1
|
Gu H, Sun X, Zhao Q, Wang H, Cheng X, Yang C, Qiu D. Near-IR Electrochromic Film with High Optical Contrast and Stability Prepared by Oxidative Electropolymerization of Triphenylamine Modified Terpyridine Platinum(II) Chloride. Molecules 2023; 28:8027. [PMID: 38138516 PMCID: PMC10745481 DOI: 10.3390/molecules28248027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Terpyridine (TPY) platinum(II) chloride with a triphenylamine (TPA) group was successfully synthesized. The strong intramolecular Donor(TPA)-Acceptor(TPY) interaction induced the low-energy absorption band, mixing the spin-allowed singlet dπ(Pt)→π*(TPY) metal-to-ligand charge transfer (MLCT) with the chloride ligand-to-metal charge transfer (LMCT) and chloride ligand-to-ligand (TPY) charge transfer (LLCT) transitions, to bathochromically shift to λmax = 449 nm with significant enhancement and broadening effects. Using the cyclic voltammetry method, its oxidative electropolymerization (EP) films on working Pt disk and ITO electrodes were produced with tunable thickness and diffusion controlled redox behavior, which were characterized by the SEM, EDS, FT-IR, and AC impedance methods. Upon applying +1.4 V voltage, the sandwich-type electrochromic device (ECD) with ca. 290 nm thickness of the EP film exhibits a distinct color transformation from red (CIE coordinates: L = 50.75, a = 18.58, b = 5.69) to dark blue (CIE coordinates: L = 45.65, a = -1.35, b = -12.49). Good electrochromic (EC) parameters, such as a large optical contrast (ΔT%) of 78%, quick coloration and bleaching response times of 2.9 s and 1.1 s, high coloration and bleaching efficiencies of 278.0 and 390.5 C-1·cm2, and good cycling stability (maintains 70% of the initial ΔT% value after 3200 voltage switching cycles), were obtained.
Collapse
Affiliation(s)
- Huiying Gu
- College of Chemistry, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, China
| | - Xiaomeng Sun
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qian Zhao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Hongwei Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xinfeng Cheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Chunxia Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Dongfang Qiu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
2
|
Han Y, Cheng X, Zhong Y, Cui B. Near‐Infrared Electrochromism Based on Intervalence Charge Transfer. MIXED‐VALENCE SYSTEMS 2023:431-462. [DOI: 10.1002/9783527835287.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Shu M, Tao J, Han Y, Fu W, Li X, Zhang R, Liu J. Molecular engineering of terpyridine-Fe(II) coordination polymers consisting of quinoxaline-based π-spacers toward enhanced electrochromic performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Yin HJ, Zhang C, Yang T, Yan D, Wang KZ. Oxidative electropolymerization films of a styrene-appending ruthenium complex with highly performed electrochemical, solar photoelectric conversion and photoelectrochemical oxygen reduction properties. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Napierała S, Kubicki M, Wałęsa-Chorab M. Toward Electrochromic Metallopolymers: Synthesis and Properties of Polyazomethines Based on Complexes of Transition-Metal Ions. Inorg Chem 2021; 60:14011-14021. [PMID: 34396778 PMCID: PMC8456411 DOI: 10.1021/acs.inorgchem.1c01249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 11/29/2022]
Abstract
The tridentate ligand L and its complexes with transition-metal ions have been prepared and characterized. The polycondensation reactions of transition-metal complexes with different dialdehydes led to the formation of transition-metal-complex-based polyazomethines, which have been obtained by on-substrate polymerization, and their electrochemical and electrochromic performance have been investigated. The most interesting properties are exhibited by polymers of Fe(II) and Cu(II) ions obtained by the reaction of the appropriate complexes with a triphenylamine-based dialdehyde. Fe(II) polymer P1 undergoes a reversible oxidation/reduction process and a color change from orange to gray due to the oxidation of Fe(II) to Fe(III) ions concomitant with the oxidation of the triphenylamine group. Its electrochromic properties such as long-term stability, switching times, and coloration efficiencies have been investigated, providing evidence of the utility of the on-substrate polycondensation reaction in the formation of thin films of electrochromic metallopolymers.
Collapse
Affiliation(s)
- Sergiusz Napierała
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Monika Wałęsa-Chorab
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Hao Q, Li ZJ, Bai B, Zhang X, Zhong YW, Wan LJ, Wang D. A Covalent Organic Framework Film for Three-State Near-Infrared Electrochromism and a Molecular Logic Gate. Angew Chem Int Ed Engl 2021; 60:12498-12503. [PMID: 33756014 DOI: 10.1002/anie.202100870] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Indexed: 11/10/2022]
Abstract
A Kagome structure covalent organic framework (COF) film with three-state NIR electrochromic properties was designed and synthesized. The COFTPDA-PDA film is composed of hexagonal nanosheets with high crystallinity and has three reversible color states at different applied potentials. It has high absorption spectra changes in the NIR region, ascribed to the strong intervalence charge transfer (IVCT) interaction of the Class III mixed-valence systems of the conjugated triphenylamine species. The film showed sub-second response time (1.3 s for coloring and 0.7 s for bleaching at 1050 nm) and long retention time in the NIR region. COFTPDA-PDA film shows superior NIR electrochromic properties in term of response time and stability, attributed to the highly ordered porous structure and the π-π stacking structure of the COFTPDA-PDA architecture. The COFTPDA-PDA film was applied in mimicking a flip-flop logic gate with optical memory function.
Collapse
Affiliation(s)
- Qing Hao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Juan Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Bai
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xing Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Hao Q, Li Z, Bai B, Zhang X, Zhong Y, Wan L, Wang D. A Covalent Organic Framework Film for Three‐State Near‐Infrared Electrochromism and a Molecular Logic Gate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qing Hao
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhi‐Juan Li
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Bai
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xing Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yu‐Wu Zhong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
8
|
Affiliation(s)
- Yu‐Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Hao Q, Li ZJ, Lu C, Sun B, Zhong YW, Wan LJ, Wang D. Oriented Two-Dimensional Covalent Organic Framework Films for Near-Infrared Electrochromic Application. J Am Chem Soc 2019; 141:19831-19838. [DOI: 10.1021/jacs.9b09956] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qing Hao
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhi-Juan Li
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Cheng Lu
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bing Sun
- School of Science, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Yu-Wu Zhong
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Jun Wan
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dong Wang
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Banasz R, Wałęsa-Chorab M. Polymeric complexes of transition metal ions as electrochromic materials: Synthesis and properties. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Wang Y, Astruc D, Abd-El-Aziz AS. Metallopolymers for advanced sustainable applications. Chem Soc Rev 2019; 48:558-636. [PMID: 30506080 DOI: 10.1039/c7cs00656j] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the development of metallopolymers, there has been tremendous interest in the applications of this type of materials. The interest in these materials stems from their potential use in industry as catalysts, biomedical agents in healthcare, energy storage and production as well as climate change mitigation. The past two decades have clearly shown exponential growth in the development of many new classes of metallopolymers that address these issues. Today, metallopolymers are considered to be at the forefront for discovering new and sustainable heterogeneous catalysts, therapeutics for drug-resistant diseases, energy storage and photovoltaics, molecular barometers and thermometers, as well as carbon dioxide sequesters. The focus of this review is to highlight the advances in design of metallopolymers with specific sustainable applications.
Collapse
Affiliation(s)
- Yanlan Wang
- Liaocheng University, Department of Chemistry and Chemical Engineering, 252059, Liaocheng, China.
| | | | | |
Collapse
|
12
|
Okamoto Y, Tanioka M, Muranaka A, Miyamoto K, Aoyama T, Ouyang X, Kamino S, Sawada D, Uchiyama M. Stable Thiele’s Hydrocarbon Derivatives Exhibiting Near-Infrared Absorption/Emission and Two-Step Electrochromism. J Am Chem Soc 2018; 140:17857-17861. [DOI: 10.1021/jacs.8b11092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuta Okamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaru Tanioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsuya Muranaka
- Cluster for Pioneering
Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuya Aoyama
- Cluster for Pioneering
Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Xingmei Ouyang
- Cluster for Pioneering
Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Shinichiro Kamino
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- Next-Generation
Imaging Team, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- Next-Generation
Imaging Team, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cluster for Pioneering
Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
13
|
Shao JY, Gong ZL, Zhong YW. Bridged cyclometalated diruthenium complexes for fundamental electron transfer studies and multi-stage redox switching. Dalton Trans 2018; 47:23-29. [PMID: 29230470 DOI: 10.1039/c7dt04168c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four bridged cyclometalated diruthenium systems are highlighted in this Frontier article, including strongly-coupled diruthenium complexes with a short phen-1,4-diyl or a planar pyren-2,7-diyl bridge, redox asymmetric diruthenium complexes characterized by different terminal ligands on the two ends, diruthenium complexes with a urea bridge that allows modulating the degree of electronic coupling, and those with a redox-active amine bridge with varying electronic structures. These complexes posess redox couples with low potentials and intense intervalence charge transfer absorptions in the near-infrared region in the one-electron-oxidized mixed-valent state. They are appealing not only for providing a platform for fundamental electron transfer studies but also as molecular materials with multi-stage redox switching properties.
Collapse
Affiliation(s)
- Jiang-Yang Shao
- CAS Key Laboratory of Photochemistry, CAS Research/Education Centre for Excellencet in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhong-Liang Gong
- CAS Key Laboratory of Photochemistry, CAS Research/Education Centre for Excellencet in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Wu Zhong
- CAS Key Laboratory of Photochemistry, CAS Research/Education Centre for Excellencet in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Said MA, Soganci T, Karakus M, Ak M. Simple and rapid synthesis of conducting metallopolymers, their electrochemical characterizations and application in electrochromics. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Dzhardimalieva GI, Uflyand IE. Review: recent advances in the chemistry of metal chelate monomers. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1317347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, Russian Federation
| | - Igor E. Uflyand
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
| |
Collapse
|
16
|
Liang Y, Strohecker D, Lynch V, Holliday BJ, Jones RA. A Thiophene-Containing Conductive Metallopolymer Using an Fe(II) Bis(terpyridine) Core for Electrochromic Materials. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34568-34580. [PMID: 27936553 DOI: 10.1021/acsami.6b11657] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three Fe(II) bis(terpyridine)-based complexes with thiophene (Fe(L1)2), bithiophene (Fe(L2)2), and 3,4-ethylenedioxythiophene (Fe(L3)2) side chains were designed and synthesized for the purpose of providing two terminal active sites for electrochemical polymerization. The corresponding metallopolymers (poly-Fe(Ln)2, n = 2 or 3) were synthesized on indium tin oxide (ITO)-coated glass substrates via oxidative electropolymerization of the thiophene-substituted monomers and characterized using electrochemistry, X-ray photoelectron spectroscopy, UV-vis spectroscopy, and atomic force microscopy. The film poly-Fe(L2)2 was further studied for electrochromic (EC) color-switching properties and fabricated into a solid-state EC device. Poly-Fe(L2)2 films exhibit an intense MLCT absorption band at 596 nm (ε = 4.7 × 104 M-1 cm-1) in the UV-vis spectra without any applied voltage. Upon application of low potentials (between 1.1 and 0.4 V vs Fc+/Fc), the obtained electropolymerized film exhibited great contrast with a change of transmittance percentage (ΔT%) of 40% and a high coloration efficiency of 3823 cm2 C-1 with a switching time of 1 s. The film demonstrates commonplace stability and reversibility with a 10% loss in peak current intensity after 200 cyclic voltammetry cycles and almost no loss in change of transmittance (ΔT%) after 900 potential switches between 1.1 and 0.4 V (vs Fc+/Fc) with a time interval of 0.75 s. The electropolymerization of Fe(L2)2 provides convenient and controllable film fabrication. Electrochromic behavior was also achieved in a solid-state device composed of a poly-Fe(L2)2 film and a polymer-supported electrolyte sandwiched between two ITO-coated glass electrodes.
Collapse
Affiliation(s)
- Yawei Liang
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Daniel Strohecker
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Vincent Lynch
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | | | - Richard A Jones
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
17
|
Shao JY, Yao CJ, Cui BB, Gong ZL, Zhong YW. Electropolymerized films of redox-active ruthenium complexes for multistate near-infrared electrochromism, ion sensing, and information storage. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
|
19
|
Zhong YW, Gong ZL, Shao JY, Yao J. Electronic coupling in cyclometalated ruthenium complexes. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.01.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Tang JH, Yao CJ, Cui BB, Zhong YW. Ruthenium-Amine Conjugated Organometallic Materials for Multistate Near-IR Electrochromism and Information Storage. CHEM REC 2016; 16:754-67. [DOI: 10.1002/tcr.201500252] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Jian-Hong Tang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences; 2 Bei Yi Jie Zhong Guan Cun Beijing 100190 P. R. China
| | - Chang-Jiang Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences; 2 Bei Yi Jie Zhong Guan Cun Beijing 100190 P. R. China
| | - Bin-Bin Cui
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences; 2 Bei Yi Jie Zhong Guan Cun Beijing 100190 P. R. China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences; 2 Bei Yi Jie Zhong Guan Cun Beijing 100190 P. R. China
| |
Collapse
|
21
|
Shen JJ, Shao JY, Gong ZL, Zhong YW. Cyclometalated Osmium-Amine Electronic Communication through the p-Oligophenylene Wire. Inorg Chem 2015; 54:10776-84. [PMID: 26567859 DOI: 10.1021/acs.inorgchem.5b01828] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of bis-tridentate cyclometalated osmium complexes with a redox-active triarylamine substituent have been prepared, where the amine substituent is separated from the osmium ion by a p-oligophenylene wire of various lengths. X-ray crystallographic data of complexes 3(PF6) and 4(PF6) with three or four repeating phenyl units between the osmium ion and the amine substituent are presented. These complexes show two consecutive anodic redox couples between +0.1 and +0.9 V vs Ag/AgCl, with the potential splitting in the range of 300-390 mV. A combined experimental and theoretical study suggests that, in the one-electron-oxidized state, the odd electron is delocalized for short congeners and localized on the osmium component for long congeners. The electronic coupling parameter (Vab) was estimated by the Marcus-Hush analysis. The distance dependence plot of ln(Vab) versus the osmium-amine geometrical distance (Rab) gives a negative linear relationship with a decay slope of -0.19 Å(-1), which is slightly steeper with respect to the previously reported ruthenium-amine series with the same molecular wire. DFT calculations with the long-range-corrected UCAM-B3LYP functional gave more reasonable results for the osmium complexes with respect to those with UB3LYP.
Collapse
Affiliation(s)
- Jun-Jian Shen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
22
|
Yang W, Shao J, Zhong Y. Cyclometalated Diruthenium Complexes Bridged by 3,3′,5,5′‐Tetra(pyrid‐2‐yl)biphenyl: Tuning of Electronic Properties and Intervalence Charge Transfer by Terminal Ligand Effects. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Wen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Bejing 100190, P. R. China, http://zhongyuwu.iccas.ac.cn/
| | - Jiang‐Yang Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Bejing 100190, P. R. China, http://zhongyuwu.iccas.ac.cn/
| | - Yu‐Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Bejing 100190, P. R. China, http://zhongyuwu.iccas.ac.cn/
| |
Collapse
|
23
|
Davis CM, Ohkubo K, Ho IT, Zhang Z, Ishida M, Fang Y, Lynch VM, Kadish KM, Sessler JL, Fukuzumi S. Near-infrared-induced electron transfer of an uranyl macrocyclic complex without energy transfer to dioxygen. Chem Commun (Camb) 2015; 51:6757-60. [PMID: 25791126 DOI: 10.1039/c5cc00903k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoexcitation of dichloromethane solutions of an uranyl macrocyclic complex with cyclo[1]furan[1]pyridine[4]-pyrrole () at the near-infrared (NIR) band (1177 nm) in the presence of electron donors and acceptors resulted in NIR-induced electron transfer without producing singlet oxygen via energy transfer.
Collapse
Affiliation(s)
- Christina M Davis
- Department of Chemistry & Biochemistry, University Station-A5300, The University of Texas, Austin, Texas 78712-0165, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shankar S, Lahav M, van der Boom ME. Coordination-Based Molecular Assemblies as Electrochromic Materials: Ultra-High Switching Stability and Coloration Efficiencies. J Am Chem Soc 2015; 137:4050-3. [DOI: 10.1021/jacs.5b00429] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sreejith Shankar
- Department of Organic
Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Lahav
- Department of Organic
Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Milko E. van der Boom
- Department of Organic
Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|