1
|
Identification of Aryl Polyamines Derivatives as Anti- Trypanosoma cruzi Agents Targeting Iron Superoxide Dismutase. Pharmaceutics 2022; 15:pharmaceutics15010140. [PMID: 36678771 PMCID: PMC9863987 DOI: 10.3390/pharmaceutics15010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
Chagas disease (CD) is a tropical and potentially fatal infection caused by Trypanosoma cruzi. Although CD was limited to Latin America as a silent disease, CD has become widespread as a result of globalization. Currently, 6-8 million people are infected worldwide, and no effective treatment is available. Here, we identify new effective agents against T. cruzi. In short, 16 aryl polyamines were screened in vitro against different T. cruzi strains, and lead compounds were evaluated in vivo after oral administration in both the acute and chronic infections. The mode of action was also evaluated at the energetic level, and its high activity profile could be ascribed to a mitochondria-dependent bioenergetic collapse and redox stress by inhibition of the Fe-SOD enzyme. We present compound 15 as a potential compound that provides a step forward for the development of new agents to combat CD.
Collapse
|
2
|
Shainyan BA, Sigalov MV. H-bonding-assisted transformations of cyclic chalcones: Z/E isomerization, self-association and unusual tautomerism. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Das S, Singh HB, Butcher RJ. Synthesis and Characterization of 22‐, 28‐ and 32‐Membered Mercuraazamacrocycles: Isolation of Ring‐Chain Tautomer and Se/Te‐Containing Macrocycles. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shikha Das
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Harkesh B. Singh
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Ray J. Butcher
- Department of Chemistry Howard University 20059 Washington DC USA
| |
Collapse
|
6
|
Lau YH, Clegg JK, Price JR, Macquart RB, Todd MH, Rutledge PJ. Molecular Switches for any pH: A Systematic Study of the Versatile Coordination Behaviour of Cyclam Scorpionands. Chemistry 2017; 24:1573-1585. [DOI: 10.1002/chem.201703488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Yu Heng Lau
- School of Chemistry The University of Sydney Sydney, New South Wales 2006 Australia
| | - Jack K. Clegg
- Current Address: School of Chemistry and Molecular Biosciences The University of Queensland St Lucia QLD 4072 Australia
| | - Jason R. Price
- Current Address: The Australian Synchrotron 800 Blackburn Rd. Clayton VIC 3168 Australia
| | - Rene B. Macquart
- School of Chemistry The University of Sydney Sydney, New South Wales 2006 Australia
| | - Matthew H. Todd
- School of Chemistry The University of Sydney Sydney, New South Wales 2006 Australia
| | - Peter J. Rutledge
- School of Chemistry The University of Sydney Sydney, New South Wales 2006 Australia
| |
Collapse
|
7
|
Büchel GE, Kossatz S, Sadique A, Rapta P, Zalibera M, Bucinsky L, Komorovsky S, Telser J, Eppinger J, Reiner T, Arion VB. cis-Tetrachlorido-bis(indazole)osmium(iv) and its osmium(iii) analogues: paving the way towards the cis-isomer of the ruthenium anticancer drugs KP1019 and/or NKP1339. Dalton Trans 2017; 46:11925-11941. [PMID: 28850133 PMCID: PMC5605806 DOI: 10.1039/c7dt02194a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The relationship between cis-trans isomerism and anticancer activity has been mainly addressed for square-planar metal complexes, in particular, for platinum(ii), e.g., cis- and trans-[PtCl2(NH3)2], and a number of related compounds, of which, however, only cis-counterparts are in clinical use today. For octahedral metal complexes, this effect of geometrical isomerism on anticancer activity has not been investigated systematically, mainly because the relevant isomers are still unavailable. An example of such an octahedral complex is trans-[RuCl4(Hind)2]-, which is in clinical trials now as its indazolium (KP1019) or sodium salt (NKP1339), but the corresponding cis-isomers remain inaccessible. We report the synthesis of Na[cis-OsIIICl4(κN2-1H-ind)2]·(Na[1]) suggesting a route to the cis-isomer of NKP1339. The procedure involves heating (H2ind)[OsIVCl5(κN1-2H-ind)] in a high boiling point organic solvent resulting in an Anderson rearrangement with the formation of cis-[OsIVCl4(κN2-1H-ind)2] ([1]) in high yield. The transformation is accompanied by an indazole coordination mode switch from κN1 to κN2 and stabilization of the 1H-indazole tautomer. Fully reversible spectroelectrochemical reduction of [1] in acetonitrile at 0.46 V vs. NHE is accompanied by a change in electronic absorption bands indicating the formation of cis-[OsIIICl4(κN2-1H-ind)2]- ([1]-). Chemical reduction of [1] in methanol with NaBH4 followed by addition of nBu4NCl afforded the osmium(iii) complex nBu4N[cis-OsIIICl4(κN2-1H-ind)2] (nBu4N[1]). A metathesis reaction of nBu4N[1] with an ion exchange resin led to the isolation of the water-soluble salt Na[1]. The X-ray diffraction crystal structure of [1]·Me2CO was determined and compared with that of trans-[OsIVCl4(κN2-1H-ind)2]·2Me2SO (2·2Me2SO), also prepared in this work. EPR spectroscopy was performed on the OsIII complexes and the results were analyzed by ligand-field and quantum chemical theories. We furthermore assayed effects of [1] and Na[1] on cell viability and proliferation in comparison with trans-[OsIVCl4(κN1-2H-ind)2] [3] and cisplatin and found a strong reduction of cell viability at concentrations between 30 and 300 μM in different cancer cell lines (HT29, H446, 4T1 and HEK293). HT-29 cells are less sensitive to cisplatin than 4T1 cells, but more sensitive to [1] and Na[1], as shown by decreased proliferation and viability as well as an increased late apoptotic/necrotic cell population.
Collapse
Affiliation(s)
- Gabriel E Büchel
- Division of Physical Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia and Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Ahmad Sadique
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Peter Rapta
- Slovak University of Technology, Institute of Physical Chemistry and Chemical Physics, Radlinského 9, 81237 Bratislava, Slovakia.
| | - Michal Zalibera
- Slovak University of Technology, Institute of Physical Chemistry and Chemical Physics, Radlinského 9, 81237 Bratislava, Slovakia.
| | - Lukas Bucinsky
- Slovak University of Technology, Institute of Physical Chemistry and Chemical Physics, Radlinského 9, 81237 Bratislava, Slovakia.
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, 430 S. Michigan Avenue, Chicago, Illinois 60605, USA.
| | - Jörg Eppinger
- Division of Physical Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA and Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Vladimir B Arion
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Str. 42, A-1090 Vienna, Austria.
| |
Collapse
|
8
|
Liberato A, Aguinaco A, Clares MP, Delgado-Pinar E, Pitarch-Jarque J, Blasco S, Basallote MG, García-España E, Verdejo B. Pb2+ complexes of small-cavity azamacrocyclic ligands: thermodynamic and kinetic studies. Dalton Trans 2017; 46:6645-6653. [DOI: 10.1039/c7dt00680b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and Pb2+ coordination of azamacrocyclic ligands have been described. This paper includes one of the few kinetic studies so far reported on the acid-promoted dissociation of Pb2+ macrocyclic complexes.
Collapse
Affiliation(s)
- A. Liberato
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica
- Facultad de Ciencias
- Universidad de Cádiz
- Puerto Real
- Spain
| | - A. Aguinaco
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica
- Facultad de Ciencias
- Universidad de Cádiz
- Puerto Real
- Spain
| | - M. P. Clares
- Instituto de Ciencia Molecular
- Departamento de Química Inorgánica
- Universidad de Valencia
- Edificio de Institutos de Paterna
- Paterna
| | - E. Delgado-Pinar
- Instituto de Ciencia Molecular
- Departamento de Química Inorgánica
- Universidad de Valencia
- Edificio de Institutos de Paterna
- Paterna
| | - J. Pitarch-Jarque
- Instituto de Ciencia Molecular
- Departamento de Química Inorgánica
- Universidad de Valencia
- Edificio de Institutos de Paterna
- Paterna
| | - S. Blasco
- Instituto de Ciencia Molecular
- Departamento de Química Inorgánica
- Universidad de Valencia
- Edificio de Institutos de Paterna
- Paterna
| | - M. G. Basallote
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica
- Facultad de Ciencias
- Universidad de Cádiz
- Puerto Real
- Spain
| | - E. García-España
- Instituto de Ciencia Molecular
- Departamento de Química Inorgánica
- Universidad de Valencia
- Edificio de Institutos de Paterna
- Paterna
| | - B. Verdejo
- Instituto de Ciencia Molecular
- Departamento de Química Inorgánica
- Universidad de Valencia
- Edificio de Institutos de Paterna
- Paterna
| |
Collapse
|
9
|
Molecular Rearrangement of an Aza-Scorpiand Macrocycle Induced by pH: A Computational Study. Int J Mol Sci 2016; 17:ijms17071131. [PMID: 27428955 PMCID: PMC4964504 DOI: 10.3390/ijms17071131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022] Open
Abstract
Rearrangements and their control are a hot topic in supramolecular chemistry due to the possibilities that these phenomena open in the design of synthetic receptors and molecular machines. Macrocycle aza-scorpiands constitute an interesting system that can reorganize their spatial structure depending on pH variations or the presence of metal cations. In this study, the relative stabilities of these conformations were predicted computationally by semi-empirical and density functional theory approximations, and the reorganization from closed to open conformations was simulated by using the Monte Carlo multiple minimum method.
Collapse
|