1
|
Galuppo C, Gomes de Oliveira Junior A, Dos Santos Oliveira L, de Souza Guarda PH, Buffon R, Abbehausen C. Reactivity of Ni II, Pd II and Pt II complexes bearing phosphine ligands towards Zn II displacement and hydrolysis in Cis 2His 2 and Cis 3His zinc-fingers domains. J Inorg Biochem 2023; 240:112117. [PMID: 36635196 DOI: 10.1016/j.jinorgbio.2022.112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
A systematic study of the effect of phosphine and bis-phosphine ligands in the interaction of NiII, PdII, and PtII complexes with two classes of zinc fingers was performed. The Cys2His2, finger 3 of specific protein-1, and the Cys2HisCys C-terminal zinc finger of nucleocapsid protein 7 of the HIV-1 were used as models of the respective class. In general, phosphine ligands favor the metal binding to the peptide, although the bis-phosphine ligands produce more specific binding than the monodentate. In the case of nickel complexes, the interaction of NiII ions with the sequence SKH, present in Cys2His2, results in hydrolysis, contrasting to the preferred zinc ejection produced by the NiII complexes with chelating phosphines, producing Ni(bis-phosphine) fingers. In the absence of the SKH sequence, zinc ejection is observed with the formation of nickel fingers, with reactivity dependent on the phosphine. On the other hand, Pd(phosphines) produces Pd2 fingers in the case of triphenylphosphine with the phosphine coordinated as intermediate species. The bis-phosphine ligands produce very clean spectra and a stable signal Pd(bis-phosphine)finger. Interestingly, phosphines produce very reactive platinum complexes, which eject zinc and promote peptide hydrolysis. The results reported here are relevant to the understanding of the mechanism of these interactions and how to modulate metallocompounds for zinc finger interference.
Collapse
Affiliation(s)
- Carolina Galuppo
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | | | - Laiane Dos Santos Oliveira
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | | | - Regina Buffon
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Targeting emerging cancer hallmarks by transition metal complexes: Epigenetic reprogramming and epitherapies. Part II. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Ok K, Filipovic MR, Michel SLJ. Targeting Zinc Finger Proteins with Exogenous Metals and Molecules: Lessons learned from Tristetraprolin, a CCCH type Zinc Finger. Eur J Inorg Chem 2021; 2021:3795-3805. [PMID: 34867080 PMCID: PMC8635303 DOI: 10.1002/ejic.202100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/09/2022]
Abstract
ZF proteins are ubiquitous eukaryotic proteins that play important roles in gene regulation. ZFs contain small domains made up of a combination of four cysteine and histidine residues, and are classified based up on the identity of these residues and their spacing. One emerging class of ZFs are the Cys3His (or CCCH) class of ZFs. These ZFs play key roles in regulating RNA. In this minireview, an overview of the CCCH class of ZFs, with a focus on tristetraprolin (TTP) is provided. TTP regulates inflammation by controlling cytokine mRNAs, and there is an interest in modulating TTP activity to control inflammation. Two methods to control TTP activity are to target with exogenous metals (a 'metals in medicine' approach) or to target with endogenous signaling molecules. Work that has been done to target TTP with Fe, Cu, Cd and Au as well as with H2S is reviewed. This includes attention to new methods that have been developed to monitor metal exchange with the spectroscopically silent ZnII including native electro-spray ionization mass spectrometry (ESI-MS), spin-filter inductively coupled plasma mass spectrometry (ICP-MS) and cryo-electro-spray mass spectrometry (CSI-MS); along with fluorescence anisotropy (FA) to follow RNA binding.
Collapse
Affiliation(s)
- Kiwon Ok
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Milos R Filipovic
- Leibniz-Institut für Analytische, Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
de Paiva REF, Peterson EJ, Du Z, Farrell NP. The leaving group in Au(I)-phosphine compounds dictates cytotoxic pathways in CEM leukemia cells and reactivity towards a Cys 2His 2 model zinc finger. Dalton Trans 2021; 49:16319-16328. [PMID: 32432260 DOI: 10.1039/d0dt01136c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold(i)-phosphine "auranofin-like" compounds have been extensively explored as anticancer agents in the past decade. Although potent cytotoxic agents, the lack of selectivity towards tumorigenic vs. non-tumorigenic cell lines often hinders further application. Here we explore the cytotoxic effects of a series of (R3P)AuL compounds, evaluating both the effect of the basicity and bulkiness of the carrier phosphine (R = Et or Cy), and the leaving group L (Cl-vs. dmap). [Au(dmap)(Et3P)]+ had an IC50 of 0.32 μM against the CEM cell line, with good selectivity in relation to HUVEC. Flow cytometry indicates reduced G1 population and slight accumulation in G2, as opposed to auranofin, which induces a high population of cells with fragmented DNA. Protein expression profile sets [Au(dmap)(Et3P)]+ further apart from auranofin, with proteolytic degradation of caspase-3 and poly(ADP-ribose)-polymerase (PARP), DNA strand-break induced phosphorylation of Chk2 Thr68 and increased p53 ser15 phosphorylation. The cytoxicity and observable biological effects correlate directly with the reactivity trend observed when using the series of gold(i)-phosphine compounds for targeting a model zinc finger, Sp1 ZnF3.
Collapse
Affiliation(s)
- Raphael E F de Paiva
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP 05508-000, Brazil.
| | | | | | | |
Collapse
|
5
|
Arojojoye AS, Mertens RT, Ofori S, Parkin SR, Awuah SG. Synthesis, Characterization, and Antiproliferative Activity of Novel Chiral [QuinoxP*AuCl 2] + Complexes. Molecules 2020; 25:E5735. [PMID: 33291802 PMCID: PMC7730091 DOI: 10.3390/molecules25235735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
Herein is reported the synthesis of two Au(III) complexes bearing the (R,R)-(-)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (R,R-QuinoxP*) or (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (S,S-QuinoxP*) ligands. By reacting two stoichiometric equivalents of HAuCl4.3H2O to one equivalent of the corresponding QuinoxP* ligand, (R,R)-(-)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (1) and (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) were formed, respectively, in moderate yields. The structure of (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) was further confirmed by X-ray crystallography. The antiproliferative activities of the two compounds were evaluated in a panel of cell lines and exhibited promising results comparable to auranofin and cisplatin with IC50 values between 1.08 and 4.83 µM. It is noteworthy that in comparison to other platinum and ruthenium enantiomeric complexes, the two enantiomers (1 and 2) do not exhibit different cytotoxic effects. The compounds exhibited stability in biologically relevant media over 48 h as well as inert reactivity to excess glutathione at 37 °C. These results demonstrate that the Au(III) atom, stabilized by the QuinoxP* ligand, can provide exciting compounds for novel anticancer drugs. These complexes provide a new scaffold to further develop a robust and diverse library of chiral phosphorus Au(III) complexes.
Collapse
Affiliation(s)
- Adedamola S. Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
| | - R. Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
| | - Samuel Ofori
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
| | - Sean R. Parkin
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (A.S.A.); (R.T.M.); (S.O.); (S.R.P.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
6
|
de Paiva REF, Marçal Neto A, Santos IA, Jardim ACG, Corbi PP, Bergamini FRG. What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks. Dalton Trans 2020; 49:16004-16033. [PMID: 33030464 DOI: 10.1039/d0dt02478c] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In light of the Covid-19 outbreak, this review brings together historical and current literature efforts towards the development of antiviral metallodrugs. Classical compounds such as CTC-96 and auranofin are discussed in depth, as pillars for future metallodrug development. From the recent literature, both cell-based results and biophysical assays against potential viral biomolecule targets are summarized here. The comprehension of the biomolecular targets and their interactions with coordination compounds are emphasized as fundamental strategies that will foment further development of metal-based antivirals. We also discuss other possible and unexplored methods for unveiling metallodrug interactions with biomolecules related to viral replication and highlight the specific challenges involved in the development of antiviral metallodrugs.
Collapse
Affiliation(s)
- Raphael E F de Paiva
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP - 05508-000, Brazil.
| | | | | | | | | | | |
Collapse
|
7
|
Malik M, Bieńko DC, Komarnicka UK, Kyzioł A, Dryś M, Świtlicka A, Dyguda-Kazimierowicz E, Jedwabny W. Synthesis, structural characterization, docking simulation and in vitro antiproliferative activity of the new gold(III) complex with 2-pyridineethanol. J Inorg Biochem 2020; 215:111311. [PMID: 33246642 DOI: 10.1016/j.jinorgbio.2020.111311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Gold(III) complex containing 2-pyridineethanol has been synthesized and characterized structurally by single crystal X-ray diffraction, vibrational spectroscopy, 1H NMR spectroscopy, electrochemical study, and DFT calculations. The Au(III) ion is four coordinated with one N-donor ligand (L) and three Cl anions. The Okuniewski's (τ'4=0.018) has been used to estimate the angular distortion from ideal square planar geometry. The vibrational spectroscopy studies, in the solid state and DMSO solution and cyclic voltammetry, have been performed to determine its stability and redox activity, respectively. A complete assignment of the IR and Raman spectra has been made based on the calculated potential energy distribution (PED). The theoretical calculations have been made for two functionals and several basis sets. The compound has been evaluated for its antiproliferative properties in a human lung adenocarcinoma cell line (A549), mouse colon carcinoma (CT26), human breast adenocarcinoma (MCF-7), human prostate carcinoma derived from the metastatic site in the brain (DU-145), and PANC-1 human pancreas/duct carcinoma cell line and non-tumorigenic cell lines: HaCat (human keratinocyte), and HEK293T (human embryonic kidney). Au(III) complex cytotoxicity is significantly against A549 and MCF-7 cells as in the reference drug: cisplatin. Studies of the interactions of Au(III) complex with DNA, HSA (human serum albumin) have been performed. The results from modeling docking simulations indicate that the title complex exerts anticancer effects in vitro based on different mechanisms of action to compare with cisplatin.
Collapse
Affiliation(s)
- Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Dariusz C Bieńko
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Urszula K Komarnicka
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Magdalena Dryś
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Anna Świtlicka
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Edyta Dyguda-Kazimierowicz
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Wiktoria Jedwabny
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
8
|
Abbehausen C. Zinc finger domains as therapeutic targets for metal-based compounds - an update. Metallomics 2020; 11:15-28. [PMID: 30303505 DOI: 10.1039/c8mt00262b] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Zinc finger proteins are one of the most abundant families of proteins and present a wide range of structures and functions. The structural zinc ion provides the correct conformation to specifically recognize DNA, RNA and protein sequences. Zinc fingers have essential functions in transcription, protein degradation, DNA repair, cell migration, and others. Recently, reports on the extensive participation of zinc fingers in disease have been published. On the other hand, much information remains to be unravelled as many genomes and proteomes are being reported. A variety of zinc fingers have been identified; however, their functions are still under investigation. Because zinc fingers have identified functions in several diseases, they are being increasingly recognized as drug targets. The replacement of Zn(ii) by another metal ion in zinc fingers is one of the most prominent methods of inhibition. From one side, zinc fingers play roles in the toxicity mechanisms of Ni(ii), Hg(ii), Cd(ii) and others. From the other side, gold, platinum, cobalt, and selenium complexes are amongst the compounds being developed as zinc finger inhibitors for therapy. The main challenge in the design of therapeutic zinc finger inhibitors is to achieve selectivity. Recently, the design of novel compounds and elucidation of the mechanisms of zinc substitution have renewed the possibilities of selective zinc finger inhibition by metal complexes. This review aims to update the status of novel strategies to selectively target zinc finger domains by metal complexes.
Collapse
Affiliation(s)
- C Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
9
|
Ok K, Li W, Neu HM, Batelu S, Stemmler TL, Kane MA, Michel SLJ. Role of Gold in Inflammation and Tristetraprolin Activity. Chemistry 2020; 26:1535-1547. [DOI: 10.1002/chem.201904837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Kiwon Ok
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Wenjing Li
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Heather M. Neu
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Sharon Batelu
- Department of Pharmaceutical Sciences Wayne State University 259 Mack Avenue Detroit MI 48201 USA
| | - Timothy L. Stemmler
- Department of Pharmaceutical Sciences Wayne State University 259 Mack Avenue Detroit MI 48201 USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| |
Collapse
|
10
|
Gukathasan S, Parkin S, Awuah SG. Cyclometalated Gold(III) Complexes Bearing DACH Ligands. Inorg Chem 2019; 58:9326-9340. [DOI: 10.1021/acs.inorgchem.9b01031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
11
|
Investigation of 1-Methylcytosine as a Ligand in Gold(III) Complexes: Synthesis and Protein Interactions. INORGANICS 2018. [DOI: 10.3390/inorganics7010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The HIV nucleocapsid protein NCp7 was previously shown to play a number of roles in the viral life cycle and was previously identified as a potential target for small molecule intervention. In this work, the synthesis of the previously unreported complexes [Au(dien)(1MeCyt)]3+, [Au(N-Medien)(1MeCyt)]3+, and [Au(dien)(Cyt)]3+ is detailed, and the interactions of these complexes with the models for NCp7 are described. The affinity for these complexes with the target interaction site, the “essential” tryptophan of the C-terminal zinc finger motif of NCp7, was investigated through the use of a fluorescence quenching assay and by 1H-NMR spectroscopy. The association of [Au(dien)(1MeCyt)]3+ as determined through fluorescence quenching is intermediate between the previously reported DMAP and 9-EtGua analogs, while the associations of [Au(N-Medien)(1MeCyt)]3+ and [Au(dien)(Cyt)]3+ are lower than the previously reported complexes. Additionally, NMR investigation shows that the self-association of relevant compounds is negligible. The specifics of the interaction with the C-terminal zinc finger were investigated by circular dichroism spectroscopy and electrospray-ionization mass spectrometry. The interaction is complete nearly immediately upon mixing, and the formation of AuxFn+ (x = 1, 2, or 4; F = apopeptide) concomitant with the loss of all ligands is observed. Additionally, oxidized dimerized peptide was observed for the first time as a product, indicating a reaction via a charge transfer mechanism.
Collapse
|
12
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
The role of zinc and its compounds in leukemia. J Biol Inorg Chem 2018; 23:347-362. [DOI: 10.1007/s00775-018-1545-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
|
14
|
Abbehausen C, de Paiva REF, Bjornsson R, Gomes SQ, Du Z, Corbi PP, Lima FA, Farrell N. X-ray Absorption Spectroscopy Combined with Time-Dependent Density Functional Theory Elucidates Differential Substitution Pathways of Au(I) and Au(III) with Zinc Fingers. Inorg Chem 2017; 57:218-230. [DOI: 10.1021/acs.inorgchem.7b02406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Camilla Abbehausen
- Institute of Chemistry, University of Campinas—UNICAMP, P.O. Box 6154, CEP, 13083-970 Campinas, São Paulo, Brazil
| | | | - Ragnar Bjornsson
- Science Institute, University of Iceland, Dunhagi 3,
IS-107 Reykjavik, Iceland
| | - Saulo Quintana Gomes
- Institute of Chemistry, University of Campinas—UNICAMP, P.O. Box 6154, CEP, 13083-970 Campinas, São Paulo, Brazil
| | - Zhifeng Du
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284-2006, United States
| | - Pedro Paulo Corbi
- Institute of Chemistry, University of Campinas—UNICAMP, P.O. Box 6154, CEP, 13083-970 Campinas, São Paulo, Brazil
| | - Frederico Alves Lima
- Centro Nacional de Pesquisa em Energia
e Materiais, Brazilian Synchrotron Light Laboratory—LNLS, CP 6192, 13084-971 Campinas, São Paulo, Brazil
| | - Nicholas Farrell
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284-2006, United States
| |
Collapse
|
15
|
Mass spectrometry as a powerful tool to study therapeutic metallodrugs speciation mechanisms: Current frontiers and perspectives. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Li G, Yuan S, Zheng S, Chen Y, Zheng Z, Liu Y, Huang G. The Effect of Salts in Promoting Specific and Competitive Interactions between Zinc Finger Proteins and Metals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2658-2664. [PMID: 28887698 DOI: 10.1007/s13361-017-1789-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/01/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Specific protein-metal interactions (PMIs) fulfill essential functions in cells and organic bodies, and activation of these functions in vivo are mostly modulated by the complex environmental factors, including pH value, small biomolecules, and salts. Specifically, the role of salts in promoting specific PMIs and their competition among various metals has remained untapped mainly due to the difficulty to distinguish nonspecific PMIs from specific PMIs by classic spectroscopic techniques. Herein, we report Hofmeister salts differentially promote the specific PMIs by combining nanoelectrospray ionization mass spectrometry and spectroscopic techniques (fluorescence measurement and circular dichroism). Furthermore, to explore the influence of salts in competitive binding between metalloproteins and various metals, we designed a series of competitive experiments and applied to a well-defined model system, the competitive binding of zinc (II) and arsenic (III) to holo-promyelocytic leukemia protein (PML). These experiments not only provided new insights at the molecular scale as complementary to previous NMR and spectroscopic results, but also deduced the relative binding ability between zinc finger proteins and metals at the molecular scale, which avoids the mass spectrometric titration-based determination of binding constants that is frequently affected and often degraded by variable solution conditions including salt contents. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Gongyu Li
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Siming Yuan
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Shihui Zheng
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Yuting Chen
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Zhen Zheng
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Yangzhong Liu
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Guangming Huang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
17
|
Sancineto L, Iraci N, Tabarrini O, Santi C. NCp7: targeting a multitasking protein for next-generation anti-HIV drug development part 1: covalent inhibitors. Drug Discov Today 2017; 23:260-271. [PMID: 29107765 DOI: 10.1016/j.drudis.2017.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022]
Abstract
The major internal component of the HIV virion core is the nucleocapsid protein 7 (NCp7), a small, highly basic protein that is essential for multiple stages of the viral replicative cycle, and whose structure is preserved in all viral strains, including clinical isolates from therapy-experienced patients. This key protein is recognised as a potential target for an effective next-generation antiretroviral therapy, because it could offer the possibility to develop broad-spectrum agents that are less prone to select for resistant strains. Here, we provide a comprehensive overview of the covalent NCp7 inhibitors that have emerged over the past 25 years of drug discovery campaigns, emphasising, where possible, their structure-activity relationships (SARs) and pharmacophoric features.
Collapse
Affiliation(s)
- Luca Sancineto
- Department of Heterorganic Chemistry, Centre of Molecular and Macromolecular Studies, Lodz, Poland.
| | - Nunzio Iraci
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
18
|
de Paiva REF, Du Z, Peterson EJ, Corbi PP, Farrell NP. Probing the HIV-1 NCp7 Nucleocapsid Protein with Site-Specific Gold(I)–Phosphine Complexes. Inorg Chem 2017; 56:12308-12318. [DOI: 10.1021/acs.inorgchem.7b01762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raphael E. F. de Paiva
- Institute of Chemistry, University of Campinas − UNICAMP, P.O. Box 6154, 13083-970 Campinas-SP, Brazil
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Zhifeng Du
- Institute of Chemistry, University of Campinas − UNICAMP, P.O. Box 6154, 13083-970 Campinas-SP, Brazil
| | - Erica J. Peterson
- Institute of Chemistry, University of Campinas − UNICAMP, P.O. Box 6154, 13083-970 Campinas-SP, Brazil
| | - Pedro P. Corbi
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Nicholas P. Farrell
- Institute of Chemistry, University of Campinas − UNICAMP, P.O. Box 6154, 13083-970 Campinas-SP, Brazil
| |
Collapse
|
19
|
Shimberg GD, Ok K, Neu HM, Splan KE, Michel SLJ. Cu(I) Disrupts the Structure and Function of the Nonclassical Zinc Finger Protein Tristetraprolin (TTP). Inorg Chem 2017; 56:6838-6848. [PMID: 28557421 DOI: 10.1021/acs.inorgchem.7b00125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tristetraprolin (TTP) is a nonclassical zinc finger (ZF) protein that plays a key role in regulating inflammatory response. TTP regulates cytokines at the mRNA level by binding to AU-rich sequences present at the 3'-untranslated region, forming a complex that is then degraded. TTP contains two conserved CCCH domains with the sequence CysX8CysX5CysX3His that are activated to bind RNA when zinc is coordinated. During inflammation, copper levels are elevated, which is associated with increased inflammatory response. A potential target for Cu(I) during inflammation is TTP. To determine whether Cu(I) binds to TTP and how Cu(I) can affect TTP/RNA binding, two TTP constructs were prepared. One construct contained just the first CCCH domain (TTP-1D) and serves as a peptide model for a CCCH domain; the second construct contains both CCCH domains (TTP-2D) and is functional (binds RNA) when Zn(II) is coordinated. Cu(I) binding to TTP-1D was assessed via electronic absorption spectroscopy titrations, and Cu(I) binding to TTP-2D was assessed via both absorption spectroscopy and a spin filter/inductively coupled plasma mass spectrometry (ICP-MS) assay. Cu(I) binds to TTP-1D with a 1:1 stoichiometry and to TTP-2D with a 3:1 stoichiometry. The CD spectrum of Cu(I)-TTP-2D did not exhibit any secondary structure, matching that of apo-TTP-2D, while Zn(II)-TTP-2D exhibited a secondary structure. Measurement of RNA binding via fluorescence anisotropy revealed that Cu(I)-TTP-2D does not bind to the TTP-2D RNA target sequence UUUAUUUAUUU with any measurable affinity, while Zn(II)-TTP-2D binds to this site with nanomolar affinity. Similarly, addition of Cu(I) to the Zn(II)-TTP-2D/RNA complex resulted in inhibition of RNA binding. Together, these data indicate that, while Cu(I) binds to TTP-2D, it does not result in a folded or functional protein and that Cu(I) inhibits Zn(II)-TTP-2D/RNA binding.
Collapse
Affiliation(s)
- Geoffrey D Shimberg
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Kiwon Ok
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Heather M Neu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Kathryn E Splan
- Department of Chemistry, Macalester College , 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
20
|
Đurović MD, Bugarčić ŽD, van Eldik R. Stability and reactivity of gold compounds – From fundamental aspects to applications. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Diversity in Gold Finger Structure Elucidated by Traveling‐Wave Ion Mobility Mass Spectrometry. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Du Z, de Paiva REF, Nelson K, Farrell NP. Diversity in Gold Finger Structure Elucidated by Traveling‐Wave Ion Mobility Mass Spectrometry. Angew Chem Int Ed Engl 2017; 56:4464-4467. [DOI: 10.1002/anie.201612494] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/13/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Zhifeng Du
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| | | | - Kristina Nelson
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| | - Nicholas P. Farrell
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| |
Collapse
|
23
|
Spell SR, Mangrum JB, Peterson EJ, Fabris D, Ptak R, Farrell NP. Au(iii) compounds as HIV nucleocapsid protein (NCp7)-nucleic acid antagonists. Chem Commun (Camb) 2016; 53:91-94. [PMID: 27858001 PMCID: PMC7086404 DOI: 10.1039/c6cc07970a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The HIV nucleocapsid NCp7-SL2 RNA interaction is interrupted in the presence of a formally substitution-inert gold(dien)-nucleobase/N-heterocycle AuN4 compound where the N-heterocycle serves the dual purposes of a template for "non-covalent" molecular recognition of the essential tryptophan of the protein, mimicking the natural reaction and subsequent "fixation" by Au-Cys bond formation providing a chemotype for a new distinct class of nucleocapsid-nucleic acid antagonist.
Collapse
Affiliation(s)
- Sarah R Spell
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | - John B Mangrum
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Erica J Peterson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | - Daniele Fabris
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Roger Ptak
- Southern Research Institute, 431 Aviation Way, Frederick, Maryland 21701, USA
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| |
Collapse
|
24
|
Abbehausen C, Manzano C, Corbi P, Farrell N. Effects of coordination mode of 2-mercaptothiazoline on reactivity of Au(I) compounds with thiols and sulfur-containing proteins. J Inorg Biochem 2016; 165:136-145. [DOI: 10.1016/j.jinorgbio.2016.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/13/2016] [Accepted: 05/13/2016] [Indexed: 01/01/2023]
|
25
|
Bernardes VHF, Qu Y, Du Z, Beaton J, Vargas MD, Farrell NP. Interaction of the HIV NCp7 Protein with Platinum(II) and Gold(III) Complexes Containing Tridentate Ligands. Inorg Chem 2016; 55:11396-11407. [PMID: 27934299 DOI: 10.1021/acs.inorgchem.6b01925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human immunodeficiency virus (HIV) nucleocapsid protein (NCp7) plays significant roles in the virus life cycle and has been targeted by compounds that could lead to its denaturation or block its interaction with viral RNA. Herein, we describe the interactions of platinum(II) and gold(III) complexes with NCp7 and how the reactivity/affinity of potential inhibitors can be modulated by judicious choice of ligands. The interactions of [MCl(N3)]n+ (M = Pt2+ (n = 1) and Au3+ (n = 2); N3 = tridentate chelate ligands: bis(2-pyridylmethyl)methylamine (Mebpma, L1) and bis(2-pyridylmethyl)amine (bpma, L2) with the C-terminal zinc finger of NCp7 (ZF2) were investigated by electrospray ionization-mass spectroscopy (ESI-MS). Mass spectra from the incubation of [MCl(Mebpma)]n+ complexes (PtL1 and AuL1) with ZF2 indicated that they were more reactive than the previously studied diethylenetriamine-containing analogues [MCl(dien)]n+. The initial product of reaction of PtL1 with ZF2 results in loss of all ligands and release of zinc to give the platinated apopeptide {PtF} (F = apopeptide). This is in contrast to the incubation with [PtCl(dien)]+, in which {Pt(dien)}-peptide adducts are observed. Incubation of the Au3+ complex AuL1 with ZF2 gave AuxFn+ species (x = 1, 2, 4, F = apopeptide) again with loss of all ligands. Furthermore, the formally substitution-inert analogues [Pt(N3)L]2+ (L = 4-methylpyridine (4-pic), 4-dimethylaminopyridine (dmap), and 9-ethylguanine (9-EtGua)) were prepared to examine stacking interactions with N-acetyltryptophan (N-AcTrp), the Trp-containing ZF2, and the "full" two-finger NCp7 itself using fluorescence quenching titration. Use of bpma and Mebpma gave slightly higher affinity than analogous [Pt(dien)L)]2+ complexes. The dmap-containing complexes (PtL1a and PtL2a) had the greatest association constants (Ka) for N-AcTrp and ZF2 peptide. The complex PtL1a had the highest Ka when compared with other known Pt2+ analogues: [Pt(dien)(9-EtGua)]2+ < [Pt(bpma)(9-EtGua)]2+ < [Pt(dien)(dmap)]2+< PtL2a < PtL1a. A Ka value of ca. 40.6 ± 1.0 × 103 M-1 was obtained for the full NCp7 peptide with PtL1a. In addition, the mass spectrum of the interaction between ZF2 and PtL1a confirms formation of a 1:1 PtL1a/ZF2 adduct. The reactivity of selected complexes with sulfur-containing amino acid N-acetylcysteine (N-AcCys) was also investigated by 195Pt and 1H NMR spectroscopy and ESI-MS. The precursor compounds [PtCl(N3)]+ PtL1 and PtL2 reacted readily, whereas their [Pt(N3)L]2+ analogues PtL1a and PtL2a were inert to substitution.
Collapse
Affiliation(s)
- Victor H F Bernardes
- Chemistry Institute, Fluminense Federal University , Campus Valonguinho, CEP 24020-141, Niterói-RJ, Brazil.,Department of Chemistry, Virginia Commonwealth University , 1001 W. Main St., Richmond, Virginia 23284-2006, United States
| | - Yun Qu
- Department of Chemistry, Virginia Commonwealth University , 1001 W. Main St., Richmond, Virginia 23284-2006, United States
| | - Zhifeng Du
- Department of Chemistry, Virginia Commonwealth University , 1001 W. Main St., Richmond, Virginia 23284-2006, United States
| | - James Beaton
- Department of Chemistry, Virginia Commonwealth University , 1001 W. Main St., Richmond, Virginia 23284-2006, United States
| | - Maria D Vargas
- Chemistry Institute, Fluminense Federal University , Campus Valonguinho, CEP 24020-141, Niterói-RJ, Brazil
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University , 1001 W. Main St., Richmond, Virginia 23284-2006, United States
| |
Collapse
|
26
|
Tsotsoros SD, Lutz PB, Daniel AG, Peterson EJ, de Paiva REF, Rivera E, Qu Y, Bayse CA, Farrell NP. Enhancement of the physicochemical properties of [Pt(dien)(nucleobase)] 2+ for HIVNCp7 targeting. Chem Sci 2016; 8:1269-1281. [PMID: 28451269 PMCID: PMC5369524 DOI: 10.1039/c6sc03445d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022] Open
Abstract
Physicochemical properties of coordination compounds can be exploited for molecular recognition of biomolecules. The inherent π-π stacking properties of [Pt(chelate)(N-donor)]2+ ([PtN4]) complexes were modulated by systematic variation of the chelate (diethylenetriamine and substituted derivatives) and N-donor (nucleobase or nucleoside) in the formally substitution-inert PtN4 coordination sphere. Approaches to target the HIV nucleocapsid protein HIVNCp7 are summarized building on (i) assessment of stacking interactions with simple tryptophan or tryptophan derivatives to (ii) the tryptophan-containing C-terminal zinc finger and (iii) to the full two-zinc finger peptide and its interactions with RNA and DNA. The xanthosine nucleoside was identified as having significantly enhanced stacking capability over guanosine. Correlation of the LUMO energies of the modified nucleobases with the DFT π-stacking energies shows that frontier orbital energies of the individual monomers can be used as a first estimate of the π-stacking strength to Trp. Cellular accumulation studies showed no significant correlation with lipophilicity of the compounds, but all compounds had very low cytotoxicity suggesting the potential for antiviral selectivity. The conceptual similarities between nucleobase alkylation and platination validates the design of formally substitution-inert coordination complexes as weak Lewis acid electrophiles for selective peptide targeting.
Collapse
Affiliation(s)
- S D Tsotsoros
- Department of Chemistry , Virginia Commonwealth University , 1001 W. Main Street , Richmond , VA 23284-2006 , USA .
| | - P B Lutz
- Department of Science , Technology and Mathematics , Regent University , Virginia Beach , Virginia 23464 , USA.,Department of Chemistry and Biochemistry , Old Dominion University , Norfolk , VA 23529 , USA .
| | - A G Daniel
- Department of Chemistry , Virginia Commonwealth University , 1001 W. Main Street , Richmond , VA 23284-2006 , USA .
| | - E J Peterson
- Department of Chemistry , Virginia Commonwealth University , 1001 W. Main Street , Richmond , VA 23284-2006 , USA . .,Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| | - R E F de Paiva
- Department of Chemistry , Virginia Commonwealth University , 1001 W. Main Street , Richmond , VA 23284-2006 , USA .
| | - E Rivera
- Department of Chemistry , Virginia Commonwealth University , 1001 W. Main Street , Richmond , VA 23284-2006 , USA .
| | - Y Qu
- Department of Chemistry , Virginia Commonwealth University , 1001 W. Main Street , Richmond , VA 23284-2006 , USA .
| | - C A Bayse
- Department of Chemistry and Biochemistry , Old Dominion University , Norfolk , VA 23529 , USA .
| | - N P Farrell
- Department of Chemistry , Virginia Commonwealth University , 1001 W. Main Street , Richmond , VA 23284-2006 , USA . .,Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
27
|
Jacques A, Lebrun C, Casini A, Kieffer I, Proux O, Latour JM, Sénèque O. Reactivity of Cys4 Zinc Finger Domains with Gold(III) Complexes: Insights into the Formation of “Gold Fingers”. Inorg Chem 2015; 54:4104-13. [DOI: 10.1021/acs.inorgchem.5b00360] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aurélie Jacques
- Université Grenoble Alpes, LCBM/PMB, F-38000 Grenoble, France
- CNRS, LCBM/PMB, UMR 5249, F-38000 Grenoble, France
- CEA, IRTSV-LCBM, PMB, F-38000 Grenoble, France
| | - Colette Lebrun
- Université Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France
- CEA, INAC-SCIB, F-38000 Grenoble, France
| | - Angela Casini
- Department of Pharmacokinetics, Toxicology and Targeting, Research
Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Isabelle Kieffer
- BM30B/FAME beamline, European Synchrotron Radiation Facility (ESRF), F-38000 Grenoble, France
- Observatoire
des Sciences de l′Univers de Grenoble, UMS 832, CNRS, Université Joseph Fourier, F-38000 Grenoble, France
| | - Olivier Proux
- BM30B/FAME beamline, European Synchrotron Radiation Facility (ESRF), F-38000 Grenoble, France
- Observatoire
des Sciences de l′Univers de Grenoble, UMS 832, CNRS, Université Joseph Fourier, F-38000 Grenoble, France
| | - Jean-Marc Latour
- Université Grenoble Alpes, LCBM/PMB, F-38000 Grenoble, France
- CNRS, LCBM/PMB, UMR 5249, F-38000 Grenoble, France
- CEA, IRTSV-LCBM, PMB, F-38000 Grenoble, France
| | - Olivier Sénèque
- Université Grenoble Alpes, LCBM/PMB, F-38000 Grenoble, France
- CNRS, LCBM/PMB, UMR 5249, F-38000 Grenoble, France
- CEA, IRTSV-LCBM, PMB, F-38000 Grenoble, France
| |
Collapse
|