1
|
Baur P, Comba P, Velmurugan G. Efficient Synthesis for a Wide Variety of Patellamide Derivatives and Phosphatase Activity of Copper‐Patellamide Complexes. Chemistry 2022; 28:e202200249. [PMID: 35179261 PMCID: PMC9311697 DOI: 10.1002/chem.202200249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Philipp Baur
- Universität Heidelberg Anorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Peter Comba
- Universität Heidelberg Anorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Gunasekaran Velmurugan
- Universität Heidelberg Anorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
2
|
Nambigari N, Kodipaka A, Vuradi RK, Airva PK, Sirasani S. A Biophysical Study of Ru(II) Polypyridyl Complex, Properties and its Interaction with DNA. J Fluoresc 2022; 32:1211-1228. [PMID: 35353277 DOI: 10.1007/s10895-021-02879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/17/2021] [Indexed: 10/18/2022]
Abstract
Mononuclear Ru(II)Polypyridyl complexes of type [Ru(A)2BPIIP] (ClO4)2.2H2O, where BPIIP = 2-(3-(4-bromophenyl)isoxazole-5-yl)-1 H-imidazo [4,5-f] [1, 10] phenanthroline and A = bpy = bipyridyl (1), phen = 1,10 Phenanthroline (2), dmb = 4, 4' -dimethyl 2, 2'- bipyridine (3) & dmp = 4,4'-dimethyl-1,10 -Ortho Phenanthroline (4), were synthesized and their antibacterial activity were examined. The synthesized complexes were characterized and their interaction with DNA was studied using Computational and Biophysical methods (Absorption, emission methods, and viscosity). Molecular modelling studies were carried out for molecular geometry and electronic properties (Frontier molecular orbital HOMO-LUMO). The electrostatic potential surface contours for the complexes were analysed to give their nucleophilic level of sensitivity. The study reveals that the Ru(II) Polypyridyl complexes bind to DNA preponderantly by intercalation. The results recommend that the phen and dmp complex have more effective binding ability than the bpy and dmb, indicating the role of the ancillary ligand in determining their specificity for DNA binding. Further molecular docking studies suggested an octahedral geometry and bind to DNA by preferential binding to Guanine. The docking study additionally sustains the binding constant data acquired with the absorption and emission techniques.The results reveal that the nature of the ancillary Ligand plays a considerable role for the intercalation of the Ru(II) polypyridyl complex to DNA, which subsequently influences the antibacterial activity. Biological studies conducted on Gram-Negative (E.coli and K.pneumonia) and Gram-Positive (S. aureus and E. faecalis) bacteria establish that complex 1 and 2 were considerably active against S. aureus and E. coli.
Collapse
Affiliation(s)
- Navaneetha Nambigari
- Department of Chemistry, University College of Science, Osmania University, Saifabad, Telangana State, 500004, India. .,Department of Chemistry, University College of Science, Osmania University, Tarnaka, Telangana State, 500007, India.
| | - Aruna Kodipaka
- Department of Chemistry, University College of Science, Osmania University, Saifabad, Telangana State, 500004, India
| | - Ravi Kumar Vuradi
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Telangana State, 500007, India
| | - Praveen Kumar Airva
- Department of Biotechnology, Sri Satya Sai University of Technology & Medical Sciences, Bhopal- Indore Road, Opp. Oilfed Plant, Sehore, Madhya Pradesh, 466001, India
| | - Satyanarayana Sirasani
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Telangana State, 500007, India.
| |
Collapse
|
3
|
Possible Functional Roles of Patellamides in the Ascidian-Prochloron Symbiosis. Mar Drugs 2022; 20:md20020119. [PMID: 35200648 PMCID: PMC8875616 DOI: 10.3390/md20020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Patellamides are highly bioactive compounds found along with other cyanobactins in the symbiosis between didemnid ascidians and the enigmatic cyanobacterium Prochloron. The biosynthetic pathway of patellamide synthesis is well understood, the relevant operons have been identified in the Prochloron genome and genes involved in patellamide synthesis are among the most highly transcribed cyanobacterial genes in hospite. However, a more detailed study of the in vivo dynamics of patellamides and their function in the ascidian-Prochloron symbiosis is complicated by the fact that Prochloron remains uncultivated despite numerous attempts since its discovery in 1975. A major challenge is to account for the highly dynamic microenvironmental conditions experienced by Prochloron in hospite, where light-dark cycles drive rapid shifts between hyperoxia and anoxia as well as pH variations from pH ~6 to ~10. Recently, work on patellamide analogues has pointed out a range of different catalytic functions of patellamide that could prove essential for the ascidian-Prochloron symbiosis and could be modulated by the strong microenvironmental dynamics. Here, we review fundamental properties of patellamides and their occurrence and dynamics in vitro and in vivo. We discuss possible functions of patellamides in the ascidian-Prochloron symbiosis and identify important knowledge gaps and needs for further experimental studies.
Collapse
|
4
|
Adam A, Mehrparvar S, Haberhauer G. An azobenzene container showing a definite folding - synthesis and structural investigation. Beilstein J Org Chem 2019; 15:1534-1544. [PMID: 31354872 PMCID: PMC6633880 DOI: 10.3762/bjoc.15.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022] Open
Abstract
The combination of photo-switchable units with macrocycles is a very interesting field in supramolecular chemistry. Here, we present the synthesis of a foldable container consisting of two different types of Lissoclinum macrocyclic peptides which are connected via two azobenzene units. The container is controllable by light: irradiation with UV light causes a switching process to the compact cis,cis-isomer, whereas by the use of visible light the stretched trans,trans-isomer is formed. By means of quantum chemical calculations and CD spectroscopy we could show that the trans→cis isomerization is spatially directed; that means that one of the two different macrocycles performs a definite clockwise rotation to the other, caused by irradiation with UV light. For the cis→trans isomerization counterclockwise rotations are found. Furthermore, quantum chemical calculations reveal that the energy of the cis,cis-isomer is only slightly higher than the energy of the cis,trans-isomer. This effect can be explained by the high dispersion energy in the compact cis,cis-isomer.
Collapse
Affiliation(s)
- Abdulselam Adam
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstr. 7, D-45117 Essen, Germany
| | - Saber Mehrparvar
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstr. 7, D-45117 Essen, Germany
| | - Gebhard Haberhauer
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstr. 7, D-45117 Essen, Germany
| |
Collapse
|
5
|
|
6
|
Mehrparvar S, Adam A, Haberhauer G. Switchable Imidazole Platform - Synthesis and Structural Investigation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Saber Mehrparvar
- Institut für Organische Chemie; Universität Duisburg-Essen; Universitätsstr. 7 45117 Essen Germany
| | - Abdulselam Adam
- Institut für Organische Chemie; Universität Duisburg-Essen; Universitätsstr. 7 45117 Essen Germany
| | - Gebhard Haberhauer
- Institut für Organische Chemie; Universität Duisburg-Essen; Universitätsstr. 7 45117 Essen Germany
| |
Collapse
|
7
|
Adam A, Mehrparvar S, Haberhauer G, Glüsenkamp KH, Wölper C. N-Aryl Imidazole Platforms - Synthesis and Structural Investigation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abdulselam Adam
- Institut für Organische Chemie; Universität Duisburg-Essen; Universitätsstr. 7 45117 Essen Germany
| | - Saber Mehrparvar
- Institut für Organische Chemie; Universität Duisburg-Essen; Universitätsstr. 7 45117 Essen Germany
| | - Gebhard Haberhauer
- Institut für Organische Chemie; Universität Duisburg-Essen; Universitätsstr. 7 45117 Essen Germany
| | | | - Christoph Wölper
- Institut für Organische Chemie; Universität Duisburg-Essen; Universitätsstr. 7 45117 Essen Germany
| |
Collapse
|
8
|
Maślewski P, Wyrzykowski D, Witwicki M, Dołęga A. Histaminol and Its Complexes with Copper(II) - Studies in Solid State and Solution. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Piotr Maślewski
- Department of Inorganic Chemistry; Faculty of Chemistry; Gdansk University of Technology; 11/12 Narutowicza Str. 80-233 Gdańsk Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry; Faculty of Chemistry; University of Gdańsk; 63 Wita Stwosza Str. 80-308 Gdańsk Poland
| | - Maciej Witwicki
- Faculty of Chemistry; Wroclaw University; 14 F. Joliot-Curie Str. 50-283 Wroclaw Poland
| | - Anna Dołęga
- Department of Inorganic Chemistry; Faculty of Chemistry; Gdansk University of Technology; 11/12 Narutowicza Str. 80-233 Gdańsk Poland
| |
Collapse
|
9
|
Xie S, Savchenko AI, Kerscher M, Grange RL, Krenske EH, Harmer JR, Bauer MJ, Broit N, Watters DJ, Boyle GM, Bernhardt PV, Parsons PG, Comba P, Gahan LR, Williams CM. Heteroatom-Interchanged Isomers of Lissoclinamide 5: Copper(II) Complexation, Halide Binding, and Biological Activity. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sida Xie
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
- Southwest Forestry University; 650224 Kunming P. R. China
| | - Andrei I. Savchenko
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
| | - Marion Kerscher
- Anorganisch-Chemisches Institut and Interdisciplinary Centre for Scientific Computing; Universität Heidelberg; INF 270; 69120 Heidelberg Germany
| | - Rebecca L. Grange
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
| | - Jeffrey R. Harmer
- Center for Advanced Imaging; The University of Queensland; 4072 Brisbane Queensland Australia
| | - Michelle J. Bauer
- QIMR Berghofer Medical Research Institute; PO Royal Brisbane Hospital; 4029 Brisbane Queensland Australia
| | - Natasa Broit
- QIMR Berghofer Medical Research Institute; PO Royal Brisbane Hospital; 4029 Brisbane Queensland Australia
| | - Dianne J. Watters
- School of Environment and Science; Griffith University; 4111 Brisbane QLD Australia
| | - Glen M. Boyle
- QIMR Berghofer Medical Research Institute; PO Royal Brisbane Hospital; 4029 Brisbane Queensland Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
| | - Peter G. Parsons
- QIMR Berghofer Medical Research Institute; PO Royal Brisbane Hospital; 4029 Brisbane Queensland Australia
| | - Peter Comba
- Anorganisch-Chemisches Institut and Interdisciplinary Centre for Scientific Computing; Universität Heidelberg; INF 270; 69120 Heidelberg Germany
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
| |
Collapse
|
10
|
Shimizu I, Morimoto Y, Faltermeier D, Kerscher M, Paria S, Abe T, Sugimoto H, Fujieda N, Asano K, Suzuki T, Comba P, Itoh S. Tetrahedral Copper(II) Complexes with a Labile Coordination Site Supported by a Tris-tetramethylguanidinato Ligand. Inorg Chem 2017; 56:9634-9645. [DOI: 10.1021/acs.inorgchem.7b01154] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ikuma Shimizu
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuma Morimoto
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Dieter Faltermeier
- Anorganisch-Chemisches Institut and Interdisciplinary
Center for Scientific Computing, Universität Heidelberg, INF 270, 69120 Heidelberg, Germany
| | - Marion Kerscher
- Anorganisch-Chemisches Institut and Interdisciplinary
Center for Scientific Computing, Universität Heidelberg, INF 270, 69120 Heidelberg, Germany
| | - Sayantan Paria
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tsukasa Abe
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hideki Sugimoto
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nobutaka Fujieda
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kaori Asano
- Comprehensive Analysis Center, The Institute of Scientific
and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0057, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, The Institute of Scientific
and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0057, Japan
| | - Peter Comba
- Anorganisch-Chemisches Institut and Interdisciplinary
Center for Scientific Computing, Universität Heidelberg, INF 270, 69120 Heidelberg, Germany
| | - Shinobu Itoh
- Department of Material
and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Comba P, Eisenschmidt A, Gahan LR, Herten DP, Nette G, Schenk G, Seefeld M. Is CuIICoordinated to Patellamides insideProchloronCells? Chemistry 2017; 23:12264-12274. [DOI: 10.1002/chem.201700895] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Peter Comba
- Universität Heidelberg; Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR); Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Annika Eisenschmidt
- Universität Heidelberg; Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR); Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Bioscience; University of Queensland; Brisbane, Queensland 4072 Australia
| | - Dirk-Peter Herten
- CellNetworks Cluster und Physikalisch-Chemisches Institut; Universität Heidelberg; 69120 Heidelberg Germany
| | - Geoffrey Nette
- Independent Marine Biochemistry Research (IMBCR Pty. Ltd.); Point Lookout, Queensland 4183 Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Bioscience; University of Queensland; Brisbane, Queensland 4072 Australia
| | - Martin Seefeld
- CellNetworks Cluster und Physikalisch-Chemisches Institut; Universität Heidelberg; 69120 Heidelberg Germany
- Biochemistry Center (BZH); Universität Heidelberg; Im Neuenheimer Feld 345 69120 Heidelberg Germany
| |
Collapse
|
12
|
Comba P, Eisenschmidt A, Gahan LR, Hanson GR, Mehrkens N, Westphal M. Dinuclear Zn II and mixed Cu II-Zn II complexes of artificial patellamides as phosphatase models. Dalton Trans 2016; 45:18931-18945. [PMID: 27841434 DOI: 10.1039/c6dt03787a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The patellamides (cyclic pseudo-octapeptides) are produced by Prochloron, a symbiont of the ascidians, marine invertebrate filter feeders. These pseudo-octapeptides are present in the cytoplasm and a possible natural function of putative metal complexes of these compounds is hydrolase activity, however the true biological role is still unknown. The dinuclear CuII complexes of synthetic patellamide derivatives have been shown in in vitro experiments to be efficient hydrolase model catalysts. Many hydrolase enzymes, specifically phosphatases and carboanhydrases, are ZnII-based enzymes and therefore, we have studied the ZnII and mixed ZnII/CuII solution chemistry of a series of synthetic patellamide derivatives, including solution structural and computational work, with the special focus on model phosphatase chemistry with bis-(2,4-dinitrophenyl)phosphate (BDNPP) as the substrate. The ZnII complexes of a series of ligands are shown to form complexes of similar structure and stability compared to the well-studied CuII analogues and the phosphatase reactivities are also similar. Since the complex stabilities and phosphatase activities are generally a little lower compared to those of CuII and since the concentration of ZnII in Prochloron cells is slightly smaller, we conclude that the CuII complexes of the patellamides are more likely to be of biological importance.
Collapse
Affiliation(s)
- Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 270, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|