1
|
Tagliavini V, Duan PC, Chatterjee S, Ferretti E, Dechert S, Demeshko S, Kang L, Peredkov S, DeBeer S, Meyer F. Cooperative Sulfur Transformations at a Dinickel Site: A Metal Bridging Sulfur Radical and Its H-Atom Abstraction Thermochemistry. J Am Chem Soc 2024; 146:23158-23170. [PMID: 39110481 PMCID: PMC11345757 DOI: 10.1021/jacs.4c05113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Starting from the dinickel(II) dihydride complex [ML(Ni-H)2] (1M), where L3- is a bis(tridentate) pyrazolate-bridged bis(β-diketiminato) ligand and M+ is Na+ or K+, a series of complexes [KLNi2(S2)] (2K), [MLNi2S] (3M), [LNi2(SMe)] (4), and [LNi2(SH)] (5) has been prepared. The μ-sulfido complexes 3M can be reversibly oxidized at E1/2 = -1.17 V (in THF; vs Fc+/Fc) to give [LNi2(S•)] (6) featuring a bridging S-radical. 6 has been comprehensively characterized, including by X-ray diffraction, SQUID magnetometry, EPR and XAS/XES spectroscopies, and DFT calculations. The pKa of the μ-hydrosulfido complex 5 in THF is 30.8 ± 0.4, which defines a S-H bond dissociation free energy (BDFE) of 75.1 ± 1.0 kcal mol-1. 6 reacts with H atom donors such as TEMPO-H and xanthene to give 5, while 5 reacts with 2,4,6-tri(tert-butyl)phenoxy radical in a reverse H atom transfer to generate 6. These findings provide the first full characterization of a genuine M-(μ-S•-)-M complex and provide insights into its proton-coupled electron transfer (PCET) reactivity, which is of interest in view of the prominence of M-(μ-SH/μ-S)-M units in biological systems and heterogeneous catalysis.
Collapse
Affiliation(s)
- Valeria Tagliavini
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Peng-Cheng Duan
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Sayanti Chatterjee
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand 247667, India
| | - Eleonora Ferretti
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Liqun Kang
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Sergey Peredkov
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Franc Meyer
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Tammannstr. 6, D-37077 Göttingen, Germany
| |
Collapse
|
2
|
Bag J, Das S, Pal K. Terminal {Ni(II)-SH} complex promoted anaerobic catalytic sulfur atom transfer reaction: implication to the sulfide oxidase function of Cu/Zn-superoxide dismutase. Dalton Trans 2024; 53:12773-12782. [PMID: 39023184 DOI: 10.1039/d4dt01364f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In mitochondria, the detoxification of molar excess H2S as polysulfide proceeded via an oxidation process promoted by Cu/Zn containing superoxide dismutase (SOD1) enzyme, which has been very recently reported as the alternative enzyme for cytosolic H2S oxidation. Herein, we present Ni(II) complexes bearing the terminal SH group as a synthetic functional analogue for the sulfide oxidase function of SOD1. Synthesis, crystal structure and complete spectroscopic characterization of two sets of complexes, [NiLOMe/tBu(PPh3)] (2OMe/tBu) and tetraethyl salt of [NiLOMe/tBu(SH)]-1 (3OMe/tBu), were described (LOMe = (E)-2-methoxy-6-(((2-sulfidophenyl)imino)methyl)phenolate and LtBu = (E)-2,4-di-tert-butyl-6-(((2-sulfidophenyl)imino)methyl)phenolate). Under anaerobic conditions, 3OMe/tBu responded to a catalytic sulfur atom transfer (SAT) reaction with PPh3 to produce SPPh3. The SAT reaction was analyzed using detailed studies of 1H and 31P NMR spectra. Finally, the SAT reactivity pattern was compared with the same in the native enzyme of SOD1.
Collapse
Affiliation(s)
- Jayanta Bag
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| | - Surajit Das
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| | - Kuntal Pal
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| |
Collapse
|
3
|
Domergue J, Guinard P, Douillard M, Pécaut J, Hostachy S, Proux O, Lebrun C, Le Goff A, Maldivi P, Duboc C, Delangle P. A Series of Ni Complexes Based on a Versatile ATCUN-Like Tripeptide Scaffold to Decipher Key Parameters for Superoxide Dismutase Activity. Inorg Chem 2023. [PMID: 37247425 DOI: 10.1021/acs.inorgchem.3c00766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The cellular level of reactive oxygen species (ROS) has to be controlled to avoid some pathologies, especially those linked to oxidative stress. One strategy for designing antioxidants consists of modeling natural enzymes involved in ROS degradation. Among them, nickel superoxide dismutase (NiSOD) catalyzes the dismutation of the superoxide radical anion, O2•-, into O2 and H2O2. We report here Ni complexes with tripeptides derived from the amino-terminal CuII- and NiII-binding (ATCUN) motif that mimics some structural features found in the active site of the NiSOD. A series of six mononuclear NiII complexes were investigated in water at physiological pH with different first coordination spheres, from compounds with a N3S to N2S2 set, and also complexes that are in equilibrium between the N-coordination (N3S) and S-coordination (N2S2). They were fully characterized by a combination of spectroscopic techniques, including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations and their redox properties studied by cyclic voltammetry. They all display SOD-like activity, with a kcat ranging between 0.5 and 2.0 × 106 M-1 s-1. The complexes in which the two coordination modes are in equilibrium are the most efficient, suggesting a beneficial effect of a nearby proton relay.
Collapse
Affiliation(s)
- Jérémy Domergue
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Pawel Guinard
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Magali Douillard
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Jacques Pécaut
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Sarah Hostachy
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Olivier Proux
- CNRS, OSUG, Université Grenoble Alpes, 38000 Grenoble, France
| | - Colette Lebrun
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Pascale Maldivi
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Pascale Delangle
- IRIG, SyMMES, Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000 Grenoble, France
| |
Collapse
|
4
|
Grenács Á, Bodnár N, Pálinkás DC, Lihi N, Várnagy K. The effect of side chains on the complex formation processes of N-terminally free hexapeptides containing C-terminal cysteinyl functions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ratio of isomers of 1 to 1 nickel-ligand complexes formed in equimolar systems at pH 11 (left) and pH 7 (right) showing the influence of an internal coordinating side chain.
Collapse
Affiliation(s)
- Ágnes Grenács
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Nikolett Bodnár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Dóra Csilla Pálinkás
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Norbert Lihi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, University of Debrecen, H-4032 Debrecen, Egyetem tér 1., Hungary
| | - Katalin Várnagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
5
|
Yang X, DeLaney CR, Burns KT, Elrod LC, Mo W, Naumann H, Bhuvanesh N, Hall MB, Darensbourg MY. Self-Assembled Nickel-4 Supramolecular Squares and Assays for HER Electrocatalysts Derived Therefrom. Inorg Chem 2021; 60:7051-7061. [PMID: 33891813 DOI: 10.1021/acs.inorgchem.0c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-state structures find a self-assembled tetrameric nickel cage with carboxylate linkages, [Ni(N2S'O)I(CH3CN)]4 ([Ni-I]40), resulting from sulfur acetylation by sodium iodoacetate of an [NiN2S]22+ dimer in acetonitrile. Various synthetic routes to the tetramer, best described from XRD as a molecular square, were discovered to generate the hexacoordinate nickel units ligated by N2Sthioether, iodide, and two carboxylate oxygens, one of which is the bridge from the adjacent nickel unit in [Ni-I]40. Removal of the four iodides by silver ion precipitation yields an analogous species but with an additional vacant coordination site, [Ni-Solv]+, a cation but with coordinated solvent molecules. This also recrystallizes as the tetramer [Ni-Solv]44+. In solution, dissociation into the (presumed) monomer occurs, with coordinating solvents occupying the vacant site [Ni(N2S'O)I(solv)]0, ([Ni-I]0). Hydrodynamic radii determined from 1H DOSY NMR data suggest that monomeric units are present as well in CD2Cl2. Evans method magnetism values are consistent with triplet spin states in polar solvents; however, in CD2Cl2 solutions no paramagnetism is evident. The abilities of [Ni-I]40 and [Ni-Solv]44+ to serve as sources of electrocatalysts, or precatalysts, for the hydrogen evolution reaction (HER) were explored. Cyclic voltammetry responses and bulk coulometry with gas chromatographic analysis demonstrated that a stronger acid, trifluoroacetic acid, as a proton source resulted in H2 production from both electroprecatalysts; however, electrocatalysis developed primarily from uncharacterized deposits on the electrode. With acetic acid as a proton source, the major contribution to the HER is from homogeneous electrocatalysis. Overpotentials of 490 mV were obtained for both the solution-phase [Ni-I]0 and [Ni-Solv]+. While the electrocatalyst derived from [Ni-Solv]+ has a substantially higher TOF (102 s-1) than [Ni-I]0 (19 s-1), it has a shorter catalytically active lifespan (4 h) in comparison to [Ni-I]0 (>18 h).
Collapse
Affiliation(s)
- Xuemei Yang
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Christopher R DeLaney
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Kyle T Burns
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Lindy C Elrod
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Wenting Mo
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Haley Naumann
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Michael B Hall
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Marcetta Y Darensbourg
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Gordon JB, McGale JP, Siegler MA, Goldberg DP. Proton-Coupled Electron-Transfer Reactivity Controls Iron versus Sulfur Oxidation in Nonheme Iron-Thiolate Complexes. Inorg Chem 2021; 60:6255-6265. [PMID: 33872005 DOI: 10.1021/acs.inorgchem.0c03779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction of the five-coordinate FeII(N4S) complexes, [FeII(iPr3TACN)(abtX)](OTf) (abt = aminobenzenethiolate, X = H, CF3), with a one-electron oxidant and an appropriate base leads to net H atom loss, generating new FeIII(iminobenzenethiolate) complexes that were characterized by single-crystal X-ray diffraction (XRD), as well as UV-vis, EPR, and Mössbauer spectroscopies. The spectroscopic data indicate that the iminobenzenethiolate complexes have S = 3/2 ground states. In the absence of a base, oxidation of the FeII(abt) complexes leads to disulfide formation instead of oxidation at the metal center. Bracketing studies with separated proton-coupled electron-transfer (PCET) reagents show that the FeII(aminobenzenethiolate) and FeIII(iminobenzenethiolate) forms are readily interconvertible by H+/e- transfer and provide a measure of the bond dissociation free energy (BDFE) for the coordinated N-H bond between 64 and 69 kcal mol-1. This work shows that coordination to the iron center causes a dramatic weakening of the N-H bond and that Fe- versus S-oxidation in a nonheme iron complex can be controlled by the protonation state of an ancillary amino donor.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jeremy P McGale
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Szunyog G, Laskai A, Szűcs D, Sóvágó I, Várnagy K. A comparative study on the nickel binding ability of peptides containing separate cysteinyl residues. Dalton Trans 2019; 48:16800-16811. [PMID: 31687706 DOI: 10.1039/c9dt03055g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel(ii) complexes of peptides CSSACS-NH2, ACSSACS-NH2, SSCSSACS-NH2 and GACAAH-NH2 have been studied by potentiometric and various spectroscopic (UV-vis, CD, NMR, and ESI-MS) techniques. All peptides have high nickel(ii) binding ability in the form of square planar complexes and the stability order of the peptides is: CSSACS-NH2 > ACSSACS-NH2 > SSCSSACS-NH2 ∼ GACAAH-NH2. The different metal binding affinities of these peptides are related to the differences in the speciation and in the binding modes of the major species. An almost exclusive formation of bis(ligand) complexes via an (NH2,S-) 5-membered chelate from the amino terminus is characteristic of CSSACS-NH2. The (NH2,N-,S-) tridentate chelate is the major coordination mode of ACSSACS-NH2 but the distant cysteine can also contribute to metal binding. The higher nickel(ii) binding ability of AC[combining low line]SSAC[combining low line]S-NH2 relative to the peptides containing an N-terminal XY-Cys motif may have important biological consequences. For example, the occurrence of the (NH2,N-,S-,S-) donor set is a common feature of both the ACSSACS-NH2 ligand and the nickel(ii) binding loop of the NiSOD enzyme (HC[combining low line]DLPC[combining low line]G…..,). In the case of SSCSSACS-NH2 and GACAAH-NH2 the amino terminus of one peptide can completely saturate the coordination sphere of the nickel(ii) ion via the formation of the (NH2,N-,N-,S-) binding mode. This rules out the formation of bis(ligand) complexes and any contribution of the distant cysteine or histidine to nickel(ii) binding in the 1 : 1 complexes. On the other hand the distant cysteine of SSCSSACS-NH2 and histidine of GACAAH-NH2 can behave as independent metal binding sites for the formation of dinuclear complexes in the presence of excess metal ions.
Collapse
Affiliation(s)
- Györgyi Szunyog
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary.
| | | | | | | | | |
Collapse
|
8
|
Domergue J, Pécaut J, Proux O, Lebrun C, Gateau C, Le Goff A, Maldivi P, Duboc C, Delangle P. Mononuclear Ni(II) Complexes with a S3O Coordination Sphere Based on a Tripodal Cysteine-Rich Ligand: pH Tuning of the Superoxide Dismutase Activity. Inorg Chem 2019; 58:12775-12785. [PMID: 31545024 DOI: 10.1021/acs.inorgchem.9b01686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The superoxide dismutase (SOD) activity of mononuclear NiII complexes, whose structures are inspired by the NiSOD, has been investigated. They have been designed with a sulfur-rich pseudopeptide ligand, derived from nitrilotriacetic acid (NTA), where the three acid functions are grafted with cysteines (L3S). Two mononuclear complexes, which exist in pH-dependent proportions, have been fully characterized by a combination of spectroscopic techniques including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations. They display similar square-planar S3O coordination, with the three thiolates of the three cysteine moieties from L3S coordinated to the NiII ion, together with either a water molecule at physiological pH, as [NiL3S(OH2)]-, or a hydroxo ion in more basic conditions, as [NiL3S(OH)]2-. The 1H NMR study has revealed that contrary to the hydroxo ligand, the bound water molecule is labile. The cyclic voltammogram of both complexes displays an irreversible one-electron oxidation process assigned to the NiII/NiIII redox system with Epa = 0.48 and 0.31 V versus SCE for NiL3S(OH2) and NiL3S(OH), respectively. The SOD activity of both complexes has been tested. On the basis of the xanthine oxidase assay, an IC50 of about 1 μM has been measured at pH 7.4, where NiL3S(OH2) is mainly present (93% of the NiII species), while the IC50 is larger than 100 μM at pH 9.6, where NiL3S(OH) is the major species (92% of the NiII species). Interestingly, only NiL3S(OH2) displays SOD activity, suggesting that the presence of a labile ligand is required. The SOD activity has been also evaluated under catalytic conditions at pH 7.75, where the ratio between NiL3S(OH2)/ NiL3S(OH) is about (86:14), and a rate constant, kcat = 1.8 × 105 M-1 s-1, has been measured. NiL3S(OH2) is thus the first low-molecular weight, synthetic, bioinspired Ni complex that displays catalytic SOD activity in water at physiological pH, although it does not contain any N-donor ligand in its first coordination sphere, as in the NiSOD. Overall, the data show that a key structural feature is the presence of a labile ligand in the coordination sphere of the NiII ion.
Collapse
Affiliation(s)
- Jérémy Domergue
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France.,Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Olivier Proux
- Univ. Grenoble Alpes, CNRS, OSUG , 38000 Grenoble , France
| | - Colette Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Christelle Gateau
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| |
Collapse
|
9
|
Yang X, Elrod LC, Le T, Vega VS, Naumann H, Rezenom Y, Reibenspies JH, Hall MB, Darensbourg MY. Controlling O2 Reactivity in Synthetic Analogues of [NiFeS]- and [NiFeSe]-Hydrogenase Active Sites. J Am Chem Soc 2019; 141:15338-15347. [DOI: 10.1021/jacs.9b07448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuemei Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lindy C. Elrod
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Trung Le
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Valeria S. Vega
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haley Naumann
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yohannes Rezenom
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Joseph H. Reibenspies
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | |
Collapse
|
10
|
Truong PT, Broering EP, Dzul SP, Chakraborty I, Stemmler TL, Harrop TC. Simultaneous nitrosylation and N-nitrosation of a Ni-thiolate model complex of Ni-containing SOD. Chem Sci 2018; 9:8567-8574. [PMID: 30568781 PMCID: PMC6253683 DOI: 10.1039/c8sc03321h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) is used as a substrate analogue/spectroscopic probe of metal sites that bind and activate oxygen and its derivatives. To assess the interaction of superoxide with the Ni center in Ni-containing superoxide dismutase (NiSOD), we studied the reaction of NO+ and NO with the model complex, Et4N[Ni(nmp)(SPh-o-NH2-p-CF3)] (1; nmp2- = dianion of N-(2-mercaptoethyl)picolinamide; -SPh-o-NH2-p-CF3 = 2-amino-4-(trifluoromethyl)benzenethiolate) and its oxidized analogue 1ox , respectively. The ultimate products of these reactions are the disulfide of -SPh-o-NH2-p-CF3 and the S,S-bridged tetrameric complex [Ni4(nmp)4], a result of S-based redox activity. However, introduction of NO to 1 affords the green dimeric {NiNO}10 complex (Et4N)2[{Ni(κ2-SPh-o-NNO-p-CF3)(NO)}2] (2) via NO-induced loss of nmp2- as the disulfide and N-nitrosation of the aromatic thiolate. Complex 2 was characterized by X-ray crystallography and several spectroscopies. These measurements are in-line with other tetrahedral complexes in the {NiNO}10 classification. In contrast to the established stability of this metal-nitrosyl class, the Ni-NO bond of 2 is labile and release of NO from this unit was quantified by trapping the NO with a CoII-porphyrin (70-80% yield). In the process, the Ni ends up coordinated by two o-nitrosaminobenzenethiolato ligands to result in the structurally characterized trans-(Et4N)2[Ni(SPh-o-NNO-p-CF3)2] (3), likely by a disproportionation mechanism. The isolation and characterization of 2 and 3 suggest that: (i) the strongly donating thiolates dominate the electronic structure of Ni-nitrosyls that result in less covalent Ni-NO bonds, and (ii) superoxide undergoes disproportionation via an outer-sphere mechanism in NiSOD as complexes in the {NiNO}9/8 state have yet to be isolated.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| | - Ellen P Broering
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, Biochemistry, and Molecular Biology , Wayne State University , Detroit , Michigan 48201 , USA
| | - Indranil Chakraborty
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , USA
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, Biochemistry, and Molecular Biology , Wayne State University , Detroit , Michigan 48201 , USA
| | - Todd C Harrop
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| |
Collapse
|
11
|
DNA-BSA interaction, cytotoxicity and molecular docking of mononuclear zinc complexes with reductively cleaved N2S2 Schiff base ligands. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.08.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Yan J, Yang Z, Chen Y, Chang Y, Lyu C, Luo C, Cheng M, Hsu H. Activation of O−H and C−O Bonds in Water and Methanol by a Vanadium‐Bound Thiyl Radical. Chemistry 2018; 24:15190-15194. [DOI: 10.1002/chem.201803431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/17/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Jyun‐An Yan
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Zi‐Kuan Yang
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Yu‐Sen Chen
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Ya‐Ho Chang
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Chiao‐Ling Lyu
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Chun‐Gang Luo
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Mu‐Jeng Cheng
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| | - Hua‐Fen Hsu
- Department of ChemistryNational Cheng Kung University, No. 1 University Rd. 701 Tainan Taiwan
| |
Collapse
|
13
|
Mews NM, Hörner G, Schubert H, Berkefeld A. Tuning of Thiyl/Thiolate Complex Near-Infrared Chromophores of Platinum through Geometrical Constraints. Inorg Chem 2018; 57:9670-9682. [PMID: 29561154 DOI: 10.1021/acs.inorgchem.8b00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemistry of radical-ligand complexes of the transition metals has developed into a vibrant field of research that spans from fundamental studies on the relationship between the chemical and electronic structures to applications in catalysis and functional materials chemistry. In general, fine-tuning of the relevant properties relies on an increasingly diversifying pool of radical-proligand structures. Surprisingly, the variability of the conformational freedom and the number of distinct bonding modes supported by many radical proligands is limited. This work reports on the angular constraints and relative geometric alignment of metal and ligand orbitals as key parameters that render a series of chemically similar thiyl/thiolate complexes of platinum(II) electronically and spectroscopically distinct. The use of conformational flexible thiophenols as primary ligand scaffolds is essential to establishing a defined radical-ligand [(areneS)2PtII]•+ core whose electronic structure is modulated by a series of auxiliary coligands at platinum.
Collapse
Affiliation(s)
- Nicole M Mews
- Institut für Anorganische Chemie , Eberhard Karls Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Gerald Hörner
- Institut für Chemie, Quantenchemie und Bioanorganische Chemie , Technische Universität (TU) Berlin , Straße des 17 Juni 135 , 10623 Berlin , Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie , Eberhard Karls Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Andreas Berkefeld
- Institut für Anorganische Chemie , Eberhard Karls Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| |
Collapse
|
14
|
Gu NX, Oyala PH, Peters JC. An S = 1/ 2 Iron Complex Featuring N 2, Thiolate, and Hydride Ligands: Reductive Elimination of H 2 and Relevant Thermochemical Fe-H Parameters. J Am Chem Soc 2018; 140:6374-6382. [PMID: 29684269 DOI: 10.1021/jacs.8b02603] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Believed to accumulate on the Fe sites of the FeMo-cofactor (FeMoco) of MoFe-nitrogenase under turnover, strongly donating hydrides have been proposed to facilitate N2 binding to Fe and may also participate in the hydrogen evolution process concomitant to nitrogen fixation. Here, we report the synthesis and characterization of a thiolate-coordinated FeIII(H)(N2) complex, which releases H2 upon warming to yield an FeII-N2-FeII complex. Bimolecular reductive elimination of H2 from metal hydrides is pertinent to the hydrogen evolution processes of both enzymes and electrocatalysts, but well-defined examples are uncommon and usually observed from diamagnetic second- and third-row transition metals. Kinetic data obtained on the HER of this ferric hydride species are consistent with a bimolecular reductive elimination pathway, arising from cleavage of the Fe-H bond with a computationally determined BDFE of 55.6 kcal/mol.
Collapse
Affiliation(s)
- Nina X Gu
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
15
|
Perotto CU, Sodipo CL, Jones GJ, Tidey JP, Blake AJ, Lewis W, Davies ES, McMaster J, Schröder M. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN - Ligands: Analogs of the Active Site of the [NiFe] Hydrogenases. Inorg Chem 2018; 57:2558-2569. [PMID: 29465237 DOI: 10.1021/acs.inorgchem.7b02905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of synthetic analogs of the active sites of [NiFe] hydrogenases remains challenging, and, in spite of the number of complexes featuring a [NiFe] center, those featuring CO and CN- ligands at the Fe center are under-represented. We report herein the synthesis of three bimetallic [NiFe] complexes [Ni( N2 S2)Fe(CO)2(CN)2], [Ni( S4)Fe(CO)2(CN)2], and [Ni( N2 S3)Fe(CO)2(CN)2] that each contain a Ni center that bridges through two thiolato S donors to a {Fe(CO)2(CN)2} unit. X-ray crystallographic studies on [Ni( N2 S3)Fe(CO)2(CN)2], supported by DFT calculations, are consistent with a solid-state structure containing distinct molecules in the singlet ( S = 0) and triplet ( S = 1) states. Each cluster exhibits irreversible reduction processes between -1.45 and -1.67 V vs Fc+/Fc and [Ni( N2 S3)Fe(CO)2(CN)2] possesses a reversible oxidation process at 0.17 V vs Fc+/Fc. Spectroelectrochemical infrared (IR) and electron paramagnetic resonance (EPR) studies, supported by density functional theory (DFT) calculations, are consistent with a NiIIIFeII formulation for [Ni( N2 S3)Fe(CO)2(CN)2]+. The singly occupied molecular orbital (SOMO) in [Ni( N2 S3)Fe(CO)2(CN)2]+ is based on Ni 3dz2 and 3p S with the S contributions deriving principally from the apical S-donor. The nature of the SOMO corresponds to that proposed for the Ni-C state of the [NiFe] hydrogenases for which a NiIIIFeII formulation has also been proposed. A comparison of the experimental structures, and the electrochemical and spectroscopic properties of [Ni( N2 S3)Fe(CO)2(CN)2] and its [Ni( N2 S3)] precursor, together with calculations on the oxidized [Ni( N2 S3)Fe(CO)2(CN)2]+ and [Ni( N2 S3)]+ forms suggests that the binding of the {Fe(CO)(CN)2} unit to the {Ni(CysS)4} center at the active site of the [NiFe] hydrogenases suppresses thiolate-based oxidative chemistry involving the bridging thiolate S donors. This is in addition to the role of the Fe center in modulating the redox potential and geometry and supporting a bridging hydride species between the Ni and Fe centers in the Ni-C state.
Collapse
Affiliation(s)
- Carlo U Perotto
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Charlene L Sodipo
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Graham J Jones
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Jeremiah P Tidey
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Alexander J Blake
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - William Lewis
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - E Stephen Davies
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Jonathan McMaster
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Martin Schröder
- The University of Manchester , Oxford Road , Manchester , M13 9PL , United Kingdom
| |
Collapse
|
16
|
Leipzig BK, Rees JA, Kowalska JK, Theisen RM, Kavčič M, Poon PCY, Kaminsky W, DeBeer S, Bill E, Kovacs JA. How Do Ring Size and π-Donating Thiolate Ligands Affect Redox-Active, α-Imino-N-heterocycle Ligand Activation? Inorg Chem 2018; 57:1935-1949. [PMID: 29411979 PMCID: PMC8312276 DOI: 10.1021/acs.inorgchem.7b02748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable effort has been devoted to the development of first-row transition-metal catalysts containing redox-active imino-pyridine ligands that are capable of storing multiple reducing equivalents. This property allows abundant and inexpensive first-row transition metals, which favor sequential one-electron redox processes, to function as competent catalysts in the concerted two-electron reduction of substrates. Herein we report the syntheses and characterization of a series of iron complexes that contain both π-donating thiolate and π-accepting (α-imino)-N-heterocycle redox-active ligands, with progressively larger N-heterocycle rings (imidazole, pyridine, and quinoline). A cooperative interaction between these complementary redox-active ligands is shown to dictate the properties of these complexes. Unusually intense charge-transfer (CT) bands, and intraligand metrical parameters, reminiscent of a reduced (α-imino)-N-heterocycle ligand (L•-), initially suggested that the electron-donating thiolate had reduced the N-heterocycle. Sulfur K-edge X-ray absorption spectroscopic (XAS) data, however, provides evidence for direct communication, via backbonding, between the thiolate sulfur and the formally orthogonal (α-imino)-N-heterocycle ligand π*-orbitals. DFT calculations provide evidence for extensive delocalization of bonds over the sulfur, iron, and (α-imino)-N-heterocycle, and TD-DFT shows that the intense optical CT bands involve transitions between a mixed Fe/S donor, and (α-imino)-N-heterocycle π*-acceptor orbital. The energies and intensities of the optical and S K-edge pre-edge XAS transitions are shown to correlate with N-heterocycle ring size, as do the redox potentials. When the thiolate is replaced with a thioether, or when the low-spin S = 0 Fe(II) is replaced with a high-spin S = 3/2 Co(II), the N-heterocycle ligand metrical parameters and electronic structure do not change relative to the neutral L0 ligand. With respect to the development of future catalysts containing redox-active ligands, the energy cost of storing reducing equivalents is shown to be lowest when a quinoline, as opposed to imidazole or pyridine, is incorporated into the ligand backbone of the corresponding Fe complex.
Collapse
Affiliation(s)
- Benjamin K. Leipzig
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Julian A. Rees
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Joanna K. Kowalska
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, D–45470 Mülheim an der Ruhr, Germany
| | - Roslyn M. Theisen
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | | | | | - Werner Kaminsky
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, D–45470 Mülheim an der Ruhr, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, D–45470 Mülheim an der Ruhr, Germany
| | - Julie A. Kovacs
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
17
|
Tietze D, Sartorius J, Koley Seth B, Herr K, Heimer P, Imhof D, Mollenhauer D, Buntkowsky G. New insights into the mechanism of nickel superoxide degradation from studies of model peptides. Sci Rep 2017; 7:17194. [PMID: 29222438 PMCID: PMC5722923 DOI: 10.1038/s41598-017-17446-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
A series of small, catalytically active metallopeptides, which were derived from the nickel superoxide dismutase (NiSOD) active site were employed to study the mechanism of superoxide degradation especially focusing on the role of the axial imidazole ligand. In the literature, there are contradicting propositions about the catalytic importance of the N-terminal histidine. Therefore, we studied the stability and activity of a set of eight NiSOD model peptides, which represent the major model systems discussed in the literature to date, yet differing in their length and their Ni-coordination. UV-Vis-coupled stopped-flow kinetic measurements and mass spectrometry analysis unveiled their high oxidation sensitivity in the presence of oxygen and superoxide resulting into a much faster Ni(II)-peptide degradation for the amine/amide Ni(II) coordination than for the catalytically inactive bis-amidate Ni(II) coordination. With respect to these results we determined the catalytic activities for all NiSOD mimics studied herein, which turned out to be in almost the same range of about 2 × 106 M-1 s-1. From these experiments, we concluded that the amine/amide Ni(II) coordination is clearly the key factor for catalytic activity. Finally, we were able to clarify the role of the N-terminal histidine and to resolve the contradictory literature propositions, reported in previous studies.
Collapse
Affiliation(s)
- Daniel Tietze
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany.
| | - Jana Sartorius
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Banabithi Koley Seth
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Kevin Herr
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Pascal Heimer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53119, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53119, Bonn, Germany
| | - Doreen Mollenhauer
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany.
| |
Collapse
|
18
|
Butler M, Cabrera GM. A mass spectrometry and DFT study of pyrithione complexes with transition metals in the gas phase. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:728-738. [PMID: 28741315 DOI: 10.1002/jms.3976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/05/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
2-Mercaptopyridine N-oxide (pyrithione, PTOH) along with several transition metal ions forms coordination compounds displaying notable biological activities. Gas-phase complexes formed between pyrithione and manganese (II), cobalt (II), nickel (II), copper (II), and zinc (II) were investigated by infusion in the electrospray source of a quadrupole-time of flight mass spectrometer. Remarkably, positive ion mode spectra displayed the singly charged metal adduct ion [C10 H8 MN2 O2 S2 ]2+ ([M(PTO)2 ]+• or [M(DPTO)]+• ), where DPTO is dipyrithione, 2,2'-dithiobis(pyridine N-oxide), among the most abundant peaks, implying a change in the oxidation state of whether the metal ion or the ligands. In addition, doubly charged ions were recognized as metal adduct ions containing DPTO ligands, [M(DPTO)n ]2+ . Generation of [M(PTO)2 ]+• / [M(DPTO)]+• could be traced by CID of [M(DPTO)2 ]2+ , by observation of the sequential losses of a charged (PTO+ ) and a radical (PTO• ) deprotonated pyrithione ligand. The fragmentation pathways of [M(PTO)2 ]+• / [M(DPTO)]+• were compared among the different metal ions, and some common features were noticed. Density functional theory (DFT) calculations were employed to study the structures of the observed adduct ions, and especially, to decide in the adduct ion [M(PTO)2 ]+• / [M(DPTO)]+• whether the ligands are 2 deprotonated pyrithiones or a single dipyrithione as well as the oxidation state of the metal ion in the complex. Characterization of gas-phase pyrithione metal ion complexes becomes important, especially taking into account the presence of a redox-active ligand in the complexes, because redox state changes that produce new species can have a marked effect on the overall toxicological/biological response elicited by the metal system.
Collapse
Affiliation(s)
- Matias Butler
- Departamento de Química Orgánica, Ciudad Universitaria, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Pabellón II, 3° piso, C1428EHA, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos aplicados a la Química Orgánica (UMYMFOR), Pabellón II, 3° piso, C1428EHA, Buenos Aires, Argentina
| | - Gabriela M Cabrera
- Departamento de Química Orgánica, Ciudad Universitaria, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Pabellón II, 3° piso, C1428EHA, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos aplicados a la Química Orgánica (UMYMFOR), Pabellón II, 3° piso, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
19
|
Truong PT, Gale EM, Dzul SP, Stemmler TL, Harrop TC. Steric Enforcement about One Thiolate Donor Leads to New Oxidation Chemistry in a NiSOD Model Complex. Inorg Chem 2017; 56:7761-7780. [PMID: 28459242 DOI: 10.1021/acs.inorgchem.7b00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ni-containing superoxide dismutase (NiSOD) represents an unusual member of the SOD family due to the presence of oxygen-sensitive Ni-SCys bonds at its active site. Reported in this account is the synthesis and properties of the NiII complex of the N3S2 ligand [N3S2Me2]3- ([N3S2Me2]3- = deprotonated form of 2-((2-mercapto-2-methylpropyl)(pyridin-2-ylmethyl)amino)-N-(2-mercaptoethyl)acetamide), namely Na[Ni(N3S2Me2)] (2), as a NiSOD model that features sterically robust gem-(CH3)2 groups on the thiolate α-C positioned trans to the carboxamide. The crystal structure of 2, coupled with spectroscopic measurements from 1H NMR, X-ray absorption, IR, UV-vis, and mass spectrometry (MS), reveal a planar NiII (S = 0) ion coordinated by only the N2S2 basal donors of the N3S2 ligand. While the structure and spectroscopic properties of 2 resemble those of NiSODred and other models, the asymmetric S ligands open up new reaction paths upon chemical oxidation. One unusual oxidation product is the planar NiII-N3S complex [Ni(Lox)] (5; Lox = 2-(5,5-dimethyl-2-(pyridin-2-yl)thiazolidin-3-yl)-N-(2-mercaptoethyl)acetamide), where two-electron oxidation takes place at the substituted thiolate and py-CH2 carbon to generate a thiazolidine heterocycle. Electrochemical measurements of 2 reveal irreversible events wholly consistent with thiolate redox, which were identified by comparison to the ZnII complex Na[Zn(N3S2Me2)] (3). Although no reaction is observed between 2 and azide, reaction of 2 with superoxide produces multiple products on the basis of UV-vis and MS data, one of which is 5. Density functional theory (DFT) computations suggest that the HOMO in 2 is π* with primary contributions from Ni-dπ/S-pπ orbitals. These contributions can be modulated and biased toward Ni when electron-withdrawing groups are placed on the thiolate α-C. Analysis of the oxidized five-coordinate species 2ox* by DFT reveal a singly occupied spin-up (α) MO that is largely thiolate based, which supports the proposed NiIII-thiolate/NiII-thiyl radical intermediates that ultimately yield 5 and other products.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| | - Eric M Gale
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Todd C Harrop
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Design and reactivity of Ni-complexes using pentadentate neutral-polypyridyl ligands: Possible mimics of NiSOD. J Inorg Biochem 2017; 175:110-117. [PMID: 28750282 DOI: 10.1016/j.jinorgbio.2017.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 07/03/2017] [Indexed: 11/21/2022]
Abstract
Superoxide plays a key role in cell signaling, but can be cytotoxic within cells unless well regulated by enzymes known as superoxide dismutases (SOD). Nickel superoxide dismutase (NiSOD) catalyzes the disproportion of the harmful superoxide radical into hydrogen peroxide and dioxygen. NiSOD has a unique active site structure that plays an important role in tuning the potential of the nickel center to function as an effective catalyst for superoxide dismutation with diffusion controlled rates. The synthesis of structural and functional analogues of NiSOD provides a route to better understand the role of the nickel active site in superoxide dismutation. In this work, the synthesis of a series of nickel complexes supported by nitrogen rich pentadentate ligands is reported. The complexes have been characterized through absorption spectroscopy, mass spectrometry, and elemental analysis. X-ray absorption spectroscopy was employed to establish the oxidation state and the coordination geometry around the metal center. The reactivity of these complexes toward KO2 was evaluated to elucidate the role of the coordination sphere in controlling superoxide dismutation reactivity.
Collapse
|
21
|
Campeciño JO, Maroney MJ. Reinventing the Wheel: The NiSOD Story. THE BIOLOGICAL CHEMISTRY OF NICKEL 2017. [DOI: 10.1039/9781788010580-00170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The most recently discovered SOD requires nickel in its active site – NiSOD. Among the available metals, nickel seems an unlikely redox center. This chapter discusses the protein adaptations required in order to use nickel for SOD catalysis. Cysteine ligands are employed for the first time in an SOD, to suppress the potential of the Ni(ii/iii) couple. However, this adaptation alone is not sufficient to produce an SOD, since thiolate ligands are sensitive to oxidation by H2O2 and O2. Additional adaptations include the use of two unusual backbone N-donor ligands, an amidate and the N-terminal amine. Yet merely producing a stable Ni redox center is not sufficient for SOD catalysis. A source of protons is needed to produce H2O2 and the pH-independent catalysis that is characteristic of SODs. Thus, the cysteine thiolates were also employed to provide a site for protonation. In restricting active site access, NiSOD appears to have utilized the same strategy employed by MnSOD and FeSOD – a “gateway” formed by Tyr residues. Thus, NiSOD represents evolution that converged on the same criteria for catalysis as other SODs, where the adaptations to the metal site are uniquely suited to using nickel as a redox center.
Collapse
Affiliation(s)
| | - Michael J. Maroney
- Department of Chemistry, University of Massachusetts Amherst MA 01003 USA
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
22
|
Steiner RA, Dzul SP, Stemmler TL, Harrop TC. Synthesis and Speciation-Dependent Properties of a Multimetallic Model Complex of NiSOD That Exhibits Unique Hydrogen-Bonding. Inorg Chem 2017; 56:2849-2862. [PMID: 28212040 DOI: 10.1021/acs.inorgchem.6b02997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The complex Na3[{NiII(nmp)}3S3BTAalk)] (1) (nmp2- = deprotonated form of N-(2-mercaptoethyl)picolinamide; H3S3BTAalk = N1,N3,N5-tris(2-mercaptoethyl)benzene-1,3,5-tricarboxamide, where H = dissociable protons), supported by the thiolate-benzenetricarboxamide scaffold (S3BTAalk), has been synthesized as a trimetallic model of nickel-containing superoxide dismutase (NiSOD). X-ray absorption spectroscopy (XAS) and 1H NMR measurements on 1 indicate that the NiII centers are square-planar with N2S2 coordination, and Ni-N and Ni-S distances of 1.95 and 2.16 Å, respectively. Additional evidence from IR indicates the presence of H-bonds in 1 from the approximately -200 cm-1 shift in νNH from free ligand. The presence of H-bonds allows for speciation that is temperature-, concentration-, and solvent-dependent. In unbuffered water and at low temperature, a dimeric complex (1A; λ = 410 nm) that aggregates through intermolecular NH···O═C bonds of BTA units is observed. Dissolution of 1 in pH 7.4 buffer or in unbuffered water at temperatures above 50 °C results in monomeric complex (1M; λ = 367 nm) linked through intramolecular NH···S bonds. DFT computations indicate a low energy barrier between 1A and 1M with nearly identical frontier MOs and Ni-ligand metrics. Notably, 1A and 1M exhibit remarkable stability in protic solvents such as MeOH and H2O, in stark contrast to monometallic [NiII(nmp)(SR)]- complexes. The reactivity of 1 with excess O2, H2O2, and O2•- is species-dependent. IR and UV-vis reveal that 1A in MeOH reacts with excess O2 to yield an S-bound sulfinate, but does not react with O2•-. In contrast, 1M is stable to O2 in pH 7.4 buffer, but reacts with O2•- to yield a putative [NiII(nmp)(O2)]- complex from release of the BTA-thiolate based on EPR.
Collapse
Affiliation(s)
- Ramsey A Steiner
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar St, Athens, Georgia 30602, United States
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, and Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, and Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Todd C Harrop
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar St, Athens, Georgia 30602, United States
| |
Collapse
|
23
|
Kowalkowska D, Dołęga A, Nedelko N, Hnatejko Z, Ponikiewski Ł, Matracka A, Ślawska-Waniewska A, Strągowska A, Słowy K, Gazda M, Pladzyk A. Structural, spectral and magnetic properties of Ni(ii), Co(ii) and Cd(ii) compounds with imidazole derivatives and silanethiolate ligands. CrystEngComm 2017. [DOI: 10.1039/c7ce00555e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Brazzolotto D, Gennari M, Yu S, Pécaut J, Rouzières M, Clérac R, Orio M, Duboc C. An Experimental and Theoretical Investigation on Pentacoordinated Cobalt(III) Complexes with an Intermediate S=
1 Spin State: How Halide Ligands Affect their Magnetic Anisotropy. Chemistry 2015; 22:925-33. [DOI: 10.1002/chem.201502997] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Shengying Yu
- Univ. Grenoble Alpes, DCM, CNRS UMR 5250; 38000 Grenoble France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, INAC-SCIB; 38000 Grenoble France
| | - Mathieu Rouzières
- CNRS, CRPP, UPR 8641; F-33600 Pessac France
- Univ. Bordeaux, CRPP, UPR 8641; F-33600 Pessac France
| | - Rodolphe Clérac
- CNRS, CRPP, UPR 8641; F-33600 Pessac France
- Univ. Bordeaux, CRPP, UPR 8641; F-33600 Pessac France
| | - Maylis Orio
- Aix Marseille Université, ISM2, CNRS UMR 7313; 13397 Marseille France
| | - Carole Duboc
- Univ. Grenoble Alpes, DCM, CNRS UMR 5250; 38000 Grenoble France
| |
Collapse
|
25
|
Manesis AC, Shafaat HS. Electrochemical, Spectroscopic, and Density Functional Theory Characterization of Redox Activity in Nickel-Substituted Azurin: A Model for Acetyl-CoA Synthase. Inorg Chem 2015; 54:7959-67. [PMID: 26234790 DOI: 10.1021/acs.inorgchem.5b01103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nickel-containing enzymes are key players in global hydrogen, carbon dioxide, and methane cycles. Many of these enzymes rely on Ni(I) oxidation states in critical catalytic intermediates. However, due to the highly reactive nature of these species, their isolation within metalloenzymes has often proved elusive. In this report, we describe and characterize a model biological Ni(I) species that has been generated within the electron transfer protein, azurin. Replacement of the native copper cofactor with nickel is shown to preserve the redox activity of the protein. The Ni(II/I) couple is observed at -590 mV versus NHE, with an interfacial electron transfer rate of 70 s(-1). Chemical reduction of Ni(II)Az generates a stable species with strong absorption features at 350 nm and a highly anisotropic, axial EPR signal with principal g-values of 2.56 and 2.10. Density functional theory calculations provide insight into the electronic and geometric structure of the Ni(I) species, suggesting a trigonal planar coordination environment. The predicted spectroscopic features of this low-coordinate nickel site are in good agreement with the experimental data. Molecular orbital analysis suggests potential for both metal-centered and ligand-centered reactivity, highlighting the covalency of the metal-thiolate bond. Characterization of a stable Ni(I) species within a model protein has implications for understanding the mechanisms of complex enzymes, including acetyl coenzyme A synthase, and developing scaffolds for unique reactivity.
Collapse
|
26
|
Cazacu M, Shova S, Soroceanu A, Machata P, Bucinsky L, Breza M, Rapta P, Telser J, Krzystek J, Arion VB. Charge and Spin States in Schiff Base Metal Complexes with a Disiloxane Unit Exhibiting a Strong Noninnocent Ligand Character: Synthesis, Structure, Spectroelectrochemistry, and Theoretical Calculations. Inorg Chem 2015; 54:5691-706. [DOI: 10.1021/acs.inorgchem.5b00229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maria Cazacu
- “Petru Poni” Institute of Macromolecular Chemistry, Alea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry, Alea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Alina Soroceanu
- “Petru Poni” Institute of Macromolecular Chemistry, Alea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Peter Machata
- Institute of Physical Chemistry and Chemical Physics, Faculty of
Chemical and Food Technology, Slovak University of Technology, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics, Faculty of
Chemical and Food Technology, Slovak University of Technology, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics, Faculty of
Chemical and Food Technology, Slovak University of Technology, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of
Chemical and Food Technology, Slovak University of Technology, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Joshua Telser
- Department of Biological, Chemical and
Physical Sciences, Roosevelt University, 430 South Michigan Avenue, Chicago, Illinois 60605 United States
| | - J. Krzystek
- National
High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 United States
| | - Vladimir B. Arion
- Faculty of Chemistry, Institute of Inorganic
Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|