1
|
Morimoto T, Yoshida M, Sato-Tomita A, Nozawa S, Takayama J, Hiura S, Murayama A, Kobayashi A, Kato M. Vapor-Induced Assembly of a Platinum(II) Complex Loaded on Layered Double Hydroxide Nanoparticles. Chemistry 2023; 29:e202301993. [PMID: 37581259 DOI: 10.1002/chem.202301993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Controlled self-assembly of PtII complexes is key to the development of optical and stimuli-responsive materials, but designing and precisely controlling them is still difficult owing to weak intermolecular interactions. Herein, we report the successful water-vapor-induced assembly of an anionic PtII complex [Pt(CN)2 (ppy)]- (Hppy=2-phenylpyridine) electrostatically loaded onto cationically charged layered double hydroxide (LDH) nanoparticles consisting of Mg2+ and Al3+ ions. When the PtII complexes were densely loaded onto the LDH nanoparticles, the assembly was maintained, even in dilute aqueous media. In the case of sparse loading, the PtII complexes were loaded discretely in the dry state; however, when water vapor was adsorbed, the increased mobility of the PtII complexes led to their assembly on the LDH nanoparticles. The presence of water vapor led to a drastic change in luminescence from green to orange.
Collapse
Affiliation(s)
- Tamami Morimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Masaki Yoshida
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Ayana Sato-Tomita
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Junichi Takayama
- Faculty of Information Science and Technology, Hokkaido University, North-14 West-9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Satoshi Hiura
- Faculty of Information Science and Technology, Hokkaido University, North-14 West-9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Akihiro Murayama
- Faculty of Information Science and Technology, Hokkaido University, North-14 West-9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Masako Kato
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
2
|
Bryant MJ, Fuertes S, Hatcher LE, Thomas LH, Raithby PR. Structural modifications to platinum(II) pincer complexes resulting in changes in their vapochromic and solvatochromic properties. Faraday Discuss 2023; 244:411-433. [PMID: 37186115 DOI: 10.1039/d3fd00025g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
There is a need to develop rapidly responsive chemical sensors for the detection of low concentrations of volatile organic solvents (VOCs). Platinum pincer complexes have shown promise as sensors because of their colours and vapochromic and solvatochromic properties, that may be related to the non-covalent interactions between the pincer complexes and the guest VOCs. Here we report an investigation into a series of Pt(II) complexes based on the 1,3-di(pyridine)benzene tridentate (N⁁C⁁N) skeleton with the formula [Pt(N⁁C(R)⁁N)(CN)] (R = C(O)Me 2, C(O)OEt 3, C(O)OPh 4) with the fourth coordination site occupied by a cyanide ligand. Solid-state samples of the complexes have been tested with a range of volatiles including methanol, ethanol, acetone, dichloromethane and water, and while 2 displays thermochromism, 3 and 4 display rapidly reversible vapochromism and solvatochromism. These results are correlated with X-ray powder and single crystal X-ray structural data including an assessment of the crystal packing and the void space in the crystalline space. The cyanide ligand and the R substituents are involved in hydrogen bonding that creates the voids within the structures and interact with the solvent molecules that influence the Pt⋯Pt separation in the crystalline state.
Collapse
Affiliation(s)
- Mathew J Bryant
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Sara Fuertes
- Departamento de Quimica Inorgánica, Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Lauren E Hatcher
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | - Lynne H Thomas
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Paul R Raithby
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
3
|
Sadeghian M, Gómez de Segura D, Golbon Haghighi M, Safari N, Lalinde E, Moreno MT. Luminescent Anionic Cyclometalated Organoplatinum (II) Complexes with Terminal and Bridging Cyanide Ligand: Structural and Photophysical Properties. Inorg Chem 2023; 62:1513-1529. [PMID: 36651903 PMCID: PMC9890487 DOI: 10.1021/acs.inorgchem.2c03668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present the synthesis and characterization of two series of mononuclear heteroleptic anionic cycloplatinated(II) complexes featuring terminal cyanide ligand Q+[Pt(C^N)(p-MeC6H4)(CN)]- [C^N = benzoquinolate (bzq), Q+ = K+ 1 and NBu4+ 4; 2-phenylpyridinate (ppy), Q+ = K+ 2 and NBu4+ 5 and 2-(2,4- difluorophenyl)pyridinate (dfppy), Q+ = K+ 3 and NBu4+ 6] and a series of symmetrical binuclear complexes (NBu4)[Pt2(C^N)2(p-MeC6H4)2(μ-CN)] (C^N = bzq 7, ppy 8, dfppy 9). Compounds 5, 6, and 7-9 were further determined by single-crystal X-ray diffraction. There are no apparent intermolecular Pt···Pt interactions owing to the presence of bulky NBu4+ counterion. Slow crystallization of K[Pt(ppy)(p-MeC6H4)(CN)] 2 in acetone/hexane evolves with formation of yellow crystals, which were identified by single-crystal X-ray diffraction methods as the salt complex {[Pt(ppy)(p-MeC6H4)(CN)]2K3(OCMe2)4(μ-OCMe2)2}[Pt(ppy)(p-MeC6H4)(μ-CN)Pt(ppy)(p-MeC6H4)]·2acetone (10), featuring the binuclear anionic unit 8- neutralized by an hybrid inorganic-organometallic coordination polymer {[Pt(ppy)(p-MeC6H4)(CN)]2K3(OCMe2)4(μ-OCMe2)2}+. The photophysical properties of all compounds were recorded in powder, polystyrene film, and solution states with a quantum yield up to 21% for 9 in the solid state. All complexes displayed bright emission in rigid media, and for the interpretation of their absorption and emission properties, density functional theory (DFT) and time-dependent DFT calculations were applied.
Collapse
Affiliation(s)
- Mina Sadeghian
- Department
of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran,Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - David Gómez de Segura
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | | | - Nasser Safari
- Department
of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran
| | - Elena Lalinde
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain,
| | - M. Teresa Moreno
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain,
| |
Collapse
|
4
|
Martínez-Junquera M, Lalinde E, Moreno MT. Multistimuli-Responsive Properties of Aggregated Isocyanide Cycloplatinated(II) Complexes. Inorg Chem 2022; 61:10898-10914. [PMID: 35775932 PMCID: PMC9348835 DOI: 10.1021/acs.inorgchem.2c01400] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we describe the neutral cyclometalated tert-butylisocyanide PtII complexes, [Pt(C∧N)Cl(CNBut)] 1, the double salts [Pt(C∧N)(CNBut)2][Pt(C∧N)Cl2] 2, and the cationic complexes [Pt(C∧N)(CNBut)2]ClO4 3 [C∧N = difluorophenylpyridine (dfppy, a), 4-(2-pyridyl)benzaldehyde (ppy-CHO, b)]. A comparative study of the pseudopolymorphs 1a, 1a·CHCl3, 1b, 1b·0.5Toluene, 1b·0.5PhF, and 3a·0.25CH2Cl2 reveals strong aggregation through Pt···Pt and/or π···π stacking interactions to give a variety of distinctive one-dimensional (1D) infinite chains, which modulate the photoluminescent properties. This intermolecular long-range aggregate formation is the main origin of the photoluminescent behavior of 1a and 1b complexes, which exhibit highly sensitive and reversible responses to multiple external stimuli including different volatile organic compounds (VOCs), solvents, temperatures, and pressures, with distinct color and phosphorescent color switching from green to red. Furthermore, complex 1b undergoes supramolecular self-assembly via Pt···Pt and/or π···π interactions into a polymer thin polystyrene (PS) film 10 wt % in response to toluene vapors, and 3a exhibits vapochromic and vapoluminescent behavior. Theoretical simulations on the dimer, trimer, and tetramer models of 1a and 1b have been carried out to get insight into the photophysical properties in the aggregated solid state.
Collapse
Affiliation(s)
- Mónica Martínez-Junquera
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - M Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
5
|
Group 10 metal-cyanide scaffolds in complexes and extended frameworks: Properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Shigeta Y, Nanko R, Amemori S, Mizuno M. Coordination-based vapochromic behavior of a luminescent Pt(ii) complex with potassium ions. RSC Adv 2021; 11:30046-30053. [PMID: 35480267 PMCID: PMC9040898 DOI: 10.1039/d1ra05236e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Vapochromic Pt(ii) complexes that exhibit color and luminescence changes induced by the presence of vapor molecules have drawn considerable attention because of their potential use as vapor sensors. Generally, the vapochromic responsiveness of Pt(ii)-based complexes is difficult to envisage, because a typical molecular design facilitates the stabilization of a vapor-adsorbed form through weak intermolecular interactions. Herein, we investigate the vapochromic behavior of a Pt(ii) complex with potassium ions, which act as vapor coordination sites, by strongly stabilizing the vapor-adsorbed form. Upon exposure to N,N-dimethylacetamide and N,N-dimethylformamide vapors, the complex exhibits crystal structural transformation with luminescence spectral changes. Crystal structural analysis indicates that the vapor molecules are coordinated to the potassium ions after vapor exposure. This study suggests the possibility of inducing Pt(ii)-based vapochromic responsiveness through establishing potassium-ion-based vapor coordination sites. A luminescent Pt(ii) complex with potassium ions was successfully synthesized and its coordination-based vapochromic behavior was investigated.![]()
Collapse
Affiliation(s)
- Yasuhiro Shigeta
- NanoMaterials Research Institute, Kanazawa University Kanazawa 920-1192 Japan
| | - Ryota Nanko
- School of Chemistry, College of Science and Engineering, Kanazawa University Kanazawa 920-1192 Japan
| | - Shogo Amemori
- NanoMaterials Research Institute, Kanazawa University Kanazawa 920-1192 Japan .,Graguate School of Natural Science and Technology, Kanazawa University Kanazawa 920-1192 Japan.,Institute of Frontier Science Initiative, Kanazawa University Kanazawa 920-1192 Japan
| | - Motohiro Mizuno
- NanoMaterials Research Institute, Kanazawa University Kanazawa 920-1192 Japan .,Graguate School of Natural Science and Technology, Kanazawa University Kanazawa 920-1192 Japan.,Institute of Frontier Science Initiative, Kanazawa University Kanazawa 920-1192 Japan
| |
Collapse
|
7
|
Sicilia V, Arnal L, Escudero D, Fuertes S, Martin A. Chameleonic Photo- and Mechanoluminescence in Pyrazolate-Bridged NHC Cyclometalated Platinum Complexes. Inorg Chem 2021; 60:12274-12284. [PMID: 34339189 PMCID: PMC8892954 DOI: 10.1021/acs.inorgchem.1c01470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DFT investigations on the ground (GS) and the first triplet (T1) excited state potential energy surfaces (PES) were performed on a new series of platinum-butterfly complexes, [{Pt(C∧C*)(μ-Rpz)}2] (Rpz: pz, 1; 4-Mepz, 2; 3,5-dmpz, 3; 3,5-dppz, 4), containing a cyclometalated NHC in their wings. The geometries of two close-lying local minima corresponding to butterfly spread conformers, 1s-4s, and butterfly folded ones, 1f-4f, with long and short Pt-Pt separations, respectively, were optimized in the GS and T1 PES. A comparison of the GS and T1 energy profiles revealed that an opposite trend is obtained in the relative stability of folded and spread conformers, the latter being more stabilized in their GS. Small ΔG (s/f) along with small-energy barriers in the GS support the coexistence of both kinds of conformers, which influence the photo- and mechanoluminescence of these complexes. In 5 wt % doped PMMA films in the air, these complexes exhibit intense sky-blue emissions (PLQY: 72.0-85.9%) upon excitation at λ ≤ 380 nm arising from 3IL/MLCT excited states, corresponding to the predominant 1s-4s conformers. Upon excitation at longer wavelengths (up to 450 nm), the minor 1f-4f conformers afford a blue emission as well, with PLQY still significant (40%-60%). In the solid state, the as-prepared powder of 4 exhibits a greenish-blue emission with QY ∼ 29%, mainly due to 3IL/3MLCT excited states of butterfly spread molecules, 4s. Mechanical grinding resulted in an enhanced and yellowish-green emission (QY ∼ 51%) due to the 3MMLCT excited states of butterfly folded molecules, 4f, in such a way that the mechanoluminescence has been associated with an intramolecular structural change induced by mechanical grinding.
Collapse
Affiliation(s)
- Violeta Sicilia
- Departamento de Quimica Inorganica, Escuela de Ingenieria y Arquitectura de Zaragoza, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Campus Rio Ebro, Edificio Torres Quevedo, 50018, Zaragoza, Spain
| | - Lorenzo Arnal
- Departamento de Quimica Inorganica, Facultad de Ciencias, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Daniel Escudero
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f - box 2404, 3001 Leuven, Belgium
| | - Sara Fuertes
- Departamento de Quimica Inorganica, Facultad de Ciencias, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Antonio Martin
- Departamento de Quimica Inorganica, Facultad de Ciencias, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
8
|
Gao Q, Peng F, Wang C, Lin J, Chang X, Zou C, Lu W. Phosphorescent Zwitterionic Pt(
II
)
N
‐Heterocyclic
Allenylidene Complexes: Metallophilicity and Ionic
Self‐Assembly
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qin Gao
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Fei Peng
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuanfei Wang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jinqiang Lin
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chao Zou
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
9
|
Belviso BD, Marin F, Fuertes S, Sicilia V, Rizzi R, Ciriaco F, Cappuccino C, Dooryhee E, Falcicchio A, Maini L, Altomare A, Caliandro R. Structural Insights into the Vapochromic Behavior of Pt- and Pd-Based Compounds. Inorg Chem 2021; 60:6349-6366. [PMID: 33856202 DOI: 10.1021/acs.inorgchem.1c00081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anionic complexes having vapochromic behavior are investigated: [K(H2O)][M(ppy)(CN)2], [K(H2O)][M(bzq)(CN)2], and [Li(H2O)n][Pt(bzq)(CN)2], where ppy = 2-phenylpyridinate, bzq = 7,8-benzoquinolate, and M = Pt(II) or Pd(II). These hydrated potassium/lithium salts exhibit a change in color upon being heated to 380 K, and they transform back into the original color upon absorption of water molecules from the environment. The challenging characterization of their structure in the vapochromic transition has been carried out by combining several experimental techniques, despite the availability of partially ordered and/or impure crystalline material. Room-temperature single-crystal and powder X-ray diffraction investigation revealed that [K(H2O)][Pt(ppy)(CN)2] crystallizes in the Pbca space group and is isostructural to [K(H2O)][Pd(ppy)(CN)2]. Variable-temperature powder X-ray diffraction allowed the color transition to be related to changes in the diffraction pattern and the decrease in sample crystallinity. Water loss, monitored by thermogravimetric analysis, occurs in two stages, well separated for potassium Pt compounds and strongly overlapped for potassium Pd compounds. The local structure of potassium compounds was monitored by in situ pair distribution function (PDF) measurements, which highlighted changes in the intermolecular distances due to a rearrangement of the crystal packing upon vapochromic transition. A reaction coordinate describing the structural changes was extracted for each compound by multivariate analysis applied to PDF data. It contributed to the study of the kinetics of the structural changes related to the vapochromic transition, revealing its dependence on the transition metal ion. Instead, the ligand influences the critical temperature, higher for ppy than for bzq, and the inclination of the molecular planes with respect to the unit cell planes, higher for bzq than for ppy. The first stage of water loss triggers a unit cell contraction, determined by the increase in the b axis length and the decrease in the a (for ppy) or c (for bzq) axis lengths. Consequent interplane distance variations and in-plane roto-translations weaken the π-stacking of the room-temperature structure and modify the distances and angles of Pt(II)/Pd(II) chains. The curve describing the intermolecular Pt(II)/Pd(II) distances as a function of temperature, validated by X-ray absorption spectroscopy, was found to reproduce the coordinate reaction determined by the model-free analysis.
Collapse
Affiliation(s)
| | - Francesco Marin
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Sara Fuertes
- Departamento de Química Iorgánica, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Violeta Sicilia
- Departamento de Química Iorgánica, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Rosanna Rizzi
- Institute of Crystallography, CNR, via Amendola 122/o, Bari 70126, Italy
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università di Bari, via Orabona, 70125 Bari, Italy
| | - Chiara Cappuccino
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Eric Dooryhee
- NSLS II, Photon Science Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Aurelia Falcicchio
- Institute of Crystallography, CNR, via Amendola 122/o, Bari 70126, Italy
| | - Lucia Maini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Angela Altomare
- Institute of Crystallography, CNR, via Amendola 122/o, Bari 70126, Italy
| | - Rocco Caliandro
- Institute of Crystallography, CNR, via Amendola 122/o, Bari 70126, Italy
| |
Collapse
|
10
|
Rajendiran K, Yoganandham ST, Arumugam S, Arumugam D, Thananjeyan K. An overview of liquid crystalline mesophase transition and photophysical properties of “f block,” “d block,” and (SCO) spin-crossover metallomesogens in the optoelectronics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Kataoka Y, Kohara Y, Yano N, Kawamoto T. Unique vapochromism of a paddlewheel-type dirhodium complex accompanied by dynamic structural and phase transitions. Dalton Trans 2020; 49:14373-14377. [PMID: 32839798 DOI: 10.1039/d0dt02672g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The one-dimensional coordination polymer [Rh2(HA)4]n (1G; HA = hexanoate) exhibits a drastic vapochromic color change from green to red upon exposure to pyridine (py) vapor. Heating the red discrete complex [Rh2(HA)4(py)2] (1R) at 338 K affords the purple discrete tetrarhodium complex [Rh2(HA)4(py)]2 (1P), which is an intermediate species in the vapochromic transformation of 1G to 1R. The obtained complexes 1G, 1R, and 1P differ not only in their color in the solid state, but also in their temperature-dependent phase transition properties.
Collapse
Affiliation(s)
- Yusuke Kataoka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Yoshihiro Kohara
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Natsumi Yano
- Special Course of Science and Engineering, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Tatsuya Kawamoto
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| |
Collapse
|
12
|
Li J, Ma Y, Liu S, Mao Z, Chi Z, Qian PC, Wong WY. Soft salts based on platinum(II) complexes with high emission quantum efficiencies in the near infrared region for in vivo imaging. Chem Commun (Camb) 2020; 56:11681-11684. [PMID: 33000795 DOI: 10.1039/d0cc05366j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two soft salts (S1 and S2) based on platinum(ii) complexes with a near-infrared emission have been designed and synthesized. It has been demonstrated that S2 has a high photostability and a low cytotoxicity, and it has been successfully applied to in vivo imaging for the first time.
Collapse
Affiliation(s)
- Jun Li
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Hong Kong, P. R. China
| | - Yun Ma
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China. and The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P. R. China and Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Suyi Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, Jiangsu, P. R. China
| | - Zhu Mao
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Peng-Cheng Qian
- Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, Institute of New Materials & Industry, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Wai-Yeung Wong
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Hong Kong, P. R. China and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China. and The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P. R. China
| |
Collapse
|
13
|
Wakasugi C, Yoshida M, Sameera WMC, Shigeta Y, Kobayashi A, Kato M. Bright Luminescent Platinum(II)-Biaryl Emitters Synthesized Without Air-Sensitive Reagents. Chemistry 2020; 26:5449-5458. [PMID: 32086967 DOI: 10.1002/chem.201905821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/10/2020] [Indexed: 11/06/2022]
Abstract
Transition-metal complexes bearing biaryl-2,2'-diyl ligands tend to show intense luminescence. However, difficulties in synthesis have prevented their further functionalization and practical applications. Herein, a series of platinum(II) complexes bearing biaryl-2,2'-diyl ligands, which have never been prepared in air, were synthesized through transmetalation and successive cyclometalation of biarylboronic acids. This approach does not require any air- or moisture-sensitive reagents and features a simple synthesis even in air. The resulting (Et4 N)2 [Pt(m,n-F2 bph)(CN)2 ] (m,n-F2 bph=m,n-difluorobiphenyl-2,2'-diyl) complexes exhibit intense green emissions with high quantum efficiencies of up to 0.80 at 298 K. The emission spectral fitting and variable-temperature emission lifetime measurements indicate that the high quantum efficiency was achieved because of the tight packing structure and strong σ-donating ability of bph.
Collapse
Affiliation(s)
- Chuei Wakasugi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku Sapporo, Hokkaido, 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku Sapporo, Hokkaido, 060-0810, Japan
| | - W M C Sameera
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku Sapporo, Hokkaido, 060-0810, Japan.,Current address: Institute of Low Temperature Science, Hokkaido University, North-19 West-8, Kita-ku, Sapporo, Hokkaido, 060-0819, Japan
| | - Yasuhiro Shigeta
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku Sapporo, Hokkaido, 060-0810, Japan.,Current address: Nanomaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku Sapporo, Hokkaido, 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
14
|
|
15
|
Li E, Jie K, Liu M, Sheng X, Zhu W, Huang F. Vapochromic crystals: understanding vapochromism from the perspective of crystal engineering. Chem Soc Rev 2020; 49:1517-1544. [PMID: 32016241 DOI: 10.1039/c9cs00098d] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vapochromic materials, which undergo colour and/or emission changes upon exposure to certain vapours or gases, have received increasing attention recently because of their wide range of applications in, e.g., chemical sensors, light-emitting diodes, and environmental monitors. Vapochromic crystals, as a specific kind of vapochromic materials, can be investigated from the perspective of crystal engineering to understand the mechanism of vapochromism. Moreover, understanding the vapochromism mechanism will be beneficial to design and prepare task-specific vapochromic crystals as one kind of low-cost 'electronic nose' to detect toxic gases or volatile organic compounds. This review provides important information in a broad scientific context to develop new vapochromic materials, which covers organometallic or coordination complexes and organic crystals, as well as the different mechanisms of the related vapochromic behaviour. In addition, recent examples of supramolecular vapochromic crystals and metal-organic-framework (MOFs) vapochromic crystals are introduced.
Collapse
Affiliation(s)
- Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
16
|
Ohno K, Komuro M, Sugaya T, Nagasawa A, Fujihara T. Luminescence of mononuclear Pt(ii) complexes with glycolate: external stimuli-induced excimer emission changes to oligomer emissions. Dalton Trans 2020; 49:1873-1882. [PMID: 31967145 DOI: 10.1039/c9dt03996a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Trihydrate crystals of novel PtII complexes [PtII(bpy)(gl)] (bpy: 2,2′-bipyridine; Hgl−: glycolate) show excimer emission changes to two kinds of oligomer emissions depending on the type of external stimuli.
Collapse
Affiliation(s)
- Keiji Ohno
- Department of Chemistry
- Graduate School of Science and Engineering
- Saitama University
- Saitama 338-8570
- Japan
| | - Masaya Komuro
- Department of Chemistry
- Graduate School of Science and Engineering
- Saitama University
- Saitama 338-8570
- Japan
| | - Tomoaki Sugaya
- Education Center
- Faculty of Engineering
- Chiba Institute of Technology
- Narashino
- Japan
| | - Akira Nagasawa
- Department of Chemistry
- Graduate School of Science and Engineering
- Saitama University
- Saitama 338-8570
- Japan
| | - Takashi Fujihara
- Comprehensive Analysis Center for Science
- Saitama University
- Saitama 338-8570
- Japan
| |
Collapse
|
17
|
Phosphorescence properties of anionic cyclometalated platinum(II) complexes with fluorine-substituted tridentate diphenylpyridine in the solid state. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Paziresh S, Sicilia V, Ara I, Martín A, Fuertes S. The Influence of Cyclometalated Ligand Motifs on the Solid-State Assemblies and Luminescent Properties of Pt(II)-Tl(I) Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sareh Paziresh
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Violeta Sicilia
- Departamento de Química Inorgánica, Escuela de Ingeniería y Arquitectura de Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Campus Rio Ebro, Edificio Torres Quevedo, 50018, Zaragoza, Spain
| | - Irene Ara
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Antonio Martín
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Sara Fuertes
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
19
|
Fuertes S, Chueca AJ, Martín A, Sicilia V. New NHC cycloplatinated compounds. Significance of the cyclometalated group on the electronic and emitting properties of bis-cyanide compounds. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Huang J, Liu Z, Chen H, Zhang H, Zhang H, Liu C, Gao Q, Du C, Zhang B. Formation of Hetero-binuclear Pt(II)-M(II) Complexes Based on (2-(1 H-Tetrazol-5-yl)phenyl)diphenylphosphine Oxide for Superior Phosphorescence of Monomers. Inorg Chem 2019; 58:4253-4261. [PMID: 30892024 DOI: 10.1021/acs.inorgchem.8b03326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Novel hetero-binuclear platinum complexes (HBC-Pt(II)-M(II), M = Ca(II), Mg(II), Zn(II), and Cd(II)) have been synthesized by the reaction of the corresponding precursors [Pt(ppy)(μ-Cl)]2 with (2-(1 H-tetrazol-5-yl)phenyl)diphenylphosphine oxide (TTPPO). The X-ray structures of the complexes show that two ancillary ligands TTPPO in the square-planar Pt(II) moiety act as a quadridentate chelating agent for the other metal center, eventually forming a distorted octahedral configuration. There are no significant π-π interactions and Pt-M metallophilic interactions in the crystal lattice, due to the steric hindrances associated with the rigid octahedral structure together with the bulky TTPPO. Consequently, HBC-Pt-M complexes show monomer emission characteristics with quantum yields up to 59% in powder, suggesting their great potential for practical applications. DFT and TD-DFT calculations on HBC-Pt-Zn reveal that the phosphorescence can be ascribed to intraligand charge transfer (3ILCT) combined with some metal-to-ligand charge transfer (3MLCT) in the Pt(ppy) moiety, which is consistent with the observations from the photophysical investigations.
Collapse
Affiliation(s)
- Juan Huang
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Zhuo Liu
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Hui Chen
- Institute of Chemistry , Henan Academy of Sciences , Zhengzhou 450002 , China
| | - Hailing Zhang
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Han Zhang
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Chunmei Liu
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Qin Gao
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Chenxia Du
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Bin Zhang
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| |
Collapse
|
21
|
Ohno K, Kusano Y, Kaizaki S, Nagasawa A, Fujihara T. Chromism of Tartrate-Bridged Clamshell-like Platinum(II) Complex: Intramolecular Pt–Pt Interaction-Induced Luminescence Vapochromism and Intermolecular Interactions-Triggered Thermochromism. Inorg Chem 2018; 57:14159-14169. [DOI: 10.1021/acs.inorgchem.8b02074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keiji Ohno
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakuraku, Saitama 338-8570, Japan
| | - Yukiko Kusano
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakuraku, Saitama 338-8570, Japan
| | - Sumio Kaizaki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Nagasawa
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakuraku, Saitama 338-8570, Japan
| | - Takashi Fujihara
- Comprehensive Analysis Center for Science, Saitama University, 255 Shimo-Okubo, Sakuraku, Saitama 338-8570, Japan
| |
Collapse
|
22
|
Ogawa T, Sameera WMC, Saito D, Yoshida M, Kobayashi A, Kato M. Phosphorescence Properties of Discrete Platinum(II) Complex Anions Bearing N-Heterocyclic Carbenes in the Solid State. Inorg Chem 2018; 57:14086-14096. [PMID: 30354093 DOI: 10.1021/acs.inorgchem.8b01654] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tomohiro Ogawa
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - W. M. C. Sameera
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Daisuke Saito
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
23
|
Park G, Yu S, Kim S, Nah Y, Son A, You Y. Monocycloplatinated Solvento Complex Displays Turn-on Ratiometric Phosphorescence Responses to Histamine. Inorg Chem 2018; 57:13985-13997. [DOI: 10.1021/acs.inorgchem.8b02612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Ionescu A, Godbert N, Aiello I, Ricciardi L, La Deda M, Crispini A, Sicilia E, Ghedini M. Anionic cyclometalated Pt(ii) and Pt(iv) complexes respectively bearing one or two 1,2-benzenedithiolate ligands. Dalton Trans 2018; 47:11645-11657. [PMID: 30095835 DOI: 10.1039/c8dt02444h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel anionic cyclometalated Pt(ii) square-planar complexes NBu4[(C^N)PtII(S^S)], containing 2-phenylpyridine H(PhPy), 2-(2,4-difluorophenyl)-pyridine H(F2PhPy) and benzo[h]quinoline H(Bzq), respectively, as a cyclometalated ligand and the dianionic 1,2-benzenedithiolate (Thio)2- fragment as an (S^S) ligand, were synthesised. By the simple addition of an equivalent of (Thio)2- to the NBu4[(C^N)PtII(Thio)] complexes, octahedral anionic NBu4[(C^N)PtIV(Thio)2] analogues were obtained, representing, to the best of our knowledge, the first examples of Pt(iv) anionic cyclometalated complexes. The molecular structures of the obtained complexes in the case of the NBu4[(Bzq)PtII(Thio)] and the NBu4[(Bzq)PtIV(Thio)2] complexes were confirmed by single crystal X-ray diffraction analysis. Furthermore, the electrochemical and photophysical properties of the two series of Pt(ii) and Pt(iv) newly synthesised complexes were studied and DFT and TD-DFT calculations were performed in order to comprehensively investigate the displayed behaviour. All Pt(ii) and Pt(iv) complexes show intense luminescence in the solid state, with remarkable enhancement of the emission quantum yields, proving to be excellent examples of aggregation-induced emission systems.
Collapse
Affiliation(s)
- Andreea Ionescu
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici), Centro di Eccellenza CEMIF.CAL, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dai Y, Zhang JJ, Liu SQ, Zhou H, Sun YJ, Pan YZ, Ni J, Yang JS. A Trichromatic and White-Light-Emitting MOF Composite for Multi-Dimensional and Multi-Response Ratiometric Luminescent Sensing. Chemistry 2018; 24:9555-9564. [PMID: 29756362 DOI: 10.1002/chem.201801686] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/08/2018] [Indexed: 01/04/2023]
Abstract
Present here is a new dual ratiometric luminescent probe D which is a trichromatic and white-light-emitting metal-organic framework (MOF) composite facilely obtained by incorporating red/green-emitting complex modules into a blue-emitting MOF. Probe D exhibits remarkable capabilities of sensing different volatile organic solvents (VOSs) via 2D code recognition of the two VOS-dependent MOF ligand-to-module ratios of the emission-peak intensities. For specific VOSs, the resultant luminescent color changes from the starting white color are sharp enough to be visible to the naked eye. Remarkably, D can differentiate solution-phase nitroaromatics and metal ions by recording the evolution of the two ratios during titration processes, enabling an unusual 3D code recognition using the titrant amount as the third dimension for the first time. D also can be used to detect dinoseb, Fe3+ and Al3+ ions quantitatively by analysis of the ratios with detection limits as low as 0.050, 0.41, and 0.12 ppm, respectively. Clearly, such a self-referencing trichromatic probe can maximize the output information and significantly enhance the detection selectivity and sensitivity via multi-dimensional sensing, and has great potentials for practical applications.
Collapse
Affiliation(s)
- Yue Dai
- Chemistry College, Dalian University of Technology, Dalian, 116024, China
| | - Jian-Jun Zhang
- Chemistry College, Dalian University of Technology, Dalian, 116024, China
| | - Shu-Qin Liu
- Chemistry College, Dalian University of Technology, Dalian, 116024, China
| | - Huajun Zhou
- High Density Electronics Center, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Ying-Ji Sun
- Chemistry College, Dalian University of Technology, Dalian, 116024, China
| | - Yu-Zhen Pan
- Chemistry College, Dalian University of Technology, Dalian, 116024, China
| | - Jun Ni
- Chemistry College, Dalian University of Technology, Dalian, 116024, China
| | - Jing-Si Yang
- Chemistry College, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
26
|
Kotturi K, Masson E. Directional Self-Sorting with Cucurbit[8]uril Controlled by Allosteric π-π and Metal-Metal Interactions. Chemistry 2018; 24:8670-8678. [PMID: 29601113 DOI: 10.1002/chem.201800856] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 12/14/2022]
Abstract
To maximize Coulombic interactions, cucurbit[8]uril (CB[8]) typically forms ternary complexes that distribute the positive charges of the pair of guests (if any) over both carbonylated portals of the macrocycle. We present here the first exception to this recognition pattern. Platinum(II) acetylides flanked by 4'-substituted terpyridyl ligands (tpy) form 2:1 complexes with CB[8] in an exclusively stacked head-to-head orientation in a water/acetonitrile mixture. The host encapsulates the pair of tpy substituents, and both positive Pt centers sit on top of each other at the same CB[8] rim, leaving the other rim free of any interaction with the guests. This dramatic charge imbalance between the CB[8] rims would be electrostatically penalizing, were it not for allosteric π-π interactions between the stacked tpy ligands, and possible metal-metal interactions between both Pt centers. When both tpy and acetylides are substituted with aryl units, the metal-ligand complexes form 2:2 assemblies with CB[8] in aqueous medium, and the directionality of the assembly (head-to-head or head-to-tail) can be controlled, both kinetically and thermodynamically.
Collapse
Affiliation(s)
- Kondalarao Kotturi
- Department of Chemistry and Biochemistry, Ohio University, 181 Clippinger Hall, Athens, Ohio, 45701, USA
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University, 181 Clippinger Hall, Athens, Ohio, 45701, USA
| |
Collapse
|
27
|
Wang Z, Chen Q. Vapochromic behavior of MOF for selective sensing of ethanol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 194:158-162. [PMID: 29331817 DOI: 10.1016/j.saa.2017.12.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 06/07/2023]
Abstract
A MOF material, Co3[Co(CN)6]2 nanoparticles has been prepared for the effective detection of ethanol in vapor phase. When exposed to ethanol vapor, the material was changed from pink to purple, which is easily observed by naked eyes directly. We propose that the ethanol response is due to ethanol molecules entering the pores of the solid, where they alter the coordination geometry, leading to conversion of their Co centers from octahedral to tetrahedral coordination. Significantly, the change is reversible, which make the material reusable without subjecting to dynamic vacuum or slightly warming.
Collapse
Affiliation(s)
- Zhenhua Wang
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Qianwang Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230026, China; High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
28
|
Tanaka R, Okazawa A, Konaka H, Sasaki A, Kojima N, Matsushita N. Unique Hydration/Dehydration-Induced Vapochromic Behavior of a Charge-Transfer Salt Comprising Viologen and Hexacyanidoferrate(II). Inorg Chem 2018; 57:2209-2217. [PMID: 29412649 DOI: 10.1021/acs.inorgchem.7b03100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We successfully prepared and crystallographically characterized the first intermolecular charge-transfer (CT)-based vapochromic compound, (EV)(H3O)2[Fe(CN)6] (1-Wet, EV2+: 1,1'-diethyl-4,4'-bipyridine-1,1'-diium), an ethyl viologen-containing CT salt. 1-Wet, which is purple in color, is transformed into a brown powder (1-Dry) upon exposure to methanol vapor, drying over silica gel, or heating; 1-Dry returns to 1-Wet upon exposure to water vapor. These color changes are induced by hydration and dehydration, and gravimetric analyses suggest that 1-Dry is the dehydrated form of 1-Wet, namely, (EV)(H)2[Fe(CN)6]. Interestingly, desorption of water molecules from the oxonium ions in 1-Wet produces isolated protons (H+) that remain in 1-Dry as counter cations. Powder X-ray crystal structure analysis of 1-Dry reveals the presence of very short contacts between the nitrogen atoms of adjacent [Fe(CN)6]4- anions in the crystal. The isolated protons are trapped between the nitrogen atoms of cyanido ligands to form very short N···H···N hydrogen bonds. A detailed comparison of the crystal structures of 1-Wet and 1-Dry reveals that hydration and dehydration induce changes in crystal packing and intermolecular CT interactions, resulting in reversible color changes.
Collapse
Affiliation(s)
| | - Atsushi Okazawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo , Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hisashi Konaka
- XRD Application and Software Development Department, X-ray Instrument Division, Rigaku Corporation , Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Akito Sasaki
- XRD Application and Software Development Department, X-ray Instrument Division, Rigaku Corporation , Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Norimichi Kojima
- Toyota Physical and Chemical Research Institute , Yokomichi, Nagakute-shi, Aichi 480-1192, Japan
| | | |
Collapse
|
29
|
Ogawa T, Sameera WMC, Yoshida M, Kobayashi A, Kato M. Luminescent ionic liquids based on cyclometalated platinum(ii) complexes exhibiting thermochromic behaviour in different colour regions. Dalton Trans 2018; 47:5589-5594. [DOI: 10.1039/c8dt00651b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescent ionic liquids, based on anionic Pt(ii) complexes, were developed.
Collapse
Affiliation(s)
- Tomohiro Ogawa
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - W. M. C. Sameera
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Masaki Yoshida
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Atsushi Kobayashi
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Masako Kato
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|
30
|
A rapidly-reversible absorptive and emissive vapochromic Pt(II) pincer-based chemical sensor. Nat Commun 2017; 8:1800. [PMID: 29176716 PMCID: PMC5702612 DOI: 10.1038/s41467-017-01941-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/26/2017] [Indexed: 11/08/2022] Open
Abstract
Selective, robust and cost-effective chemical sensors for detecting small volatile-organic compounds (VOCs) have widespread applications in industry, healthcare and environmental monitoring. Here we design a Pt(II) pincer-type material with selective absorptive and emissive responses to methanol and water. The yellow anhydrous form converts reversibly on a subsecond timescale to a red hydrate in the presence of parts-per-thousand levels of atmospheric water vapour. Exposure to methanol induces a similarly-rapid and reversible colour change to a blue methanol solvate. Stable smart coatings on glass demonstrate robust switching over 104 cycles, and flexible microporous polymer membranes incorporating microcrystals of the complex show identical vapochromic behaviour. The rapid vapochromic response can be rationalised from the crystal structure, and in combination with quantum-chemical modelling, we provide a complete microscopic picture of the switching mechanism. We discuss how this multiscale design approach can be used to obtain new compounds with tailored VOC selectivity and spectral responses.
Collapse
|
31
|
Ionescu A, Godbert N, Ricciardi L, La Deda M, Aiello I, Ghedini M, Rimoldi I, Cesarotti E, Facchetti G, Mazzeo G, Longhi G, Abbate S, Fusè M. Luminescent water-soluble cycloplatinated complexes: Structural, photophysical, electrochemical and chiroptical properties. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Ionescu A, Ricciardi L. Water-induced red luminescence in ionic square-planar cyclometalated platinum(II) complexes. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Schneider L, Sivchik V, Chung KY, Chen YT, Karttunen AJ, Chou PT, Koshevoy IO. Cyclometalated Platinum(II) Cyanometallates: Luminescent Blocks for Coordination Self-Assembly. Inorg Chem 2017; 56:4460-4468. [PMID: 28358479 DOI: 10.1021/acs.inorgchem.7b00006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A family of cyanide-bridged heterometallic aggregates has been constructed of the chromophoric cycloplatinated metalloligands and coordinatively unsaturated d10 fragments {M(PPh3)n}. The tetranuclear complexes of general composition [Pt(C^N)(CN)2M(PPh3)2]2 [C^N = ppy, M = Cu (1), Ag (2); C^N = tolpy (Htolpy = 2-(4-tolyl)-pyridine), M = Cu (4), Ag (5); C^N = F2ppy (HF2ppy = 2-(4, 6-difluorophenyl)-pyridine), M = Cu (7), Ag (8)] demonstrate a squarelike arrangement of the molecular frameworks, which is achieved due to favorable coordination geometries of the bridging ligands and the metal ions. Variation of the amount of the ancillary phosphine (for M = Ag) afforded compounds [Pt(C^N)(CN)2Ag(PPh3)]2 (C^N = ppy, 3; C^N = tolpy, 6); for the latter one an alternative cluster topology, stabilized by the Pt-Ag metallophilic and η1-Cipso(C^N)-Ag bonding, was observed. The solid-state structures of all of the title species 1-8 were determined crystallographically. The complexes exhibit moderately strong room-temperature phosphorescence as crystalline powders (Φem = 16-34%, λem = 470-511 nm). The luminescence studies and time-dependent density functional theory computational analysis indicate that the photophysical behavior is dominated by the 3π-π* electronic transitions localized on the cyclometalated fragment and mixed with MPtLCT contribution, while the d10-phosphine motifs have a negligible contribution into the frontier orbitals and therefore show a little influence on the emission performance of the described compounds.
Collapse
Affiliation(s)
- Leon Schneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität , Würzburg, Germany.,Department of Chemistry, University of Eastern Finland , 80101 Joensuu, Finland
| | - Vasily Sivchik
- Department of Chemistry, University of Eastern Finland , 80101 Joensuu, Finland
| | - Kun-You Chung
- Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| | - Yi-Ting Chen
- Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| | | | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland , 80101 Joensuu, Finland
| |
Collapse
|
34
|
Cyclometallierte AuIII
-Komplexe: Synthese, Reaktivität und physikalisch-chemische Eigenschaften. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607225] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Kumar R, Nevado C. Cyclometalated Gold(III) Complexes: Synthesis, Reactivity, and Physicochemical Properties. Angew Chem Int Ed Engl 2017; 56:1994-2015. [DOI: 10.1002/anie.201607225] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/21/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Roopender Kumar
- Department of Chemistry; University of Zürich; Winterthurerstrasse 180 CH-8057 Switzerland
| | - Cristina Nevado
- Department of Chemistry; University of Zürich; Winterthurerstrasse 180 CH-8057 Switzerland
| |
Collapse
|
36
|
Ricciardi L, La Deda M, Ionescu A, Godbert N, Aiello I, Ghedini M. Anionic cyclometallated Pt(ii) square-planar complexes: new sets of highly luminescent compounds. Dalton Trans 2017; 46:12625-12635. [DOI: 10.1039/c7dt02267k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Novel anionic Pt(ii) complexes were synthesized, displaying an outstanding enhancement of the emission efficiency in the solid state.
Collapse
Affiliation(s)
- Loredana Ricciardi
- CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza
- 87036 Arcavacata di Rende
- Italy
| | - Massimo La Deda
- CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza
- 87036 Arcavacata di Rende
- Italy
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici)
- Centro di Eccellenza CEMIF.CAL
| | - Andreea Ionescu
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici)
- Centro di Eccellenza CEMIF.CAL
- LASCAMM CR-INSTM
- Unità INSTM della Calabria
- Dipartimento di Chimica e Tecnologie Chimiche
| | - Nicolas Godbert
- CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza
- 87036 Arcavacata di Rende
- Italy
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici)
- Centro di Eccellenza CEMIF.CAL
| | - Iolinda Aiello
- CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza
- 87036 Arcavacata di Rende
- Italy
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici)
- Centro di Eccellenza CEMIF.CAL
| | - Mauro Ghedini
- CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza
- 87036 Arcavacata di Rende
- Italy
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici)
- Centro di Eccellenza CEMIF.CAL
| |
Collapse
|
37
|
Fuertes S, Chueca AJ, Perálvarez M, Borja P, Torrell M, Carreras J, Sicilia V. White Light Emission from Planar Remote Phosphor Based on NHC Cycloplatinated Complexes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16160-16169. [PMID: 27268265 DOI: 10.1021/acsami.6b03288] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on the generation of bright white luminescence through solid-state illumination of remote phosphors based on novel cycloplatinated N-heterocyclic carbene (NHC) compounds. Following a stepwise protocol we got the new NHC compound [{Pt(μ-Cl)(C(∧)C*)}2] (4) (HC(∧)C*-κC* = 1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1H-imidazol-2-ylidene), which was used together with the related ones 4a (HC(∧)C*-κC*= 1-(4-cyanophenyl)-3-methyl-1H-imidazol-2-ylidene) and 4b (HC(∧)C*-κC*= 3-methyl-1-(naphthalen-2-yl)-1H-imidazol-2-ylidene) as starting materials for the synthesis of the new ionic derivatives [Pt(R-C(∧)C*) (CNR')2]PF6 (R = -COOEt, R' = t-Bu (5), Xyl (6); R = -CN, R' = t-Bu (7), Xyl (8); R(∧)C = Naph, R' = t-Bu (9), Xyl (10)). The X-ray structures of 6 and 8-10 have been determined. The photophysical properties of these cationic compounds have been studied and supported by the time-dependent-density functional theory (TD-DFT) calculations. The compounds 5, 8, and 9 have been revealed as the most efficient emitters in the solid state with quantum yields of 41%, 21%, and 40%, respectively. White-light remote-phosphors have been prepared just by stacking different combinations of these compounds and [Pt(bzq) (CN) (CN(t)Bu)] (R1) as blue (5, 8), yellow (9), and red (R1) components onto the same substrate. The CCT (correlated color temperature) and the CRI (color rendering index) of the emitted white-light have been tuned by accurately controlling the individual contributions.
Collapse
Affiliation(s)
- Sara Fuertes
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza , Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Andrés J Chueca
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza , Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Mariano Perálvarez
- IREC, Catalonia Institute for Energy Research , Jardins de les Dones de Negre 1, PL2, 08930 Sant Adrià de Besòs, Barcelona Spain
| | - Pilar Borja
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza , Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Marc Torrell
- IREC, Catalonia Institute for Energy Research , Jardins de les Dones de Negre 1, PL2, 08930 Sant Adrià de Besòs, Barcelona Spain
| | - Josep Carreras
- IREC, Catalonia Institute for Energy Research , Jardins de les Dones de Negre 1, PL2, 08930 Sant Adrià de Besòs, Barcelona Spain
| | - Violeta Sicilia
- Departamento de Química Inorgánica, Escuela de Ingeniería y Arquitectura de Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza , Campus Río Ebro, Edificio Torres Quevedo, 50018, Zaragoza, Spain
| |
Collapse
|
38
|
Shigeta Y, Kobayashi A, Ohba T, Yoshida M, Matsumoto T, Chang HC, Kato M. Shape-Memory Platinum(II) Complexes: Intelligent Vapor-History Sensor with ON-OFF Switching Function. Chemistry 2016; 22:2682-90. [PMID: 26636566 DOI: 10.1002/chem.201503247] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 01/01/2023]
Abstract
A novel platinum(II)-diimine complex, [Pt(CN)2 (H2 dcphen)] (1; H2 dcphen=4,7-dicarboxy-1,10- phenanthroline), was synthesized and its vapochromic shape-memory behavior was evaluated. The as-synthesized amorphous purple solid, [Pt(CN)2 (H2 dcphen)]⋅2 H2 O (1 P), exhibited vapochromic behavior in the presence of alcoholic vapors through transformation to a red, crystalline, porous, vapor-adsorbed form, 1 R⊃vapor. The obtained 1 R⊃vapor complex released the adsorbed vapors upon heating without collapse of the porous structure. The vaporfree, porous 1 R⊃open could detect water or n-hexane vapor, although these vapors could not induce 1 P-to-1 R⊃vapor transformation, and 1 R⊃open could easily be converted to the initial 1 P by manual grinding. These results indicate that 1 is a new shape-memory material that functions through formation and collapse of the porous framework with an emission change upon vapor-adsorption and grinding; this enables it to exhibit vapor history and ON-OFF switching sensing functions.
Collapse
Affiliation(s)
- Yasuhiro Shigeta
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, 060-0810, Japan. .,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.
| | - Tadashi Ohba
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, 060-0810, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Takeshi Matsumoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Ho-Chol Chang
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, 060-0810, Japan.
| |
Collapse
|
39
|
Yoshinari N, Shimizu T, Nozaki K, Konno T. Methanol-Triggered Turn-On-Type Photoluminescence in l-Cysteinato Palladium(II) and Platinum(II) Complexes Supported by a Bis(diphenylphosphine) Ligand. Inorg Chem 2016; 55:2030-6. [DOI: 10.1021/acs.inorgchem.5b02363] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nobuto Yoshinari
- Department
of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tsutomu Shimizu
- Department
of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Koichi Nozaki
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Takumi Konno
- Department
of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
40
|
Kobayashi A, Oizumi S, Shigeta Y, Yoshida M, Kato M. Proton-switchable vapochromic behaviour of a platinum(ii)–carboxy-terpyridine complex. Dalton Trans 2016; 45:17485-17494. [DOI: 10.1039/c6dt03189g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized a carboxy-functionalized Pt(ii)–terpyridine complex that exhibits vapochromic behavior that is switchable via protonation/deprotonation of the carboxy group.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Shiori Oizumi
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Yasuhiro Shigeta
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Masaki Yoshida
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Masako Kato
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|
41
|
Szentkuti A, Garg JA, Blacque O, Venkatesan K. Monocyclometalated Gold(III) Complexes Bearing π-Accepting Cyanide Ligands: Syntheses, Structural, Photophysical, and Electrochemical Investigations. Inorg Chem 2015; 54:10748-60. [DOI: 10.1021/acs.inorgchem.5b01762] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander Szentkuti
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, CH-8057, Zurich, Switzerland
| | - Jai Anand Garg
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, CH-8057, Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, CH-8057, Zurich, Switzerland
| | - Koushik Venkatesan
- Department of Chemistry, University of Zurich, Winterthurerstrasse
190, CH-8057, Zurich, Switzerland
| |
Collapse
|
42
|
Fuertes S, Chueca AJ, Sicilia V. Exploring the Transphobia Effect on Heteroleptic NHC Cycloplatinated Complexes. Inorg Chem 2015; 54:9885-95. [DOI: 10.1021/acs.inorgchem.5b01655] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sara Fuertes
- Departamento de Química Inorgánica,
Facultad de Ciencias, Instituto de Síntesis Química
y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Andrés J. Chueca
- Departamento de Química Inorgánica,
Facultad de Ciencias, Instituto de Síntesis Química
y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Violeta Sicilia
- Departamento de
Química Inorgánica, Escuela de Ingeniería y Arquitectura
de Zaragoza, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Campus Río
Ebro, Edificio Torres Quevedo, 50018 Zaragoza, Spain
| |
Collapse
|
43
|
Ogawa T, Yoshida M, Ohara H, Kobayashi A, Kato M. A dual-emissive ionic liquid based on an anionic platinum(ii) complex. Chem Commun (Camb) 2015. [DOI: 10.1039/c5cc04407c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual-emissive ionic liquid of a cyclometalated platinum(ii) complex has been reported for the first time.
Collapse
Affiliation(s)
- Tomohiro Ogawa
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Masaki Yoshida
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Hiroki Ohara
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Atsushi Kobayashi
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| | - Masako Kato
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|
44
|
Jamshidi M, Nabavizadeh SM, Shahsavari HR, Rashidi M. Photophysical and DFT studies on cycloplatinated complexes: modification in luminescence properties by expanding of π-conjugated systems. RSC Adv 2015. [DOI: 10.1039/c5ra10922a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The luminescent properties of cycloplatinated complexes containing aryl and SMe2 ligands, [Pt(p-MeC6H4)(ĈN)(SMe2)], (ĈN = benzo[h]quinolate (bzq), 1, or 2-phenylpyridinate (ppy), 2), were investigated in solution and solid state.
Collapse
Affiliation(s)
- Mahboubeh Jamshidi
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz 71467-13565
- Iran
| | | | - Hamid R. Shahsavari
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences
- Zanjan
- Iran
| | - Mehdi Rashidi
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz 71467-13565
- Iran
| |
Collapse
|
45
|
Fuertes S, García H, Perálvarez M, Hertog W, Carreras J, Sicilia V. Stepwise Strategy to Cyclometallated PtIIComplexes with N-Heterocyclic Carbene Ligands: A Luminescence Study on New β-Diketonate Complexes. Chemistry 2014; 21:1620-31. [DOI: 10.1002/chem.201404915] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 01/12/2023]
|
46
|
Poirier S, Guionneau P, Luneau D, Reber C. Why do the luminescence maxima of isostructural palladium(II) and platinum(II) complexes shift in opposite directions? CAN J CHEM 2014. [DOI: 10.1139/cjc-2014-0127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Temperature-dependent luminescence spectra for a series of palladium(II) and platinum(II) complexes with thiocyanate, halide, and dithiocarbamate ligands are presented. All complexes show broad d−d luminescence. Crystal structures are reported for (n-Bu4N)2[Pt(SCN)4] and (n-Bu4N)2[Pd(SCN)4] at 150 and 250 K, for the palladium(II) dimethyldithiocarbamate (MeDTC) complex [Pd(MeDTC)2] at 150 and 300 K, and for its platinum(II) analog at 100 and 300 K. The structures of (n-Bu4N)2[Pt(SCN)4], (n-Bu4N)2[Pd(SCN)4], and [Pt(MeDTC)2] show similar volume increases with temperature. In contrast, the luminescence band maxima of palladium(II) and platinum(II) complexes have opposite shifts with increasing temperature. (n-Bu4N)2[Pd(SCN)4] shows a shift of −2.0 cm−1/K and [Pd(MeDTC)2] a shift of −1.1 cm−1/K, while both platinum(II) complexes have a positive shift of +1.6 cm−1/K. Calculated luminescence spectra with adjustable parameters reproduce the experimental spectra. The variation of their parameters with temperature shows the origin of different trends. Temperature-dependent luminescence spectra of [Pd(SCN)4]2− and [Pt(SCN)4]2− in polymer films of polyvinyl alcohol were measured. No clearcut shifts of maxima were observed for either compound, and their spectra are broader due to the disordered environment.
Collapse
Affiliation(s)
- Stéphanie Poirier
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Dominique Luneau
- Laboratoire des Multimatériaux et Interfaces (UMR 5615), Université Claude Bernard Lyon 1, Campus de La Doua, 69622 Villeurbanne Cedex, France
| | - Christian Reber
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
47
|
|
48
|
Kobayashi A, Kato M. Vapochromic Platinum(II) Complexes: Crystal Engineering toward Intelligent Sensing Devices. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402315] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Ni J, Wang YG, Wang HH, Xu L, Zhao YQ, Pan YZ, Zhang JJ. Thermo- and mechanical-grinding-triggered color and luminescence switches of the diimine-platinum(II) complex with 4-bromo-2,2'-bipyridine. Dalton Trans 2014; 43:352-60. [PMID: 24108349 DOI: 10.1039/c3dt51936h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The square-planar diimine-platinum(II) complex, Pt(4-Brbpy)(C≡CC6H5)2 (1) (4-Brbpy = 4-bromo-2,2'-bipyridine), was prepared and characterized. Solid-state 1 exhibits reversible thermo- and mechanical-grinding-triggered color and luminescence changes. When crystalline 1·2(CH2Cl2) or 1·2(CHCl3) are heated or ground, the original bright yellow-green emission centered at 525 (549, sh) nm changed to 637 and 690 nm, corresponding to thermo- and mechanochromic response shifts of approximately 88-112 nm and 141-165 nm, respectively. Meanwhile the crystalline state changes into an amorphous phase in both processes. Once the amorphous sample absorbs organic vapors, it can be reverted to the original crystalline state, along with red luminescence turning back to yellow-green emission. The reversibility of thermo- and mechanical-grinding-triggered chromic luminescence properties has been dynamically monitored by emission spectra and X-ray diffraction patterns. The dramatic thermo- and mechanical-grinding-triggered emission red shifts are most likely due to the conversion of the (3)MLCT/(3)LLCT emission state into the (3)MMLCT triplet state.
Collapse
Affiliation(s)
- Jun Ni
- Chemistry College, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kitani N, Kuwamura N, Tsuji T, Tsuge K, Konno T. Water-Molecule-Driven Vapochromic Behavior of a Mononuclear Platinum(II) System with Mixed Bipyridine and Thioglucose. Inorg Chem 2014; 53:1949-51. [DOI: 10.1021/ic402887f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Naoki Kitani
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Naoto Kuwamura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takaaki Tsuji
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kiyoshi Tsuge
- Department
of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gokufu, Toyama 930-8555, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- CREST, Japan Science and Technology Agency, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|