1
|
Wu JT, Song L, Xu WZ, Wei XY, Zhang YX, Zhang YY, Du XY, Chai WX. A luminescent Cu 2I 2P 2S 2-type binuclear complex and its fluorescence sensing for pyridine. Acta Crystallogr C Struct Chem 2024; 80:538-544. [PMID: 39120498 DOI: 10.1107/s2053229624006983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Luminescent CuI complexes are an important class of coordination compounds due to their relative abundance, low cost and ability to display excellent luminescence. The title Cu2I2P2S2-type binuclear complex, di-μ-iodido-bis[(thiourea-κS)(triphenylphosphine-κP)copper(I)], [Cu2I2(CH4N2S)2(C18H15P)2], conventionally abbreviated as Cu2I2TPP2TU2, where TPP and TU represent triphenylphosphine and thiourea, respectively, is described. In this complex, each CuI atom adopts a CuI2PS four-coordination mode and pairs of atoms are connected to each other by two μ2-I ligands to form a centrosymmetric binuclear cluster. It was also found that the paper-based film of this complex exhibited obvious luminescence light-up sensing for pyridine and 4-methylpyridine.
Collapse
Affiliation(s)
- Jin Tao Wu
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Li Song
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Wen Ze Xu
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Xin Yu Wei
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Yu Xin Zhang
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Ying Ying Zhang
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Xin Yang Du
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Wen Xiang Chai
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
2
|
Jamshidi M, Bouheriche J, Gardner JM. Photoluminescent copper(I) iodide alkylpyridine thin films as sensors for volatile halogenated compounds. Front Chem 2023; 11:1330227. [PMID: 38146426 PMCID: PMC10749296 DOI: 10.3389/fchem.2023.1330227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023] Open
Abstract
The paper presents the fabrication and characterization of [CuI(L)]n thin films, where L represents various alkylpyridine ligands including 4-methylpyridine, 3-methylpyridine, 2-methylpyridine, 4-tbutylpyridine, 3,4-dimethylpyridine, and 3,5-dimethylpyridine. The thin films were synthesized by exposing the corresponding ligands to CuI thin films through vapor deposition. The coordination reactions occurring on the films were investigated using PXRD and time-dependent photoluminescence spectroscopy, and a comparison was made between the structures of the thin films and the corresponding powder phases. The films showed primarly blue emission (λem = 457-515 nm) and polymeric structures with excited state lifetimes ranging from 0.6 to 5.5 μs. Significantly, the studied compounds exhibited fast reversible luminescence quenching when exposed to vapors of dichloromethane and dibromomethane (15 and 30 min respectively), and the luminescence was restored upon re-exposure to the alkylpyridine ligand (after 20 min). These findings indicate that these thin films hold promise for applications as sensors (with sensitive and reversible detection capability) for volatile halogen-based compounds (VHC).
Collapse
Affiliation(s)
| | | | - James M. Gardner
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
3
|
Wang LX, Cheng SC, Liu Y, Leung CF, Liu JY, Ko CC, Lau TC, Xiang J. Synthesis, structure and photoluminescence of Cu(I) complexes containing new functionalized 1,2,3-triazole ligands. Dalton Trans 2023; 52:16032-16042. [PMID: 37850402 DOI: 10.1039/d3dt02242k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The reaction of a triazole ligand, 2-(1H-1,2,3-triazol-4-yl)pyridine (L1), with 2-bromopyridine afforded three new ligands, 2,2'-(1H-1,2,3-triazole-1,4-diyl)dipyridine (L2), 2,2'-(2H-1,2,3-triazole-2,4-diyl)dipyridine (L3) and 2,2'-(1H-1,2,3-triazole-1,5-diyl)dipyridine (L4). A series of luminescent mononuclear copper(I) complexes of these ligands [Cu(Ln)(P^P)](ClO4) [n = 1, P^P = (PPh3)2 (1); n = 1, P^P = POP (2); n = 2, P^P = (PPh3)2 (3); n = 2, P^P = POP (4); n = 3, P^P = (PPh3)2 (5); n = 3, P^P = POP (6); n = 4, P^P = (PPh3)2 (9); n = 4, P^P = POP (10)] have been obtained from the reaction of Ln with [Cu(MeCN)4]ClO4 in the presence of PPh3 and POP. L3 was also found to form dinuclear compounds [Cu2(L3)(PPh3)4](ClO4)2 (7) and [Cu2(L3)(POP)2](ClO4)2 (8). All of the Cu(I) compounds have been characterized by IR, UV/vis, CV, 1H NMR, and 31P{1H} NMR. The molecular structures of 1-3, 5, and 7 have been further determined by X-ray crystallography. In CH2Cl2 solutions, these Cu(I) complexes exhibit tunable green to orange emissions (563-621 nm) upon excitation at λex = 380 nm. In the solid state, these complexes show intense emissions and it is interesting to note that 1 and 3 are blue-light emitters. Density functional theory (DFT) calculations revealed that the lowest energy electronic transition associated with these complexes predominantly originates from metal-to-ligand charge transfer transitions (MLCT).
Collapse
Affiliation(s)
- Li-Xin Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Yingying Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Chi-Fai Leung
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Ji-Yan Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Jing Xiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
4
|
Dai ZQ, Song L, Wang YY, Wang JT, Jia YF, Zhang DQ, Yan S, Chai WX. Two Luminescent Materials of CuI Clusters Based on Mono-phosphine Ligands and Their Fluorescence Sensing Properties. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Muthig AMT, Krumrein M, Wieland J, Gernert M, Kerner F, Pflaum J, Steffen A. Trigonal Copper(I) Complexes with Cyclic (Alkyl)(amino)carbene Ligands for Single-Photon Near-IR Triplet Emission. Inorg Chem 2022; 61:14833-14844. [PMID: 36069727 DOI: 10.1021/acs.inorgchem.2c02376] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular near-IR (NIR) triplet-state emitters are of importance for the development of new, organic-electronics-based telecommunication technologies as optical fibers operating in the corresponding spectral bands allow for data transfer over much longer distances due to the significantly lower attenuation. However, achieving such low-energy triplet excited states with good radiative rate constants is very challenging, and studies regarding the single-photon emission of organometallics in this energy range are scarce. We have prepared a series of trigonal CuI CAAC complexes bearing chelating ligands with O, N, S, and Se donor atoms and studied their photophysical properties in this context. The compounds show weak low-energy absorption in solution between 400 and 500 nm due to mixed Cu → CAAC 1MLCT/LLCT states, resulting in yellow-green to orange appearance, which we have also correlated to the 15N NMR resonances of the π-accepting carbene ligand. In the solid state, phosphorescence from dominant 3(Cu → CAAC) CT states is observed at room temperature. The emission of the complexes is bathochromically shifted in comparison to structurally related linearly coordinated copper(I) CAAC complexes due to structural reorganization in the excited state to a T-shape. For [Cu(dbm)(CAACMe)], the broad phosphorescence with outstanding λmax = 760 nm tailors out to ca. 1100 nm and leads to its proof-of-concept application as a nonclassical single-photon light source, constituting key functional units for the implementation of tap-proof data transfer.
Collapse
Affiliation(s)
- André M T Muthig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Marcel Krumrein
- Experimental Physics, Experimental Physics VI, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Justin Wieland
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Markus Gernert
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Florian Kerner
- Institute of Inorganic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jens Pflaum
- Experimental Physics, Experimental Physics VI, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Jadhav AN, Singh SB, Mane MV, Kumbhar AS. Heteroleptic Copper(I) complexes of bipyridine glycoluril and phosphine ligands: Photophysical and computational studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Wang Y, Song L, Wang J, Zhou Y, Dai Z, Liu W, Guo J, Shen H, Chai W. A new ternary Eu (III) β‐diketonate complex with diimine ligand and its application as fluorescent probe for highly sensitive and selective ammonia sensor. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- You‐Yu Wang
- College of Materials and Chemistry China Jiliang University Hangzhou P.R. China
| | - Li Song
- Department of Chemistry, Zhejiang Sci‐Tech University Hangzhou P.R. China
| | - Jian‐Teng Wang
- Jinan Cigarettes Factory, China Tobacco Shandong Industrial Co. Ltd Jinan P.R. China
| | - Yi‐Ming Zhou
- College of Materials and Chemistry China Jiliang University Hangzhou P.R. China
| | - Ze‐Qi Dai
- College of Materials and Chemistry China Jiliang University Hangzhou P.R. China
| | - Wei Liu
- College of Materials and Chemistry China Jiliang University Hangzhou P.R. China
| | - Jia‐Yu Guo
- College of Materials and Chemistry China Jiliang University Hangzhou P.R. China
| | - Hang‐Yan Shen
- College of Materials and Chemistry China Jiliang University Hangzhou P.R. China
| | - Wen‐Xiang Chai
- College of Materials and Chemistry China Jiliang University Hangzhou P.R. China
| |
Collapse
|
8
|
A New Benzoxazole-Based Fluorescent Macrocyclic Chemosensor for Optical Detection of Zn2+ and Cd2+. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Benzoxazole-containing ligands find many applications both in medicinal chemistry, catalysis and fluorescence chemosensing. Benzoxazole-containing macrocycles could be therefore a good strategy to achieve stable and selective fluorescent complexes with suitable metal ions. In this work, the synthesis, binding, and photochemical properties of a new fluorescent ligand (L) are reported. L is a cyclophane macrocycle containing the 1,3-bis(benzo[d]oxazol-2-yl)phenyl (BBzB) fluorophore and an aliphatic tetra-amine chain to form the macrocyclic skeleton. Methods: Spectrophotometric and spectrofluorimetric measurements, 1H NMR analysis, and DFT calculations were performed. Results: L behaves as a PET-mediated chemosensor, being emissive at 390 nm at acidic pH and non-emissive at basic pH. The chemosensor is able to detect Zn2+ and Cd2+ in an aqueous medium (acetonitrile–water, 4:1 v/v) at neutral pH through a CHEF effect upon metal ion coordination. Paramagnetic metal ions (Cu2+) and heavy atoms (Pb2+, Hg2+) resulted in a quenching of fluorescence or very low emission. Conclusions: The new cyclophane macrocycle L was revealed to be a selective PET-regulated chemosensor for Zn2+ and Cd2+ in an aqueous medium, being able to bind up to two and one metal cations, respectively. The molecule showed a shifted emission towards the visible region compared to similar systems, suggesting a co-planar conformation of the aromatic fragment upon metal coordination. All these data are supported by both experimental measurements and theoretical calculations.
Collapse
|
9
|
Sánchez-Férez F, Solans-Monfort X, Calvet T, Font-Bardia M, Pons J. Controlling the Formation of Two Concomitant Polymorphs in Hg(II) Coordination Polymers. Inorg Chem 2022; 61:4965-4979. [PMID: 35298147 PMCID: PMC8965880 DOI: 10.1021/acs.inorgchem.1c03762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Controlling the formation
of the desired product in the appropriate
crystalline form is the fundamental breakthrough of crystal engineering.
On that basis, the preferential formation between polymorphic forms,
which are referred to as different assemblies achieved by changing
the disposition or arrangement of the forming units within the crystalline
structure, is one of the most challenging topics still to be understood.
Herein, we have observed the formation of two concomitant polymorphs
with general formula {[Hg(Pip)2(4,4′-bipy)]·DMF}n (P1A, P1B; Pip = piperonylic acid;
4,4′-bipy = 4,4′-bipyridine). Besides, [Hg(Pip)2(4,4′-bipy)]n (2) has been achieved during the attempts to isolate these polymorphs.
The selective synthesis of P1A and P1B has
been successfully achieved by changing the synthetic conditions. The
formation of each polymorphic form has been ensured by unit cell measurements
and decomposition temperature. The elucidation of their crystal structure
revealed P1A and P1B as polymorphs, which
originates from the Hg(II) cores and intermolecular associations,
especially pinpointed by Hg···π and π···π
interactions. Density functional theory (DFT) calculations suggest
that P1B, which shows Hg(II) geometries that are further
from ideality, is more stable than P1A by 13 kJ·mol–1 per [Hg(Pip)2(4,4′-bipy)]·DMF
formula unit, and this larger stability of P1B arises
mainly from metal···π and π···π
interactions between chains. As a result, these structural modifications
lead to significant variations of their solid-state photoluminescence. We have successfully isolated two concomitant
polymorphs
with formula {[Hg(Pip)2(4,4′-bipy)]·DMF}n (P1A and P1B), as
well as their desolvated form 2. Then, both polymorphs
were selectively synthesized by temperature or anion-template formation.
Their crystal structures revealed distorted pentagonal pyramidal geometries
and show that differences arise from geometry and packing that led
to different solid-state photoluminescence emissions. According to
periodic-DFT calculations, distortions in P1B are counterbalanced
leading to a more stable form by Hg(II)···π and
π···π interactions.
Collapse
Affiliation(s)
- Francisco Sánchez-Férez
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Solans-Monfort
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Teresa Calvet
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
10
|
Shekhovtsov N, Kokina TE, Vinogradova KA, Panarin AY, Rakhmanova MI, Naumov DY, Pervukhina NV, Nikolaenkova EB, Krivopalov VP, Czerwieniec R, Bushuev MB. Near-infrared emitting copper(I) complexes with a pyrazolylpyrimidine ligand: exploring relaxation pathways. Dalton Trans 2022; 51:2898-2911. [DOI: 10.1039/d1dt04325k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mononuclear copper(I) complexes [CuL2]I (1), [CuL2]2[Cu2I4]·2MeCN (2) and [CuL2]PF6 (3) with a new chelating pyrazolylpyrimidine ligand, 2-(3,5-dimethyl-1H-pyrazol-1-yl)-4,6-diphenylpyrimidine (L), were synthesized. In the structures of complex cations [CuL2]+, Cu+ ions coordinate...
Collapse
|
11
|
Dai D, Song L, Liang Y, Wang J, Zhou Y, Shen H, Chai W. Heteroleptic cuprous complexes of a diimine MePBO ligand and their structure influence on phosphorescent color: Syntheses, structure characterizations, properties and TD‐DFT calculations. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ding‐Qiu Dai
- College of Materials and Chemistry China Jiliang University Hangzhou 310018 P.R. China
| | - Li Song
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 P.R. China
| | - Yu Liang
- College of Materials and Chemistry China Jiliang University Hangzhou 310018 P.R. China
| | - Jian‐Teng Wang
- Jinan Cigarettes Factory China Tobacco Shandong Industrial Co. Ltd. Jinan 250101 P. R. China
| | - Yi‐Ming Zhou
- College of Materials and Chemistry China Jiliang University Hangzhou 310018 P.R. China
| | - Hang‐Yan Shen
- College of Materials and Chemistry China Jiliang University Hangzhou 310018 P.R. China
| | - Wen‐Xiang Chai
- College of Materials and Chemistry China Jiliang University Hangzhou 310018 P.R. China
| |
Collapse
|
12
|
Fery-Forgues S, Vanucci-Bacqué C. Recent Trends in the Design, Synthesis, Spectroscopic Behavior, and Applications of Benzazole-Based Molecules with Solid-State Luminescence Enhancement Properties. Top Curr Chem (Cham) 2021; 379:32. [PMID: 34342718 DOI: 10.1007/s41061-021-00344-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/10/2021] [Indexed: 02/05/2023]
Abstract
Molecules that exhibit solid-state luminescence enhancement, i.e. the rare property to be more strongly emissive in the solid state than in solution, find an increasing number of applications in the fields of optoelectronic and nanophotonic devices, sensors, security papers, imaging, and theranostics. Benzazole (BZ) heterocycles are of particular value in this context. The simple enlargement of their π-electron system using a -C=C-Ar or -N=C-Ar moiety is enough for intrinsic solid-state luminescence enhancement (SLE) properties to appear. Their association with a variety of polyaromatic motifs leads to SLE-active molecules that frequently display attractive electroluminescent properties and are sensitive to mechanical stimuli. The excited-state intramolecular proton transfer (ESIPT) process that takes place in some hydroxy derivatives reinforces the SLE effect and enables the development of new sensors based on a protection/deprotection strategy. BZ may also be incorporated into frameworks that are prototypical aggregation-induced enhancement (AIE) luminogens, such as the popular tetraphenylethene (TPE), leading to materials with excellent optical and electroluminescent performance. This review encompasses the various ways to use BZ units in SLE systems. It underlines the significant progresses recently made in the understanding of the photophysical mechanisms involved. A brief overview of the synthesis shows that BZ units are robust building blocks, easily incorporated into a variety of structures. Generally speaking, we try to show how these small heterocycles may offer advantages for the design of increasingly efficient luminescent materials.
Collapse
Affiliation(s)
- Suzanne Fery-Forgues
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 9, France.
| | - Corinne Vanucci-Bacqué
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 9, France
| |
Collapse
|
13
|
Gernert M, Balles-Wolf L, Kerner F, Müller U, Schmiedel A, Holzapfel M, Marian CM, Pflaum J, Lambert C, Steffen A. Cyclic (Amino)(aryl)carbenes Enter the Field of Chromophore Ligands: Expanded π System Leads to Unusually Deep Red Emitting Cu I Compounds. J Am Chem Soc 2020; 142:8897-8909. [PMID: 32302135 DOI: 10.1021/jacs.0c02234] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of copper(I) complexes bearing a cyclic (amino)(aryl)carbene (CAArC) ligand with various complex geometries have been investigated in great detail with regard to their structural, electronic, and photophysical properties. Comparison of [CuX(CAArC)] (X = Br (1), Cbz (2), acac (3), Ph2acac (4), Cp (5), and Cp* (6)) with known CuI complexes bearing cyclic (amino)(alkyl), monoamido, or diamido carbenes (CAAC, MAC, or DAC, respectively) as chromophore ligands reveals that the expanded π-system of the CAArC leads to relatively low energy absorption maxima between 350 and 550 nm in THF with high absorption coefficients of 5-15 × 103 M-1 cm-1 for 1-6. Furthermore, 1-5 show intense deep red to near-IR emission involving their triplet excited states in the solid state and in PMMA films with λemmax = 621-784 nm. Linear [Cu(Cbz)(DippCAArC)] (2) has been found to be an exceptional deep red (λmax = 621 nm, ϕ = 0.32, τav = 366 ns) thermally activated delayed fluorescence (TADF) emitter with a radiative rate constant kr of ca. 9 × 105 s-1, exceeding those of commercially employed IrIII- or PtII-based emitters. Time-resolved transient absorption and fluorescence upconversion experiments complemented by quantum chemical calculations employing Kohn-Sham density functional theory and multireference configuration interaction methods as well as temperature-dependent steady-state and time-resolved luminescence studies provide a detailed picture of the excited-state dynamics of 2. To demonstrate the potential applicability of this new class of low-energy emitters in future photonic applications, such as nonclassical light sources for quantum communication or quantum cryptography, we have successfully conducted single-molecule photon-correlation experiments of 2, showing distinct antibunching as required for single-photon emitters.
Collapse
Affiliation(s)
- Markus Gernert
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Lukas Balles-Wolf
- Institute of Inorganic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Florian Kerner
- Institute of Inorganic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ulrich Müller
- Experimental Physics VI, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Schmiedel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco Holzapfel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jens Pflaum
- Experimental Physics VI, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
14
|
Wang D, Song L, Wang Y, Guo J, Shen H, Wang X, Chai W. Heteroleptic [Cu(NN)P
2
]
+
‐type cuprous complexes and their structural modulation on phosphorescent color: Synthesis, structural characterization, properties, and theoretical calculations. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dan‐Dan Wang
- College of Materials and ChemistryChina Jiliang University Hangzhou 310018 China
| | - Li Song
- Department of ChemistryZhejiang Sci‐Tech University Hangzhou 310018 China
| | - You‐Yu Wang
- College of Materials and ChemistryChina Jiliang University Hangzhou 310018 China
| | - Jia‐Yu Guo
- College of Materials and ChemistryChina Jiliang University Hangzhou 310018 China
| | - Hang‐Yan Shen
- College of Materials and ChemistryChina Jiliang University Hangzhou 310018 China
| | - Xiao‐Rong Wang
- Hangzhou Huaguang Advanced Welding Materials Co., Ltd Hangzhou 310018 China
| | - Wen‐Xiang Chai
- College of Materials and ChemistryChina Jiliang University Hangzhou 310018 China
| |
Collapse
|
15
|
Wang DD, Wang JT, Song L, Wang YY, Chai WX. A new heteroleptic phosphorescent cuprous complex supported by a BINAP ligand: synthesis, structure, luminescence properties and theoretical analyses. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:177-185. [PMID: 32022713 DOI: 10.1107/s2053229620000601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/17/2020] [Indexed: 11/10/2022]
Abstract
Luminescent cuprous complexes are an important class of coordination compounds due to their relative abundance, low cost and ability to display excellent luminescence. The heteroleptic cuprous complex solvate rac-(acetonitrile-κN)(3-aminopyridine-κN)[2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl-κ2P,P']copper(I) hexafluoridophosphate dichloromethane monosolvate, [Cu(C5H6N2)(C2H3N)(C44H32P2)]PF6·CH2Cl2, conventionally abbreviated as [Cu(3-PyNH2)(CH3CN)(BINAP)]PF6·CH2Cl2, (I), where BINAP and 3-PyNH2 represent 2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl and 3-aminopyridine, respectively, is described. In this complex solvate, the asymmetric unit consists of a cocrystallized dichloromethane molecule, a hexafluoridophosphate anion and a complete racemic heteroleptic cuprous complex cation in which the cuprous centre, in a tetrahedral CuP2N2 coordination, is coordinated by two P atoms from the BINAP ligand, one N atom from the 3-PyNH2 ligand and another N atom from a coordinated acetonitrile molecule. The UV-Vis absorption and photoluminescence properties of this heteroleptic cuprous complex have been studied on polycrystalline powder samples, which had been verified by powder X-ray diffraction before recording the spectra. Time-dependent density functional theory (TD-DFT) calculations and a wavefunction analysis reveal that the orange-yellow phosphorescence emission should originate from intra-ligand (BINAP) charge transfer mixed with a little of the metal-to-ligand charge transfer 3(IL+ML)CT excited state.
Collapse
Affiliation(s)
- Dan Dan Wang
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Jian Teng Wang
- Jinan Cigarettes Factory, China Tobacco Shandong Industrial Co. Ltd, Jinan 250101, People's Republic of China
| | - Li Song
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - You Yu Wang
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Wen Xiang Chai
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
16
|
Wang DD, Zhu QM, Song L, Guo JY, Shen HY, Wang XR, Chai WX. A new series of three-coordinate cuprous complexes formed by steric hindrance of a phosphine ligand: Synthesis, structure characterization, properties and TD-DFT calculations. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Mahesha, Hema MK, Karthik CS, Pampa KJ, Mallu P, Lokanath NK. Solvent induced mononuclear and dinuclear mixed ligand Cu( ii) complex: structural diversity, supramolecular packing polymorphism and molecular docking studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj03567j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phenolate bridged dinuclear and solvent induced mononuclear supramolecular isomers of Cu(ii) complex have been reported to explore the structural diversity and their antibacterial activity supported by molecular docking studies.
Collapse
Affiliation(s)
- Mahesha
- Department of Studies in Physics
- University of Mysore
- Mysuru-570 006
- India
| | - M. K. Hema
- Department of Studies in Physics
- University of Mysore
- Mysuru-570 006
- India
| | - C. S. Karthik
- Department of Chemistry
- SJCE
- JSS Science and Technology University
- Mysuru-570 006
- India
| | - K. J. Pampa
- Department of Biotechnology
- University of Mysore
- Mysuru-570 006
- India
| | - P. Mallu
- Department of Chemistry
- SJCE
- JSS Science and Technology University
- Mysuru-570 006
- India
| | - N. K. Lokanath
- Department of Studies in Physics
- University of Mysore
- Mysuru-570 006
- India
| |
Collapse
|
18
|
Jin XX, Li T, Shi DP, Luo LJ, Su QQ, Xiang J, Xu HB, Leung CF, Zeng MH. Luminescent phosphine copper( i) complexes with various functionalized bipyridine ligands: synthesis, structures, photophysics and computational study. NEW J CHEM 2020. [DOI: 10.1039/c9nj05887g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A new series of luminescent phosphine copper(i) complexes with cyano- and hydroxyl-substituted 2,2′-bipyridine ligands have been synthesized and structurally characterized. Their luminescent properties have also been investigated in detail.
Collapse
Affiliation(s)
- Xin-Xin Jin
- College of Chemistry and Environmental Engineering
- Yangtze University
- Jingzhou 434020
- P. R. China
| | - Tian Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering
- Hubei University
- Wuhan 430062
- China
| | - Dong-Po Shi
- College of Chemistry and Environmental Engineering
- Yangtze University
- Jingzhou 434020
- P. R. China
| | - Li-Juan Luo
- College of Chemistry and Environmental Engineering
- Yangtze University
- Jingzhou 434020
- P. R. China
| | - Qian-Qian Su
- College of Chemistry and Environmental Engineering
- Yangtze University
- Jingzhou 434020
- P. R. China
| | - Jing Xiang
- College of Chemistry and Environmental Engineering
- Yangtze University
- Jingzhou 434020
- P. R. China
| | - Hai-Bing Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering
- Hubei University
- Wuhan 430062
- China
| | - Chi-Fai Leung
- Department of Science and Environmental Studies
- The Education University of Hong Kong
- Tai Po
- China
| | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering
- Hubei University
- Wuhan 430062
- China
| |
Collapse
|
19
|
Song L, Wang YJ, Chai WX. A diamond-type metal-organic framework based on nano-sized [Cu8(μ4–I)6(PPh3)4]2+ clusters and cyanide-ion linkers: Design, structure and luminescent property. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Seyfi S, Alizadeh R, Ganji MD, Amani V. Polymorphism of Palladium(II) Complexes : Crystal Structure Determination, Luminescence Properties, Hirshfeld Surface Analyses and DFT/TD‐DFT Studies. ChemistrySelect 2019. [DOI: 10.1002/slct.201900804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sara Seyfi
- School of ChemistryDamghan University, P.O. Box 36715-364 Damghan Iran
| | - Robabeh. Alizadeh
- School of ChemistryDamghan University, P.O. Box 36715-364 Damghan Iran
| | - Masoud D. Ganji
- Department of NanochemistryFaculty of Pharmaceutical ChemistryPharmaceutical Sciences BranchIslamic Azad University Tehran - Iran (IAUPS
| | - Vahid Amani
- Department of ChemistryFarhangian University Tehran Iran
| |
Collapse
|
21
|
Xiang J, Cheng SC, Jin XX, Su QQ, Zhou X, Chu WK, Leung CF, Ko CC. Polynuclear Cu(i) and Ag(i) phosphine complexes containing multi-dentate polytopic ligands: syntheses, crystal structures and photoluminescence properties. Dalton Trans 2019; 48:741-750. [PMID: 30560254 DOI: 10.1039/c8dt03377c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of polynuclear metal complexes, [Cu2(L1)(PPh3)4](ClO4)2 (1), [Cu3(L2)(PPh3)6](ClO4) (2), [Cu3(L3)(PPh3)6] (3), [Ag2(L1)(PPh3)4](BF4)2 (4), [Ag4(L2)2(PPh3)6] (5) and [Ag3(L3)(PPh3)5] (6), have been obtained from the reactions of the highly conjugated bridging ligands 2,3-bis(2-pyridyl)pyrazine (L1), 2,3-bis(2-tetrazoyl)pyrazine (H2L2) and 2,3-bis(2-tetrazoyl)imidazole (H3L3) with [Cu(MeCN)4]ClO4 and AgBF4, respectively. Their crystal structures have been determined by X-ray crystallography and their photophysical properties have been investigated in detail. Complexes 1 and 3 show photoluminescence in CH2Cl2 solution, while all the complexes exhibit obvious luminescence in the solid state; detailed photophysical studies and density functional theory calculations of these complexes have revealed that their lowest energy absorptions and emissions are predominantly derived from either metal-to-ligand charge-transfer (MLCT) or intraligand (IL) excited states.
Collapse
Affiliation(s)
- Jing Xiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ilmi R, Juma Al-busaidi I, Haque A, Khan MS. Recent progress in coordination chemistry, photo-physical properties, and applications of pyridine-based Cu(I) complexes. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1509070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Rashid Ilmi
- Department of Chemistry, Sultan Qaboos University, Muscat, Sultanate of Oman
| | | | - Ashanul Haque
- Department of Chemistry, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Muhammad S. Khan
- Department of Chemistry, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
23
|
Patil PH, Filonenko GA, Lapointe S, Fayzullin RR, Khusnutdinova JR. Interplay between the Conformational Flexibility and Photoluminescent Properties of Mononuclear Pyridinophanecopper(I) Complexes. Inorg Chem 2018; 57:10009-10027. [PMID: 30052030 DOI: 10.1021/acs.inorgchem.8b01181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The macrocyclic ligand conformational behavior in solution, solid-state structures and the photophysical properties of copper(I) cationic and neutral mononuclear complexes supported by tetradentate N, N'-dialkyl-2,11-diaza[3.3](2,6)-pyridinophane ligands RN4 (R = H, Me, iBu, secBu, neoPent, iPr, Ts) were investigated in detail. Steric properties of the alkyl group at the axial amine in the RN4 ligand were found to strongly affect the conformational preferences and dynamic behavior in solution. Several types of conformational exchange processes were revealed by variable-temperature NMR and 2D exchange spectroscopy, including degenerative exchange in a pseudotetrahedral species as well as exchange between two isomers with different conformers of tri- and tetracoordinate RN4 ligands. These exchange processes are slower for the complexes containing bulky alkyl groups at the amine compared to less sterically demanding analogues. A clear correlation is also observed between the steric bulk of the alkyl substituents and the photoluminescent properties of the derived complexes, with less dynamic complexes bearing bulkier alkyl substituents exhibiting higher absolute photoluminescence quantum yield (PLQY) in solution and the solid state: PLQY in solution increases in the order Me < neoPent < iBu < secBu ≈ iPr < tBu. The electrochemical properties of the cationic complexes [(RN4)CuI(MeCN)]X (X = BF4, PF6) were also dependent on the steric properties of the amine substituent.
Collapse
Affiliation(s)
- Pradnya H Patil
- Coordination Chemistry and Catalysis Unit , Okinawa Institute of Science and Technology Graduate University , 1919-1 Tancha , Onna-son, Kunigami-gun , Okinawa 904-0495 , Japan
| | - Georgy A Filonenko
- Coordination Chemistry and Catalysis Unit , Okinawa Institute of Science and Technology Graduate University , 1919-1 Tancha , Onna-son, Kunigami-gun , Okinawa 904-0495 , Japan
| | - Sébastien Lapointe
- Coordination Chemistry and Catalysis Unit , Okinawa Institute of Science and Technology Graduate University , 1919-1 Tancha , Onna-son, Kunigami-gun , Okinawa 904-0495 , Japan
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center , Russian Academy of Sciences , 8 Arbuzov Street , Kazan 420088 , Russian Federation
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit , Okinawa Institute of Science and Technology Graduate University , 1919-1 Tancha , Onna-son, Kunigami-gun , Okinawa 904-0495 , Japan
| |
Collapse
|
24
|
Chen D, Chai WX, Song L. Syntheses, steric hindrance effects, luminescent properties and TD-DFT calculations for a series of copper(I) iodide coordination complexes. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0237-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Tao XD, Chai WX, Song L, Wei QH, Shi HS, Qin LS. Two luminescent pseudo-polymorphic cuprous complexes with different optical properties: Synthesis, characterization and TD-DFT calculations. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Chen D, Wang QH, Chai WX, Song L. Three zinc iodide complexes based on phosphane ligands: syntheses, structures, optical properties and TD-DFT calculations. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:342-350. [PMID: 29504564 DOI: 10.1107/s2053229618002607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/13/2018] [Indexed: 11/10/2022]
Abstract
Three zinc iodide complexes based on phosphane ligands, namely diiodidobis(triphenylphosphane-κP)zinc(II), [ZnI2(C18H15P2)2], (1), diiodidobis[tris(4-methylphenyl)phosphane-κP]zinc(II), [ZnI2(C21H21P2)2], (2), and [bis(diphenylphosphoryl)methane-κ2O,O']zinc(II) tetraiodidozinc(II), [Zn(C25H22O2P2)3][ZnI4], (3), have been synthesized and characterized. Single-crystal X-ray diffraction revealed that the structures of (1) and (2) are both mononuclear four-coordinated ZnI2 complexes containing two monodentate phosphane ligands, respectively. Surprisingly, (2) spontaneously forms an acentric structure, suggesting it might be a potential second-order NLO material. The crystal structure of complex (3) is composed of two parts, namely a [Zn(dppmO2)3]2+ cation [dppmO2 is bis(diphenylphosphoryl)methane] and a [ZnI4]2- anion. The UV-Vis absorption spectra, thermal stabilities and photoluminescence spectra of the title complexes have also been studied. Time-dependent density functional theory (TD-DFT) calculations reveal that the low-energy UV absorption and the corresponding light emission both result from halide-ligand charge-transfer (XLCT) excited states.
Collapse
Affiliation(s)
- Di Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qiu Hua Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Wen Xiang Chai
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Li Song
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
27
|
Donato L, Atoini Y, Prasetyanto EA, Chen P, Rosticher C, Bizzarri C, Rissanen K, De Cola L. Selective Encapsulation and Enhancement of the Emission Properties of a Luminescent Cu(I) Complex in Mesoporous Silica. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Loïc Donato
- Institut de Science et Ingenierie Supramoleculaires (ISIS - UMR 7006); CNRS; Universite de Strasbourg; 8 Rue Gaspard Monge 67000 Strasbourg France
| | - Youssef Atoini
- Institut de Science et Ingenierie Supramoleculaires (ISIS - UMR 7006); CNRS; Universite de Strasbourg; 8 Rue Gaspard Monge 67000 Strasbourg France
| | - Eko Adi Prasetyanto
- Institut de Science et Ingenierie Supramoleculaires (ISIS - UMR 7006); CNRS; Universite de Strasbourg; 8 Rue Gaspard Monge 67000 Strasbourg France
- Department of Pharmacy; Faculty of Medicine; Atma Jaya Catholic University of Indonesia; Jakarta 14440 Indonesia
| | - Pengkun Chen
- Institut de Science et Ingenierie Supramoleculaires (ISIS - UMR 7006); CNRS; Universite de Strasbourg; 8 Rue Gaspard Monge 67000 Strasbourg France
| | - Céline Rosticher
- Hybrid Nanomaterials Unit; Institute for Nanotechnology; Karlsruhe Institute of Technology - Campus; North, Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Claudia Bizzarri
- Institut de Science et Ingenierie Supramoleculaires (ISIS - UMR 7006); CNRS; Universite de Strasbourg; 8 Rue Gaspard Monge 67000 Strasbourg France
| | - Kari Rissanen
- Department of Chemistry; Nanoscience Center; University of Jyvaskyla; P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Luisa De Cola
- Institut de Science et Ingenierie Supramoleculaires (ISIS - UMR 7006); CNRS; Universite de Strasbourg; 8 Rue Gaspard Monge 67000 Strasbourg France
- Hybrid Nanomaterials Unit; Institute for Nanotechnology; Karlsruhe Institute of Technology - Campus; North, Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
28
|
Karmakar A, Hazra S, Rúbio GMDM, Guedes da Silva MFC, Pombeiro AJL. Packing polymorphism in 3-amino-2-pyrazinecarboxylate based tin(ii) complexes and their catalytic activity towards cyanosilylation of aldehydes. NEW J CHEM 2018. [DOI: 10.1039/c8nj03805h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
3-Amino-2-pyrazinecarboxylic acid is used to synthesize two new mononuclear interconvertible packing polymorphs of tin(ii) which act as heterogeneous catalysts for the cyanosilylation of aldehydes with trimethylsilyl cyanide.
Collapse
Affiliation(s)
- Anirban Karmakar
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- Av. Rovisco Pais
- Lisbon
| | - Susanta Hazra
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- Av. Rovisco Pais
- Lisbon
| | - Guilherme M. D. M. Rúbio
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- Av. Rovisco Pais
- Lisbon
| | | | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- Av. Rovisco Pais
- Lisbon
| |
Collapse
|
29
|
Zhu QM, Song L, Chai WX, Shen HY, Wei QH, Qin LS. A novel luminescent ionic trinuclear Cu 3I 2 cluster cuprous complex supported by a P^N ligand: synthesis, structure characterization, properties and TD-DFT calculations. Acta Crystallogr C 2018; 74:62-68. [PMID: 29303498 DOI: 10.1107/s2053229617017314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/03/2017] [Indexed: 11/10/2022] Open
Abstract
Luminescent cuprous complexes are an important class of coordination compounds due to their relative abundance, low cost and ability to display excellent luminescence. The title ionic trinuclear Cu3I2 complex, tris[μ2-diphenyl(pyridin-2-yl)phosphane-κ2P:N]di-μ3-iodido-tricopper(I)(3 Cu-Cu) hexafluoridophosphate, [Cu3I2(C39H32NP)3]PF6, conventionally abbreviated as [Cu3I2(Ph2PPy)3]PF6, is described. Each CuI atom is coordinated by two μ3-iodide ligands and by a P and an N atom from two Ph2PPy ligands, giving rise to a CuI2PN tetrahedral coordination geometry about each CuI centre. The electronic absorption and photoluminescence properties of this trinuclear cluster have been studied on as-synthesized samples, which had been examined previously by powder X-ray diffraction. A detailed time-dependent density functional theory (TD-DFT) study was carried out and showed a green emission derived from a halide-to-ligand charge transfer and metal-to-ligand charge transfer 3(X+M)LCT excited state.
Collapse
Affiliation(s)
- Qiu Meng Zhu
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Li Song
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Wen Xiang Chai
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Hang Yan Shen
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Qin Hua Wei
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Lai Shun Qin
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
30
|
Hupp B, Schiller C, Lenczyk C, Stanoppi M, Edkins K, Lorbach A, Steffen A. Synthesis, Structures, and Photophysical Properties of a Series of Rare Near-IR Emitting Copper(I) Complexes. Inorg Chem 2017; 56:8996-9008. [DOI: 10.1021/acs.inorgchem.7b00958] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin Hupp
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carl Schiller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carsten Lenczyk
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco Stanoppi
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Katharina Edkins
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Lorbach
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Steffen
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
31
|
Park H, Kwon E, Chiang H, Im H, Lee KY, Kim J, Kim TH. Reversible Crystal Transformations and Luminescence Vapochromism by Fast Guest Exchange in Cu(I) Coordination Polymers. Inorg Chem 2017; 56:8287-8294. [DOI: 10.1021/acs.inorgchem.7b00951] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hyunjin Park
- Department of Chemistry (BK21 plus) and
Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Eunjin Kwon
- Department of Chemistry (BK21 plus) and
Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hojae Chiang
- Department of Chemistry (BK21 plus) and
Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hansu Im
- Department of Chemistry (BK21 plus) and
Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Kang Yeol Lee
- Department of Chemistry (BK21 plus) and
Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jineun Kim
- Department of Chemistry (BK21 plus) and
Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Tae Ho Kim
- Department of Chemistry (BK21 plus) and
Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
32
|
Shou RE, Song L, Chai WX, Qin LS, Wang TG. A new phosphorescent heteroleptic cuprous complex with a neutral 2-methylquinolin-8-ol ligand: synthesis, structure characterization, properties and TD-DFT calculations. Acta Crystallogr C Struct Chem 2017; 73:486-491. [PMID: 28579572 DOI: 10.1107/s2053229617007549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/21/2017] [Indexed: 11/10/2022] Open
Abstract
Luminescent CuI complexes have emerged as promising substitutes for phosphorescent emitters based on Ir, Pt and Os due to their abundance and low cost. The title heteroleptic cuprous complex, [9,9-dimethyl-4,5-bis(diphenylphosphanyl)-9H-xanthene-κ2P,P](2-methylquinolin-8-ol-κ2N,O)copper(I) hexafluorophosphate, [Cu(C10H9NO)(C39H32OP2)]PF6, conventionally abbreviated as [Cu(Xantphos)(8-HOXQ)]PF6, where Xantphos is the chelating diphosphine ligand 9,9-dimethyl-4,5-bis(diphenylphosphanyl)-9H-xanthene and 8-HOXQ is the N,O-chelating ligand 2-methylquinolin-8-ol that remains protonated at the hydroxy O atom, is described. In this complex, the asymmetric unit consists of a hexafluorophosphate anion and a whole mononuclear cation, where the CuI atom is coordinated by two P atoms from the Xantphos ligand and by the N and O atoms from the 8-HOXQ ligand, giving rise to a tetrahedral CuP2NO coordination geometry. The electronic absorption and photoluminescence properties of this complex have been studied on as-synthesized samples, whose purity had been determined by powder X-ray diffraction. In the detailed TD-DFT (time-dependent density functional theory) studies, the yellow emission appears to be derived from the inter-ligand charge transfer and metal-to-ligand charge transfer (M+L')→LCT excited state (LCT is ligand charge transfer).
Collapse
Affiliation(s)
- Rong Er Shou
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Li Song
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Wen Xiang Chai
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Lai Shun Qin
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Tian Gen Wang
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
33
|
Hu LL, Shen C, Chu WK, Xiang J, Yu F, Xiang G, Nie Y, Kwok CL, Leung CF, Ko CC. Synthesis, structures and photophysical properties of Cu(I) phosphine complexes with various diimine ligands. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.01.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Three Luminescent Copper(I) Iodide Clusters with Phosphine Ligands: Synthesis, Structure Characterization, Properties and TD-DFT Calculations. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1218-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Thankaraj Salammal S, Zhang Z, Chen J, Chattopadhyay B, Wu J, Fu L, Fan C, Chen H. Polymorphic Phase-Dependent Optical and Electrical Properties of a Diketopyrrolopyrrole-Based Small Molecule. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20916-20927. [PMID: 27434658 DOI: 10.1021/acsami.6b05084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Four different polymorphic conformations of diethyl 5,5'-[5,5'-[2,5-bis(2-ethylhexyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrole-1,4-diyl]bis(thiophene-5,2-diyl)]difuran-2-carboxylate (DPP-(CF)2), namely, DPP-(CF)2-α, DPP-(CF)2-β, DPP-(CF)2-γ, and DPP-(CF)2-ω, were identified from X-ray diffraction analysis conducted on their thin films and single crystals. Highly crystalline and well-textured thin films of these four polymorphs were successfully prepared via postgrowth solvent vapor and thermal annealing treatments to investigate the polymorphic phase-dependent optical and electrical properties of DPP-(CF)2. Interestingly, during the phase transition from DPP-(CF)2-α to DPP-(CF)2-ω, the optical band gap decreases from 1.75 to 1.5 eV because of the enhanced π-π interaction between the neighboring molecules. Except for DPP-(CF)2-γ, the other three phases show ambipolar charge transport. Although DPP-(CF)2-β and DPP-(CF)2-γ exhibit a similar way of packing, a small increment in the π-π-stacking distance (0.006 Å) and twist conformation of the grafted electron-donating moieties of DPP-(CF)2-γ are found to reduce its hole mobility.
Collapse
Affiliation(s)
- Shabi Thankaraj Salammal
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Zhongqiang Zhang
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Jiehuan Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Basab Chattopadhyay
- Faculte des Sciences, Laboratoire Chimie des Polymeres, Universite Libre de Bruxelles , CP 206/1, Boulevard du Triomphe, 1050 Bruxelles, Belgium
| | - Jiake Wu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Lei Fu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Congcheng Fan
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , 38 Zheda Road, Hangzhou 310027, P. R. China
| |
Collapse
|
36
|
Zhao Y, Chai WX, Song L, Zhang YC, Shi HS, Tao XD, Shu KY. Facile preparation of a three-coordinate copper(I) complex: Steric hindrance, supramolecular structure, optical property and TD-DFT study. PHOSPHORUS SULFUR 2016. [DOI: 10.1080/10426507.2016.1146274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yi Zhao
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, Zhejiang, P.R. China
| | - Wen-Xiang Chai
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, Zhejiang, P.R. China
| | - Li Song
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, P.R. China
| | - Yi-Cheng Zhang
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, Zhejiang, P.R. China
| | - Hong-Sheng Shi
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, Zhejiang, P.R. China
| | - Xiao-Dong Tao
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, Zhejiang, P.R. China
| | - Kang-Ying Shu
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|