDH in the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:595-603. [DOI: 10.1016/j.bbapap.2019.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 11/29/2022]
|
7
|
Maiocco SJ, Walker LM, Elliott SJ. Determining Redox Potentials of the Iron-Sulfur Clusters of the AdoMet Radical Enzyme Superfamily. Methods Enzymol 2018; 606:319-339. [PMID: 30097097 DOI: 10.1016/bs.mie.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While protein film electrochemistry (PFE) has proven to be an effective tool in the interrogation of redox cofactors and assessing the electrocatalytic activity of many different enzymes, recently it has been proven to be useful for the study of the redox potentials of the cofactors of AdoMet radical enzymes (AREs). In this chapter, we review the challenges and opportunities of examining the redox cofactors of AREs in a high level of detail, particularly for the deconvolution of redox potentials of multiple cofactors. We comment on how to best assess the electroactive nature of any given ARE, and we see that when applied well, PFE allows for not only determining redox potentials, but also determining proton-coupling and ligand-binding phenomena in the ARE superfamily.
Collapse
Affiliation(s)
| | - Lindsey M Walker
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Sean J Elliott
- Department of Chemistry, Boston University, Boston, MA, United States.
| |
Collapse
|
8
|
Kan SBJ, Lewis RD, Chen K, Arnold FH. Directed evolution of cytochrome c for carbon-silicon bond formation: Bringing silicon to life. Science 2017; 354:1048-1051. [PMID: 27885032 DOI: 10.1126/science.aah6219] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/11/2016] [Indexed: 01/20/2023]
Abstract
Enzymes that catalyze carbon-silicon bond formation are unknown in nature, despite the natural abundance of both elements. Such enzymes would expand the catalytic repertoire of biology, enabling living systems to access chemical space previously only open to synthetic chemistry. We have discovered that heme proteins catalyze the formation of organosilicon compounds under physiological conditions via carbene insertion into silicon-hydrogen bonds. The reaction proceeds both in vitro and in vivo, accommodating a broad range of substrates with high chemo- and enantioselectivity. Using directed evolution, we enhanced the catalytic function of cytochrome c from Rhodothermus marinus to achieve more than 15-fold higher turnover than state-of-the-art synthetic catalysts. This carbon-silicon bond-forming biocatalyst offers an environmentally friendly and highly efficient route to producing enantiopure organosilicon molecules.
Collapse
Affiliation(s)
- S B Jennifer Kan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Russell D Lewis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kai Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
9
|
Frato KE, Walsh KA, Elliott SJ. Functionally Distinct Bacterial Cytochrome c Peroxidases Proceed through a Common (Electro)catalytic Intermediate. Biochemistry 2015; 55:125-32. [PMID: 26575087 DOI: 10.1021/acs.biochem.5b01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diheme cytochrome c peroxidase from Shewanella oneidensis (So CcP) requires a single electron reduction to convert the oxidized, as-isolated enzyme to an active conformation. We employ protein film voltammetry to investigate the mechanism of hydrogen peroxide turnover by So CcP. When the enzyme is poised in the active state by incubation with sodium l-ascorbate, the graphite electrode specifically captures a highly active state that turns over peroxide in a high potential regime. This is the first example of an on-pathway catalytic intermediate observed for a bacterial diheme cytochrome c peroxidase that requires reductive activation, consistent with the observed voltammetric response from the diheme cytochrome c peroxidase from Nitrosomonas europaea (Ne), which is constitutively active and does not require the same one electron activation. Mutational analysis at the active site of So CcP confirms that the rate-limiting step involves a proton-coupled single electron reduction of a high valent iron species centered on the low-potential heme, consistent with the same mutation in Ne CcP. The pH dependence of catalysis for wild-type So CcP suggests that reduction shifts the pK(a)'s of at least two amino acids. Mutation of His81 in "loop 1", a surface exposed loop thought to shift conformation during the reductive activation process, eliminated one of the pH dependent features, confirming that the loop 1 shifts, changing the environment of His81 during the rate-limiting step. The observed catalytic intermediate has the same electron stoichiometry and similar pH dependence to that previously reported for Ne CcP, which is constitutively active and therefore hypothesized to follow a different catalytic mechanism. The prominent similarities between the rate-limiting steps of differing mechanistic classes of bCcPs suggest unexpected similarities in the intermediates formed.
Collapse
Affiliation(s)
- Katherine E Frato
- Department of Chemistry, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Kelly A Walsh
- Department of Chemistry, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.,Molecular Biology, Cell Biology, and Biochemistry Program, Boston University , 5 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Sean J Elliott
- Department of Chemistry, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.,Molecular Biology, Cell Biology, and Biochemistry Program, Boston University , 5 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
10
|
Kandemir B, Chakraborty S, Guo Y, Bren KL. Semisynthetic and Biomolecular Hydrogen Evolution Catalysts. Inorg Chem 2015; 55:467-77. [DOI: 10.1021/acs.inorgchem.5b02054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Banu Kandemir
- Department of Chemistry, University of Rochester, Rochester New York 14627-0216, United States
| | - Saikat Chakraborty
- Department of Chemistry, University of Rochester, Rochester New York 14627-0216, United States
| | - Yixing Guo
- Department of Chemistry, University of Rochester, Rochester New York 14627-0216, United States
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester New York 14627-0216, United States
| |
Collapse
|