1
|
Suturina EA, Nehrkorn J, Zadrozny JM, Liu J, Atanasov M, Weyhermüller T, Maganas D, Hill S, Schnegg A, Bill E, Long JR, Neese F. Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh)4]2– Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and ab Initio Electronic Structure Calculations. Inorg Chem 2017; 56:3102-3118. [DOI: 10.1021/acs.inorgchem.7b00097] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizaveta A. Suturina
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
- Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Joscha Nehrkorn
- Berlin Joint EPR Lab, Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße
5, 12489 Berlin, Germany
| | - Joseph M. Zadrozny
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junjie Liu
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Mihail Atanasov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
- Bulgarian Academy of Sciences, Institute of General and Inorganic
Chemistry, Akad. Georgi
Bontchev Street 11, 1113 Sofia, Bulgaria
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios Maganas
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Stephen Hill
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander Schnegg
- Berlin Joint EPR Lab, Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße
5, 12489 Berlin, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Jeffrey R. Long
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
2
|
Ye S, Kupper C, Meyer S, Andris E, Navrátil R, Krahe O, Mondal B, Atanasov M, Bill E, Roithová J, Meyer F, Neese F. Magnetic Circular Dichroism Evidence for an Unusual Electronic Structure of a Tetracarbene-Oxoiron(IV) Complex. J Am Chem Soc 2016; 138:14312-14325. [PMID: 27682505 DOI: 10.1021/jacs.6b07708] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In biology, high valent oxo-iron(IV) species have been shown to be pivotal intermediates for functionalization of C-H bonds in the catalytic cycles of a range of O2-activating iron enzymes. This work details an electronic-structure investigation of [FeIV(O)(LNHC)(NCMe)]2+ (LNHC = 3,9,14,20-tetraaza-1,6,12,17-tetraazoniapenta-cyclohexacosane-1(23),4,6(26),10,12(25),15,17(24),21-octaene, complex 1) using helium tagging infrared photodissociation (IRPD), absorption, and magnetic circular dichroism (MCD) spectroscopy, coupled with DFT and highly correlated wave function based multireference calculations. The IRPD spectrum of complex 1 reveals the Fe-O stretching vibration at 832 ± 3 cm-1. By analyzing the Franck-Condon progression, we can determine the same vibration occurring at 616 ± 10 cm-1 in the E(dxy → dxz,yz) excited state. Both values are similar to those measured for [FeIV(O)(TMC)(NCMe)]2+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). The low-temperature MCD spectra of complex 1 exhibit three pseudo A-term signals around 12 500, 17 000, and 24 300 cm-1. We can unequivocally assign them to the ligand field transitions of dxy → dxz,yz, dxz,yz → dz2, and dxz,yz → dx2-y2, respectively, through direct calculations of MCD spectra and independent determination of the MCD C-term signs from the corresponding electron donating and accepting orbitals. In comparison with the corresponding transitions observed for [FeIV(O) (SR-TPA)(NCMe)]2+ (SR-TPA = tris(3,5-dimethyl-4-methoxypyridyl-2-methy)amine), the excitations within the (FeO)2+ core of complex 1 have similar transition energies, whereas the excitation energy for dxz,yz → dx2-y2 is significantly higher (∼12 000 cm-1 for [FeIV(O)(SR-TPA)(NCMe)]2+). Our results thus substantiate that the tetracarbene ligand (LNHC) of complex 1 does not significantly affect the bonding in the (FeO)2+ unit but strongly destabilizes the dx2-y2 orbital to eventually lift it above dz2. As a consequence, this unusual electron configuration leads to an unprecedentedly larger quintet-triplet energy separation for complex 1, which largely rules out the possibility that the H atom transfer reaction may take place on the quintet surface and hence quenches two-state reactivity. The resulting mechanistic implications are discussed.
Collapse
Affiliation(s)
- Shengfa Ye
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Claudia Kupper
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen , Tammannstr. 4, D-37077 Göttingen, Germany
| | - Steffen Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen , Tammannstr. 4, D-37077 Göttingen, Germany
| | - Erik Andris
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Rafael Navrátil
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Oliver Krahe
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Bhaskar Mondal
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Mihail Atanasov
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany.,Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences , 1113 Sofia, Bulgaria
| | - Eckhard Bill
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen , Tammannstr. 4, D-37077 Göttingen, Germany
| | - Frank Neese
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Fujii H, Yamaki D, Ogura T, Hada M. The functional role of the structure of the dioxo-isobacteriochlorin in the catalytic site of cytochrome cd 1 for the reduction of nitrite. Chem Sci 2016; 7:2896-2906. [PMID: 30090283 PMCID: PMC6054029 DOI: 10.1039/c5sc04825g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/20/2016] [Indexed: 11/25/2022] Open
Abstract
Cytochrome cd1 is a key enzyme in bacterial denitrification and catalyzes one-electron reduction of nitrite (NO2-) to nitric oxide (NO) at the heme d1 center under anaerobic conditions. The heme d1 has a unique dioxo-isobacteriochlorin structure and is present only in cytochrome cd1. To reveal the functional role of the unique heme d1 in the catalytic nitrite reduction, we studied effect of the porphyrin macrocycle on each reaction step of the catalytic cycle of cytochrome cd1 using synthetic model complexes. The complexes investigated are iron complexes of dioxo-octaethylisobacteriochlorin (1), mono-oxo-octaethylchlorin (2) and octaethylporphyrin (3). We show here that the reduction potential for the transition from the ferric state to the ferrous state and the binding constant for binding of NO2- to the ferrous complex increases with a trend of 3 < 2 < 1. However, the reactivity of the ferrous nitrite complex with protons increases in the reversed order, 1 < 2 < 3. We also show that the iron bound NO of the ferric NO complex is readily replaced by addition of 1 equiv. of p-nitrophenolate. These results indicate that the dioxo-isobacteriochlorin structure is superior to porphyrin and mono-oxo-chlorin structures in the first iron reduction step, the second nitrite binding step, and the NO dissociation step, but inferior in the third nitrite reduction step. These results suggest that the heme d1 has evolved as the catalytic site of cytochrome cd1 to catalyze the nitrite reduction at the highest possible redox potential while maintaining its catalytic activity.
Collapse
Affiliation(s)
- Hiroshi Fujii
- Department of Chemistry, Biology and Environmental Science , Faculty of Science , Nara Women's University , Kitauoyanishi , Nara 630-8506 , Japan .
| | - Daisuke Yamaki
- Department of Chemistry , Graduate School of Science , Tokyo Metropolitan University , 1-1 Minami-Osawa , Hachioji , Tokyo 192-0397 , Japan
| | - Takashi Ogura
- Department of Life Science and Picobiology Institute , Graduate School of Life Science , University of Hyogo , RSC-UH Leading Program Center , 1-1-1 Koto, Sayo-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Masahiko Hada
- Department of Chemistry , Graduate School of Science , Tokyo Metropolitan University , 1-1 Minami-Osawa , Hachioji , Tokyo 192-0397 , Japan
| |
Collapse
|
4
|
Ye S, Xue G, Krivokapic I, Petrenko T, Bill E, Que Jr L, Neese F. Magnetic circular dichroism and computational study of mononuclear and dinuclear iron(IV) complexes. Chem Sci 2015; 6:2909-2921. [PMID: 26417426 PMCID: PMC4583211 DOI: 10.1039/c4sc03268c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/26/2015] [Indexed: 12/13/2022] Open
Abstract
High-valent iron(IV)-oxo species are key intermediates in the catalytic cycles of a range of O2-activating iron enzymes. This work presents a detailed study of the electronic structures of mononuclear ([FeIV(O)(L)(NCMe)]2+, 1, L = tris(3,5-dimethyl-4-methoxylpyridyl-2-methyl)amine) and dinuclear ([(L)FeIV(O)(μ-O)FeIV(OH)(L)]3+, 2) iron(IV) complexes using absorption (ABS), magnetic circular dichroism (MCD) spectroscopy and wave-function-based quantum chemical calculations. For complex 1, the experimental MCD spectra at 2-10 K are dominated by a broad positive C-term band between 12000 and 18000 cm-1. As the temperature increases up to ~20 K, this feature is gradually replaced by a derivative-shaped signal. The computed MCD spectra are in excellent agreement with experiment, which reproduce not only the excitation energies and the MCD signs of key transitions but also their temperature-dependent intensity variations. To further corroborate the assignments suggested by the calculations, the individual MCD sign for each transition is independently determined from the corresponding electron donating and accepting orbitals. Thus, unambiguous assignments can be made for the observed transitions in 1. The ABS/MCD data of complex 2 exhibit ten features that are assigned as ligand-field transitions or oxo- or hydroxo-to-metal charge transfer bands, based on MCD/ABS intensity ratios, calculated excitation energies, polarizations, and MCD signs. In comparison with complex 1, the electronic structure of the FeIV=O site is not significantly perturbed by the binding to another iron(IV) center. This may explain the experimental finding that complexes 1 and 2 have similar reactivities toward C-H bond activation and O-atom transfer.
Collapse
Affiliation(s)
- Shengfa Ye
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Genqiang Xue
- Department of Chemistry , Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant St. SE , Minneapolis , Minnesota 55455 , USA .
| | - Itana Krivokapic
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Taras Petrenko
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Eckhard Bill
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Lawrence Que Jr
- Department of Chemistry , Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant St. SE , Minneapolis , Minnesota 55455 , USA .
| | - Frank Neese
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| |
Collapse
|
5
|
McMaster J, Oganesyan VS. Magnetic circular dichroism spectroscopy as a probe of the structures of the metal sites in metalloproteins. Curr Opin Struct Biol 2010; 20:615-22. [PMID: 20619632 DOI: 10.1016/j.sbi.2010.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/07/2010] [Accepted: 06/09/2010] [Indexed: 11/30/2022]
Abstract
Magnetic circular dichroism (MCD) is a powerful probe of the electronic and geometric structures of metal centres in metalloproteins. MCD has provided significant insight into the nature of the axial donors at haem centres and, more recently, sophisticated methods for the analysis of MCD spectra have had a major impact on the study of the electronic structures of the ground states of a range of Cu, non-haem iron and Mo-containing active sites. This detail, together with data from other complimentary spectroscopies, has played a major role in defining the chemistry underpinning the catalysis achieved by these metal centres.
Collapse
Affiliation(s)
- Jonathan McMaster
- School of Chemistry, The University of Nottingham, Nottingham NG7 2RD, UK.
| | | |
Collapse
|
6
|
He C, Knipp M. Formation of nitric oxide from nitrite by the ferriheme b protein nitrophorin 7. J Am Chem Soc 2009; 131:12042-3. [PMID: 19655755 DOI: 10.1021/ja9040362] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, the conversion of nitrite into NO by certain heme proteins, in particular hemoglobin, gained much interest as a physiologically important source of NO in human tissue. However, in an aqueous environment, nitrite reduction at an iron porphyrin occurs either through oxidation of ferroheme to ferriheme or with the assistance of a second substrate molecule. Here we report on the reduction of nitrite in the absence of a second substrate at the heme center of the ferriheme protein nitrophorin 7 (NP7) resulting in the formation of NO and restoration of the ferriheme center. The product was spectroscopically characterized, in particular by resonance Raman and FT-IR spectroscopy. Performing the reaction in the presence of the NO trap 2-(4-trimethylammonio)phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (TMA-PTIO) revealed that continuous NO production is possible, i.e., that NP7 is fully restored upon a single turnover. Thus, NP7 is the first case of a b-type heme that performs reduction of nitrite as a single substrate out of the iron(III) state.
Collapse
Affiliation(s)
- Chunmao He
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | | |
Collapse
|
7
|
Sundararajan M, Ganyushin D, Ye S, Neese F. Multireference ab initio studies of zero-field splitting and magnetic circular dichroism spectra of tetrahedral Co(II) complexes. Dalton Trans 2009:6021-36. [PMID: 19623403 DOI: 10.1039/b902743b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly developed multireference (MR) ab initio method for the calculation of magnetic circular dichroism (MCD) spectra was calibrated through the calculation of the ground- and excited state properties of seven high-spin (S = 3/2) Co(II) complexes. The MCD spectra were computed by the explicit treatment of spin-orbit coupled (SOC) and spin-spin coupled (SSC) N-electron states. For the complexes studied in this work, we found that the SOC is more important than the SSC for determining the ground state zero field splitting (ZFS). Our computed ZFS parameter D for the [Co(PPh(3))(2)Cl(2)] model complex is -17.6 cm(-1), which is reasonably close to the experimental value of -14.8 cm(-1). Generally, the computed absorption and MCD spectra are in fair agreement with experiment for all investigated complexes. Thus, reliable electronic structure and spectroscopic predictions for medium sized transition metal complexes are feasible on the basis of this methodology. This characterizes the presented method as a promising tool for MCD spectra interpretations of transition metal complexes in a variety of areas of chemistry and biology.
Collapse
Affiliation(s)
- Mahesh Sundararajan
- Institut für Physikalische und Theoretische Chemie, Wegelerstr. 12, University of Bonn, D-53115 Bonn, Germany
| | | | | | | |
Collapse
|
8
|
New insights into the activity of Pseudomonas aeruginosa cd1 nitrite reductase. Biochem Soc Trans 2009; 36:1155-9. [PMID: 19021515 DOI: 10.1042/bst0361155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cytochrome cd(1) nitrite reductases are enzymes that catalyse the reduction of nitrite to nitric oxide (NO) in the bacterial energy conversion denitrification process. These enzymes contain two different redox centres: one covalently bound c-haem, which is reduced by external donors, and one peculiar d(1)-haem, where catalysis occurs. In the present paper, we summarize the current understanding of the reaction of nitrite reduction in the light of the most recent results on the enzyme from Pseudomonas aeruginosa and discuss the differences between enzymes from different organisms. We have evidence that release of NO from the ferrous d(1)-haem occurs rapidly enough to be fully compatible with the turnover, in contrast with previous hypotheses, and that the substrate nitrite is able to displace NO from the d(1)-haem iron. These results shed light on the mechanistic details of the activity of cd(1) nitrite reductases and on the biological role of the d(1)-haem, whose presence in this class of enzymes has to date been unexplained.
Collapse
|