1
|
Li J, Shi Y, Cheng T. Electronic coupling and electron transfer in hydrogen-bonded mixed-valence compounds. Phys Chem Chem Phys 2023. [PMID: 37158078 DOI: 10.1039/d3cp01337e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Electron transfer provided by hydrogen bonds represents a unique and highly significant area of research, as it has a crucial role to play in a wide variety of chemical and biological systems. The hydrogen-bonded mixed-valence system, in the form of donor-hydrogen bond-acceptor, provides an ideal platform for exploring thermally-induced electron transfer across this non-covalent unit. Over the past decades, ongoing progress has been made in this field. Here we critically assess some studies on the qualitative and quantitative evaluation of electronic coupling and thermal electron transfer across hydrogen bond interface. Additionally, selected experimental examples are discussed in terms of intervalence charge transfer, with particular attention paid to the proton-coupled and often overlooked proton-uncoupled electron transfer pathway in hydrogen-bonded mixed-valence systems. We further highlight the major limitations of this research area and suggest potential directions for future exploration.
Collapse
Affiliation(s)
- Juanjuan Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yuqing Shi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Tao Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
2
|
Fink D, Staiger A, Orth N, Linseis M, Ivanović-Burmazović I, Winter RF. Redox-Induced Hydrogen Bond Reorientation Mimicking Electronic Coupling in Mixed-Valent Diruthenium and Macrocyclic Tetraruthenium Complexes. Inorg Chem 2020; 59:16703-16715. [PMID: 33135894 DOI: 10.1021/acs.inorgchem.0c02695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We present the coordination-driven self-assembly of three tetranuclear metallacycles containing intracyclic NH2, OH, or OMe functionalities through the combination of various isophthalic acid building blocks with a divinylphenylene diruthenium complex. All new complexes of this study were characterized by means of nuclear magnetic resonance spectroscopy, ultrahigh-resolution ESI mass spectrometry, cyclic and square wave voltammetry and, in two cases, X-ray diffraction. The hydroxy functionalized macrocycle 4-BOH and the corresponding half-cycle 2-OH stand out, as their intracyclic OH···O hydrogen bonds stabilize their mixed-valent one- (2-OH, 4-BOH) and three-electron-oxidized states (4-BOH). Despite sizable redox splittings between all one-electron waves, the mixed-valent monocations and trications do not exhibit any intervalence charge-transfer band, assignable to through-bond electronic coupling, but nevertheless display distinct IR band shifts of their charge-sensitive Ru(CO) tags. We ascribe these seemingly contradicting observations to a redox-induced shuffling of the OH···O hydrogen bond(s) to the remaining, more electron-rich, reduced redox site.
Collapse
Affiliation(s)
- Daniel Fink
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Anne Staiger
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Nicole Orth
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Ivana Ivanović-Burmazović
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Rainer F Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
3
|
Tahara K, Abe M. Stimuli-responsive Mixed-valence Architectures: Synthetic Design and Interplay between Mobile and Introduced Charges. CHEM LETT 2020. [DOI: 10.1246/cl.200069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
4
|
Tahara K, Terashita N, Tokunaga K, Yabumoto S, Kikuchi JI, Ozawa Y, Abe M. Zwitterionic Mixed Valence: Internalizing Counteranions into a Biferrocenium Framework toward Molecular Expression of Half-Cells in Quantum Cellular Automata. Chemistry 2019; 25:13728-13738. [PMID: 31376186 DOI: 10.1002/chem.201902840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Indexed: 01/26/2023]
Abstract
Realization of molecular quantum cellular automata (QCA), a promising architecture for molecular computing through current-free processes, requires improved understanding and application of mixed-valence (MV) molecules. In this report, we present an electrostatic approach to creating MV subspecies through internalizing opposite charges in close proximity to MV ionic moieties. This approach is demonstrated by unsymmetrically attaching a charge-responsive boron substituent to a well-known organometallic MV complex, biferrocenium. Guest anions (CN- and F- ) bind to the Lewis acidic boron center, leading to unusual blue-shifts of the intervalence charge-transfer (IVCT) bands. To the best of our knowledge, this is the first reported example of a zwitterionic MV series in which the degree of positive charge delocalization can be varied by changing the bound anions, and serves to clarify the interplay between IVCT parameters. The key underlying factor is the variable zero-level energy difference in the MV states. This work provides new insight into imbuing MV molecules with external charge-responsiveness, a prerequisite of molecular QCA techniques.
Collapse
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Nazuna Terashita
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Ken Tokunaga
- Division of Liberal Arts, Centre for Promotion of Higher Education, Kogakuin University, 2665-1, Nakano, Hachioji, Tokyo, 192-0015, Japan
| | - Shiomi Yabumoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Jun-Ichi Kikuchi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yoshiki Ozawa
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| |
Collapse
|
5
|
Tahara K, Nakakita T, Starikova AA, Ikeda T, Abe M, Kikuchi JI. Small anion-assisted electrochemical potential splitting in a new series of bistriarylamine derivatives: organic mixed valency across a urea bridge and zwitterionization. Beilstein J Org Chem 2019; 15:2277-2286. [PMID: 31598180 PMCID: PMC6774064 DOI: 10.3762/bjoc.15.220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022] Open
Abstract
We report the synthesis of a new bistriarylamine series having a urea bridge and investigate its mixed-valence (MV) states by electrochemical and spectroelectrochemical methods. We found that the supporting electrolytes had unusual effects on potential splitting during electrochemical behavior, in which a smaller counteranion thermodynamically stabilized a MV cation more substantially than did a bulky one. The effects contrary to those reported in conventional MV systems were explained by zwitterionization through hydrogen bonding between the urea bridge and the counteranions, increasing the electronic interactions between two triarylamino units. Furthermore, we clarified the intervalence charge transfer characteristics of the zwitterionic MV state.
Collapse
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan.,Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Tetsufumi Nakakita
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Alyona A Starikova
- Institute of Physical and Organic Chemistry, Southern Federal University, pr. Stachki 194/2, Rostov on Don, 344090, Russian Federation
| | - Takashi Ikeda
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Jun-Ichi Kikuchi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
6
|
Tahara K, Koyama H, Fujitsuka M, Tokunaga K, Lei X, Majima T, Kikuchi JI, Ozawa Y, Abe M. Charge-Separated Mixed Valency in an Unsymmetrical Acceptor-Donor-Donor Triad Based on Diarylboryl and Triarylamine Units. J Org Chem 2019; 84:8910-8920. [PMID: 31072099 DOI: 10.1021/acs.joc.9b00836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we report the generation of new mixed-valence (MV) subspecies with charge-separated (CS) characters from an unsymmetrical acceptor-donor-donor (A-D-D) triad. The triad was synthesized by attaching a dimesitylboryl group (A) to a D-D conjugate that consisted of triarylamine (NAr3) units. The MV radical cation, obtained by chemical oxidation of the triad, exhibited a strong intervalence charge transfer (IVCT) absorption derived from the bis(NAr3)•+ moiety in the near-IR region. The charge-separated MV (CSMV) state, obtained by photoexcitation of the triad, caused a blue shift in IVCT energy in the femtosecond transient absorption spectra, reflecting a bias of positive charge distributions to the D end site. This resulted from increased electron density at the A site and restructuring of the central D site from NAr3 to NAr2 sites. Interestingly, any shift in the IVCT energy that was caused by the polarity of the solvent was minimal, reflecting the unique characteristics of the CSMV state. These findings represent the first detailed analysis of the CSMV state, including a comparison with conventional MV states. Therefore, this work provides new insights into counterion-free MV systems and their applications in molecular devices.
Collapse
Affiliation(s)
- Keishiro Tahara
- Department of Material Science and Research Center for New Functional Materials, Graduate School of Material Science , University of Hyogo , 3-2-1, Kouto , Kamigori, Ako , Hyogo 678-1297 , Japan
| | - Haruya Koyama
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5, Takayama , Ikoma, Nara 630-0192 , Japan
| | - Mamoru Fujitsuka
- Institute of Scientific and Industrial Research (SANKEN) , Osaka University , 8-1, Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Ken Tokunaga
- Division of Liberal Arts, Centre for Promotion of Higher Education , Kogakuin University , 2665-1, Nakano , Hachioji, Tokyo 192-0015 , Japan
| | - Xu Lei
- Institute of Scientific and Industrial Research (SANKEN) , Osaka University , 8-1, Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Tetsuro Majima
- Institute of Scientific and Industrial Research (SANKEN) , Osaka University , 8-1, Mihogaoka , Ibaraki , Osaka 567-0047 , Japan
| | - Jun-Ichi Kikuchi
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5, Takayama , Ikoma, Nara 630-0192 , Japan
| | - Yoshiki Ozawa
- Department of Material Science and Research Center for New Functional Materials, Graduate School of Material Science , University of Hyogo , 3-2-1, Kouto , Kamigori, Ako , Hyogo 678-1297 , Japan
| | - Masaaki Abe
- Department of Material Science and Research Center for New Functional Materials, Graduate School of Material Science , University of Hyogo , 3-2-1, Kouto , Kamigori, Ako , Hyogo 678-1297 , Japan
| |
Collapse
|
7
|
Hayashi M, Takahashi Y, Yoshida Y, Sugimoto K, Kitagawa H. Role of d-Elements in a Proton–Electron Coupling of d–π Hybridized Electron Systems. J Am Chem Soc 2019; 141:11686-11693. [DOI: 10.1021/jacs.9b04937] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mikihiro Hayashi
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Faculty of Education, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yuki Takahashi
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kunihisa Sugimoto
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Tadokoro M, Isogai K, Harada S, Kouchi T, Yamane T, Sugaya T, Kamebuchi H. Evidence of proton-coupled mixed-valency by electrochemical behavior on transition metal complex dimers bridged by two Ag + ions. Dalton Trans 2019; 48:535-546. [PMID: 30525138 DOI: 10.1039/c8dt03962c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
H-Bonded metal complex dimers with reversible redox behaviour, which are connected by a low-barrier hydrogen bond (LBHB) with a very low energy barrier for proton transfer, can provide a unique mixed-valency state stabilized by the proton-coupled electron transfer (PCET) phenomenon. Using cyclic voltammetry measurements, newly prepared [ReIIICl2(PnPr3)2(Hbim)]2 (2) and [OsIIICl2(PnPr3)2(Hbim)]2 (3) existing as H-bonded dimers in a CH2Cl2 solution showed a four-step and four-electron transfer containing two mixed-valency states of ReIIReIII and ReIIIReIV, and OsIIOsIII and OsIIIOsVI, respectively. Furthermore, [ReIIICl2(PnPr3)2(Agbim)]2 (4) and [OsIIICl2(PnPr3)2(Agbim)]2 (5), bridged by two Ag+ ions instead of two H-bonding protons, were prepared, and their electrochemical behaviours changed to a two-step and four-electron transfer. It is clear that the H-bonded complex dimers 2 and 3, connected by an LBHB, can be electrochemically stabilized into unique pairs of mixed-valency states by PCET, and the H-bonding proton transfer also controls the electrochemical redox behaviour.
Collapse
Affiliation(s)
- Makoto Tadokoro
- Tokyo University of Science, Faculty of Science, Department of Chemistry, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Porter TM, Heim GP, Kubiak CP. Effects of electron transfer on the stability of hydrogen bonds. Chem Sci 2017; 8:7324-7329. [PMID: 29163883 PMCID: PMC5672789 DOI: 10.1039/c7sc03361c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
The measurement of the dimerization constants of hydrogen-bonded ruthenium complexes (12, 22, 32) linked by a self-complementary pair of 4-pyridylcarboxylic acid ligands in different redox states is reported.
The measurement of the dimerization constants of hydrogen-bonded ruthenium complexes (12, 22, 32) linked by a self-complementary pair of 4-pyridylcarboxylic acid ligands in different redox states is reported. Using a combination of FTIR and UV/vis/NIR spectroscopies, the dimerization constants (KD) of the isovalent, neutral states, 12, 22, 32, were found to range from 75 to 130 M–1 (ΔG0 = –2.56 to –2.88 kcal mol–1), while the dimerization constants (K2–) of the isovalent, doubly-reduced states, (12)2–, (22)2–, (32)2–, were found to range from 2000 to 2500 M–1 (ΔG0 = –4.5 to –4.63 kcal mol–1). From the aforementioned values and the comproportionation constant for the mixed-valent dimers, the dimerization constants (KMV) of the mixed-valent, hydrogen-bonded dimers, (12)–, (22)–, (32)–, were found to range from 0.5 × 106 to 1.2 × 106 M–1 (ΔG0 = –7.78 to –8.31 kcal mol–1). On average, the hydrogen-bonded, mixed-valent states are stabilized by –5.27 (0.04) kcal mol–1 relative to the isovalent, neutral, hydrogen-bonded dimers and –3.47 (0.06) kcal mol–1 relative to the isovalent, dianionic hydrogen bonded dimers. Electron exchange in the mixed valence states imparts significant stability to hydrogen bonding. This is the first quantitative measurement of the strength of hydrogen bonds in the presence and absence of electronic exchange.
Collapse
Affiliation(s)
- Tyler M Porter
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , USA .
| | - Gavin P Heim
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , USA .
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , USA .
| |
Collapse
|
10
|
Majumdar M, Saha S, Dutta I, Sinha A, Bera JK. Inter-ligand electronic coupling mediated through a dimetal bridge: dependence on metal ions and ancillary ligands. Dalton Trans 2017; 46:5660-5669. [DOI: 10.1039/c6dt04679g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The metal–metal bond orbitals and the ancillary ligands influence inter-ligand charge transfer through the dimetal bridge.
Collapse
Affiliation(s)
- Moumita Majumdar
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sayantani Saha
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Indranil Dutta
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Arup Sinha
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Jitendra K. Bera
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
11
|
Wilkinson LA, Vincent KB, Meijer AJHM, Patmore NJ. Mechanistic insight into proton-coupled mixed valency. Chem Commun (Camb) 2016; 52:100-3. [DOI: 10.1039/c5cc07101a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stabilisation of the mixed-valence state in [Mo2(TiPB)3(HDOP)]2+ (HTiPB = 2,4,6-triisopropylbenzoic acid, H2DOP = 3,6-dihydroxypyridazine) by electron transfer (ET) is related to the proton coordinate of the bridging ligands.
Collapse
Affiliation(s)
- Luke A. Wilkinson
- Department of Chemical Sciences
- University of Huddersfield
- Huddersfield HD1 3DH
- UK
- Department of Chemistry
| | - Kevin B. Vincent
- Department of Chemical Sciences
- University of Huddersfield
- Huddersfield HD1 3DH
- UK
| | | | - Nathan J. Patmore
- Department of Chemical Sciences
- University of Huddersfield
- Huddersfield HD1 3DH
- UK
| |
Collapse
|