1
|
Müller MP, Hinz A. Silylenes with a Small Chalcogenide Substituent: Tuning Frontier Orbital Energies from O to Te. Angew Chem Int Ed Engl 2024; 63:e202405319. [PMID: 38656624 DOI: 10.1002/anie.202405319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
The general synthesis of heteroleptic acyclic silylenes with a bulky carbazolyl substituent (dtbpCbz) is detailed and a series of compounds with a chalcogenide substituent of the type [(dtbpCbz)SiE16R] (E16R=OtBu, SEt, SePh, TePh) is reported. With the bulky carbazolyl substituent present, the chalcogenide moiety can be very small, as is shown by incorporating groups as small as ethyl, phenyl or tert-butyl. For the first time, the electronic properties of the silylene can be tuned along a complete series of chalcogenide substituents. The effects are clearly visible in the NMR and UV/Vis spectra, and were rationalised by DFT computations. The reactivity of the heaviest chalcogenide-substituted silylenes was probed by reactions with trimethylphosphine selenide and the terphenyl azide TerN3 (Ter=2,6-dimesitylphenyl).
Collapse
Affiliation(s)
- Maximilian P Müller
- Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry (AOC), Engesserstr. 15, 76131, Karlsruhe
| | - Alexander Hinz
- Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry (AOC), Engesserstr. 15, 76131, Karlsruhe
| |
Collapse
|
2
|
Li T, Heng Y, Wang D, Hou G, Zi G, Ding W, Walter MD. Uranium versus Thorium: A Case Study on a Base-Free Terminal Uranium Imido Metallocene. Inorg Chem 2024; 63:9487-9510. [PMID: 38048266 DOI: 10.1021/acs.inorgchem.3c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The structure of and bonding in two base-free terminal actinide imido metallocenes, [η5-1,2,4-(Me3C)3C5H2]2An═N(p-tolyl) (An = U (1), Th (1')) are compared and connected to their individual reactivity. While structurally rather similar, the U(IV) derivative 1 is slightly more sterically crowded. Furthermore, density functional theory (DFT) studies imply that the 5f orbital contribution to the bonding within the individual actinide imido An═N(p-tolyl) moieties is significantly larger for 1 than for 1', which makes the bonds between the [η5-1,2,4-(Me3C)3C5H2]2U2+ and [(p-tolyl)N]2- fragments more covalent. Therefore, steric and electronic factors impact the reactivity of these imido complexes. For example, complex 1 is inert toward internal alkynes, but it readily forms Lewis base adducts [η5-1,2,4-(Me3C)3C5H2]2U═N(p-tolyl)(L) (L = OPMe3 (6), dmap (9), PhCN (14), and 2,6-Me2PhNC (17)) with Me3PO, 4-dimethylaminopyridine (dmap), nitrile, PhCN, or isonitrile 2,6-Me2PhNC. It may also react as a nucleophile or undergo a [2 + 2] cycloaddition with CS2, isothiocyanates, thio-ketones, ketones, lactides, and acyl nitriles, forming the four- or five-membered metallaheteroacycles, terminal sulfido, or oxido complexes, and cyanide amidate complexes, respectively. In contrast, after the addition of aldehyde p-tolylCHO, the tetranuclear complex [η5-1,2,4-(Me3C)3C5H2]4[OCH(p-tolyl)CH(p-tolyl)O]2U4O4 (10) is isolated. However, while 1 is unreactive toward dicyclohexylcarbodiimide (DCC), an equilibrium exists in benzene solution between N,N'-diisopropylcarbodiimide (DIC), 1, and the four-membered metallaheterocycle [η5-1,2,4-(Me3C)3C5H2]2U[N(p-tolyl)C(═NiPr)N(iPr)] (12). Furthermore, 1 may also engage in single- and two-electron transfer processes. It is singly oxidized by Ph3CN3, CuI, Ph2S2, and Ph2Se2, yielding the uranium(V) imido complexes [η5-1,2,4-(Me3C)3C5H2]2U═N(p-tolyl)(X) (X = N3 (20), I (22), PhS (23), and PhSe (24)), or is doubly oxidized by organic azides (RN3) and 9-diazofluorene, forming the uranium(VI) bis-imido metallocenes [η5-1,2,4-(Me3C)3C5H2]2U═N(p-tolyl)(=NR) (R = p-tolyl (18), mesityl (19)) and [η5-1,2,4-(Me3C)3C5H2]2U=N(p-tolyl)[=NN=(9-C13H8)] (21), respectively.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Li T, Wang D, Heng Y, Hou G, Zi G, Walter MD. Reactivity of a Lewis base-supported uranium terminal imido metallocene towards small molecules. Dalton Trans 2023; 52:13618-13630. [PMID: 37698550 DOI: 10.1039/d3dt02165c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The Lewis base-supported uranium terminal imido metallocene [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(dmap) (1) readily reacts with various small molecules such as internal alkynes, isothiocyanates, thioketones, amidates, organic nitriles and imines, chlorosilanes, copper iodide, diphenyl disulfide, organic azides and diazoalkane derivatives. For example, treatment of 1 with PhCCCCPh and PhNCS forms metallaheterocycles originating from a [2 + 2] cycloaddition to yield [η5-1-(p-tolyl)NC(Ph)CHCC(Ph)CH2Si(Me)2-2,4-(Me3Si)2C5H2][η5-1,2,4-(Me3Si)3C5H2]U (2) and [η5-1,2,4-(Me3Si)3C5H2]2U[N(p-tolyl)C(NPh)S](dmap) (3), respectively. The reaction of 1 with the thioketone Ph2CS forms the known uranium sulfido complex [η5-1,2,4-(Me3Si)3C5H2]2US(dmap) (4), which reacts with a second molecule of Ph2CS to give the disulfido compound [η5-1,2,4-(Me3Si)3C5H2]2U(S2CPh2) (5). The imido moiety also promotes deprotonation reactions as illustrated in the reactions with the amide PhCONH(p-tolyl), the nitrile PhCH2CN and the imine (p-tolyl)2CNH to form the bis-amidate [η5-1,2,4-(Me3Si)3C5H2]2U[OC(Ph)N(p-tolyl)]2 (7), and the iminato complexes [η5-1,2,4-(Me3Si)3C5H2]2U[N(p-tolyl)C(CH2Ph)NH](NCCHPh) (8) and [η5-1,2,4-(Me3Si)3C5H2]2U[NH(p-tolyl)][NC(p-tolyl)2] (9), respectively. Addition of PhSiH2Cl to 1 yields [η5-1,2,4-(Me3Si)3C5H2]2U(Cl)[N(p-tolyl)SiH2Ph] (10). In contrast, the uranium(V) imido complexes [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(I) (11) and [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(SPh) (12), may be isolated upon addition of CuI or Ph2S2 to 1, respectively. Uranium(VI) bis-imido metallocenes [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)(NR) (R = p-tolyl (13), mesityl (14)) and [η5-1,2,4-(Me3Si)3C5H2]2UN(p-tolyl)[NN(9-C13H8)] (15) are accessible from 1 on exposure to RN3 (R = p-tolyl, mesityl) and 9-diazofluorene, respectively. Complexes 2, 3, 5, and 7-15 were characterized by various spectroscopic techniques and, in addition, compounds 2, 3, 5, and 7-13 were structurally authenticated by single-crystal X-ray diffraction analyses.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
4
|
Uranyl Analogue Complexes—Current Progress and Synthetic Challenges. INORGANICS 2022. [DOI: 10.3390/inorganics10080121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Uranyl ions, {UO2}n+ (n = 1, 2), display trans, strongly covalent, and chemically robust U-O multiple bonds, where 6d, 5f, and 6p orbitals play important roles. The synthesis of isoelectronic analogues of uranyl has been of interest for quite some time, mainly with the purpose of unveiling covalence and 5f-orbital participation in bonding. Significant advances have occurred in the last two decades, initially marked by the synthesis of uranium(VI) bis(imido) complexes, the first analogues with a {RNUNR}2+ core, later followed by the synthesis of unique trans-{EUO}2+ (E = S, Se) complexes, and recently highlighted by the synthesis of the first complexes featuring a linear {NUN} moiety. This review covers the synthesis, structure, bonding, and reactivity of uranium complexes containing a linear {EUE}n+ core (n = 0, 1, 2), isoelectronic to uranyl ions, {OUO}n+ (n = 1, 2), incorporating σ- and π-donating ligands that can engage in uranium–ligand multiple bonding, where oxygen may be replaced by heavier chalcogenido, imido, nitride, and carbene ligands, or by a transition metal. It focuses on synthetic methods of well-defined molecular uranium species in the condensed phase but also references gas-phase and low-temperature-matrix experiments, as well as computational studies that may lead to valuable insights.
Collapse
|
5
|
Perales D, Lin NJ, Bronstetter MR, Ford SA, Zeller M, Bart SC. Conversion of Uranium(III) Anilido Complexes to Uranium(IV) Imido Complexes via Hydrogen Atom Transfer. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Diana Perales
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nathan J. Lin
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michaela R. Bronstetter
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shannon A. Ford
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Suzanne C. Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Maria L, Bandeira NAG, Marçalo J, Santos IC, Ferreira ASD, Ascenso JR. Experimental and Computational Study of a Tetraazamacrocycle Bis(aryloxide) Uranyl Complex and of the Analogues {E═U═NR} 2+ (E = O and NR). Inorg Chem 2021; 61:346-356. [PMID: 34898186 DOI: 10.1021/acs.inorgchem.1c02934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The reaction of [U(κ6-{(t-Bu2ArO)2Me2-cyclam})I][I] (H2{(t-Bu2ArO)2Me2-cyclam} = 1,8-bis(2-hydroxy-3,5-di-tert-butyl)-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane) with 2 equiv of NaNO2 in acetonitrile results in the isolation of the uranyl complex [UO2{(t-Bu2ArO)2Me2-cyclam}] (3) in 31% yield, which was fully characterized, including by single-crystal X-ray diffraction. Density functional theory (DFT) computations were performed to evaluate and compare the level of covalency within the U═E bonds in 3 and in the analogous trans-bis(imido) [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(NPh)2] (1) and trans-oxido-imido [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(O)(NPh)] (2) complexes. Natural bond orbital (NBO) analysis allowed us to determine the mixing covalency parameter λ, showing that in 2, where both U-Ooxido and U-Nimido bonds are present, the U-Nimido bond registers more covalency with regard to 1, and the opposite is seen for U-Ooxido with respect to 3. However, the covalency driven by orbital overlap in the U-Nimido bond is slightly higher in 1 than in 2. The 15N-labeled complexes [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(15NPh)2] (1-15N) and [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(O)(15NPh)] (2-15N) were prepared and analyzed by solution 15N NMR spectroscopy. The calculated and experimental 15N chemical shifts are in good agreement, displaying the same trend of δN (1-15N) > δN (2-15N) and reveal that the 15N chemical shift may serve as a probe for the covalency of the U═NR bond.
Collapse
Affiliation(s)
- Leonor Maria
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Nuno A G Bandeira
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Joaquim Marçalo
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Isabel C Santos
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Ana S D Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry/Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - José R Ascenso
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1000-049 Lisboa, Portugal
| |
Collapse
|
7
|
Ouellette ET, Amaro Estrada JI, Lussier DJ, Chakarawet K, Lohrey TD, Maron L, Bergman RG, Arnold J. Spectroscopic, Magnetic, and Computational Investigations on a Series of Rhenium(III) Cyclopentadienide β-diketiminate Halide and Pseudohalide Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Erik T. Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Daniel J. Lussier
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Khetpakorn Chakarawet
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Trevor D. Lohrey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Robert G. Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Pividori D, Miehlich ME, Kestel B, Heinemann FW, Scheurer A, Patzschke M, Meyer K. Uranium Going the Soft Way: Low-Valent Uranium(III) Coordinated to an Arene-Anchored Tris-Thiophenolate Ligand. Inorg Chem 2021; 60:16455-16465. [PMID: 34677061 DOI: 10.1021/acs.inorgchem.1c02310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of a tripodal, S-based ligand, namely the mesitylene-anchored, tris-thiophenolate-functionalized (mes(Me,AdArS)3)3- (1)3-, and its coordination chemistry with low-valent uranium to form [UIII((SArAd,Me)3mes)] (1-U) are reported. Single-crystal X-ray diffraction analysis reveals a C3-symmetric molecular structure. Full characterization of 1-U was performed using nuclear magnetic resonance, UV-vis-NIR electronic absorption, and electron paramagnetic resonance spectroscopies as well as SQUID magnetometry, thus confirming the U(III) oxidation state. Alternating current magnetic studies show that 1-U exhibits single-molecule magnet behavior at low temperatures in a non-zero external field. Comparison of these results to those of the previously reported mesitylene-anchored complexes, [UIII((OArAd,Me)3mes)] and [UIII((OArtBu,tBu)3mes)], indicates a drastic change in the electronic structure when moving from phenolate-based ligands to thiophenolate-based 1, which is further discussed by means of computational analysis (NBO, DFT, and QTAIM). Despite the U-O bonds being stronger, a much higher covalency was found for the U-S analogue.
Collapse
Affiliation(s)
- Daniel Pividori
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Matthias E Miehlich
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Benedikt Kestel
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Andreas Scheurer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Michael Patzschke
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Karsten Meyer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
9
|
Karaghiosoff K, Klapötke TM, Kunz T, Mayer P, Beck W. Uranyl Complexes with Selenium or Tellurium Containing Chelate Ligands. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Konstantin Karaghiosoff
- Department of Chemistry and Biochemistry Ludwig-Maximilians University Butenandtstraße 5-13 (Haus D) D-81377 Munich Germany
| | - Thomas M. Klapötke
- Department of Chemistry and Biochemistry Ludwig-Maximilians University Butenandtstraße 5-13 (Haus D) D-81377 Munich Germany
| | - Thomas Kunz
- Department of Chemistry and Biochemistry Ludwig-Maximilians University Butenandtstraße 5-13 (Haus D) D-81377 Munich Germany
| | - Peter Mayer
- Department of Chemistry and Biochemistry Ludwig-Maximilians University Butenandtstraße 5-13 (Haus D) D-81377 Munich Germany
| | - Wolfgang Beck
- Department of Chemistry and Biochemistry Ludwig-Maximilians University Butenandtstraße 5-13 (Haus D) D-81377 Munich Germany
| |
Collapse
|
10
|
Raghavan A, Anderson NH, Tatebe CJ, Stanley DA, Zeller M, Bart SC. Insight into geometric preferences in uranium(VI) mixed tris(imido) systems. Chem Commun (Camb) 2020; 56:11138-11141. [PMID: 32815935 DOI: 10.1039/d0cc03261a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uranium tris(imido) species have been synthesized using different imido groups in the axial and equatorial positions by treating [(MesPDIMe)U(THF)]2 (1-THF), which is a uranium(iv) dimer that is supported by MesPDIMe tetraanions, with mixed organoazide solutions. While the origin of the geometric preference isn't clear, both steric and electronic factors are likely at play.
Collapse
Affiliation(s)
- Adharsh Raghavan
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Nickolas H Anderson
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Caleb J Tatebe
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Dalton A Stanley
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Matthias Zeller
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Suzanne C Bart
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
11
|
Synthesis, characterization and theoretical investigations of new uranium (VI) and thorium (IV) complexes with 1-furfurylaldehyde-derived Schiff bases as ligands. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Wei R, Chen X, Gong Y. Sulfur-substituted uranyl stabilized by fluoride ligands: matrix preparation of U(O)(S)F2via oxidation of U(0) by SOF2. Chem Commun (Camb) 2020; 56:6782-6785. [DOI: 10.1039/d0cc03139a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A neutral sulfur-substituted uranyl complex [U(O)(S)F2] in which the SUO2+ moiety is stabilized by electron withdrawing fluoride ligands was prepared via oxidation of U(0) by SOF2 in cryogenic matrixes.
Collapse
Affiliation(s)
- Rui Wei
- Department of Radiochemistry
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Xiuting Chen
- Department of Radiochemistry
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Yu Gong
- Department of Radiochemistry
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| |
Collapse
|
13
|
Tomson NC, Anderson NH, Tondreau AM, Scott BL, Boncella JM. Oxidation of uranium(iv) mixed imido-amido complexes with PhEEPh and to generate uranium(vi) bis(imido) dichalcogenolates, U(NR) 2(EPh) 2(L) 2. Dalton Trans 2019; 48:10865-10873. [PMID: 31049520 DOI: 10.1039/c9dt00680j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This work provides new routes for the conversion of U(iv) into U(vi) bis(imido) complexes and offers new information on the manner in which the U(vi) compounds form. Many compounds from the series described by the general formula U(NR)2(EPh)2(L)2 (R = 2,6-diisopropylphenyl, tert-butyl; E = S, Se, Te; L = py, EPh) were synthesized via oxidation of an in situ generated U(iv) amido-imido species with Ph2E2. This synthetic sequence provides a general route into bis(imido) U(vi) chalcogenolate complexes, circumventing the need to perform problematic salt metathesis reactions on U(vi) iodides. Investigation into the speciation of the U(iv) complexes that form prior to oxidation found a significant dependence on the identity of the ancillary ligands, with tBu2bpy forming the isolable imido-(bis)amido complex, U(NDipp)(NHDipp)2(tBu2bpy)2. Together, these data are consistent with the view that the bis(imido) U(vi) motif - much like the uranyl ion, UO22+- is a thermodynamic sink into which simple ligand frameworks are unable to prevent uranium from falling when in the presence of a suitable retinue of imido proligands.
Collapse
Affiliation(s)
- Neil C Tomson
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - Nickolas H Anderson
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - Aaron M Tondreau
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - Brian L Scott
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - James M Boncella
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| |
Collapse
|
14
|
Decato DA, Berryman OB. Structural and Computational Characterization of a Bridging Zwitterionic-Amidoxime Uranyl Complex. Org Chem Front 2019; 6:1038-1043. [PMID: 31086674 DOI: 10.1039/c9qo00267g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bridging (μ2) neutral zwitterionic amidoxime binding mode previously unobserved between amidoximes and uranyl is reported and compared to other uranyl amidoxime complexes. Density functional theory computations show the dinuclear complex exhibits a shallow potential energy surface allowing for facile inclusion of a nonbonding water molecule in the solid-state.
Collapse
Affiliation(s)
- Daniel A Decato
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, Montana, United States, 59812
| | - Orion B Berryman
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, Montana, United States, 59812
| |
Collapse
|
15
|
Gholivand K, Hosseini M, Maghsoud Y, Valenta J, Ebrahimi Valmuzi AA, Owczarzak A, Kubicki M, Jamshidi M, Kahnouji M. Relations between Structural and Luminescence Properties of Novel Lanthanide Nitrate Complexes with Bis-phosphoramidate Ligands. Inorg Chem 2019; 58:5630-5645. [DOI: 10.1021/acs.inorgchem.8b03611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Mahdieh Hosseini
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Yazdan Maghsoud
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Jan Valenta
- Department of Chemical Physics & Optics, Faculty of Mathematics & Physics, Charles University, Ke Karlovu 3, Prague 2CZ-12116, Czechia
| | | | - Agata Owczarzak
- Department of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| | - Maciej Kubicki
- Department of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| | - Morteza Jamshidi
- Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, P.O. Box 6718997551, Kerman-shah 1477893855, Iran
| | - Mohammad Kahnouji
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
16
|
Abstract
Elaborate synthesis schemes pave the way to f-element and group 3 complexes with multiply bonded imido ligands displaying intriguing reactivity.
Collapse
Affiliation(s)
- Dorothea Schädle
- Department of Chemistry
- University of Tübingen
- 72076 Tübingen
- Germany
| | - Reiner Anwander
- Department of Chemistry
- University of Tübingen
- 72076 Tübingen
- Germany
| |
Collapse
|
17
|
Lehman-Andino I, Su J, Papathanasiou KE, Eaton TM, Jian J, Dan D, Albrecht-Schmitt TE, Dares CJ, Batista ER, Yang P, Gibson JK, Kavallieratos K. Soft-donor dipicolinamide derivatives for selective actinide(iii)/lanthanide(iii) separation: the role of S- vs. O-donor sites. Chem Commun (Camb) 2019; 55:2441-2444. [DOI: 10.1039/c8cc07683a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dithiopicolinamide analog selectively extracts Am(iii) over Eu(iii) under acidic conditions.
Collapse
Affiliation(s)
- Ingrid Lehman-Andino
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute
- Florida International University
- USA
| | - Jing Su
- Theoretical Division
- Los Alamos National Laboratory
- USA
| | | | - Teresa M. Eaton
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- USA
| | - Jiwen Jian
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- USA
| | - David Dan
- Department of Chemistry and Biochemistry
- Florida State University
- USA
| | | | - Christopher J. Dares
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute
- Florida International University
- USA
| | | | - Ping Yang
- Theoretical Division
- Los Alamos National Laboratory
- USA
| | - John K. Gibson
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- USA
| | - Konstantinos Kavallieratos
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute
- Florida International University
- USA
| |
Collapse
|
18
|
Ringgold M, Wu W, Stuber M, Kornienko AY, Emge TJ, Brennan JG. Monomeric thorium chalcogenolates with bipyridine and terpyridine ligands. Dalton Trans 2018; 47:14652-14661. [PMID: 30277236 DOI: 10.1039/c8dt02543f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thorium chalcogenolates Th(ER)4 react with 2,2'-bipyridine (bipy) to form complexes with the stoichiometry (bipy)2Th(ER)4 (E = S, Se; R = Ph, C6F5). All four compounds have been isolated and characterized by spectroscopic methods and low-temperature single crystal X-ray diffraction. Two of the products, (bipy)2Th(SC6F5)4 and (bipy)2Th(SeC6F5)4, crystallize with lattice solvent, (bipy)2Th(SPh)4 crystallizes with no lattice solvent, and the selenolate (bipy)2Th(SePh)4 crystallizes in two phases, with and without lattice solvent. In all four compounds the available volume for coordination bounded by the two bipy ligands is large enough to allow significant conformational flexibility of thiolate or selenolate ligands. 77Se NMR confirms that the structures of the selenolate products are the same in pyridine solution and in the solid state. Attempts to prepare analogous derivatives with 2,2',6',2''-terpyridine (terpy) were successful only in the isolation of (terpy)(py)Th(SPh)4, the first terpy compound of thorium. These materials are thermochromic, with color attributed to ligand-to-ligand charge transfer excitations.
Collapse
Affiliation(s)
- Marissa Ringgold
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway NJ 08854-8087, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Sahani AJ, Jayaram RV, Burange AS. C-Se cross-coupling of arylboronic acids and diphenyldiselenides over non precious transition metal (Fe, Cu and Ni) complexes. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Mixed sandwich imido complexes of Uranium(V) and Uranium(IV): Synthesis, structure and redox behaviour. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Rungthanaphatsophon P, Barnes CL, Kelley SP, Walensky JR. Four-electron reduction chemistry using a uranium(iii) phosphido complex. Dalton Trans 2018; 47:8189-8192. [DOI: 10.1039/c8dt01406j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first uranium(iii) phosphido complex is reported.
Collapse
|
22
|
Stuber MA, Kornienko AY, Emge TJ, Brennan JG. Tetrametallic Thorium Compounds with Th 4E 4 (E = S, Se) Cubane Cores. Inorg Chem 2017; 56:10247-10256. [PMID: 28832125 DOI: 10.1021/acs.inorgchem.7b00950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrametallic thorium compounds with a Th4E4 core (E = S, Se) having a distorted cubane structure can be prepared by ligand-based reductions of elemental E with thorium chalcogenolates, prepared by in situ oxidation of Th metal with a 3:1 mixture of PhEEPh and F5C6EEC6F5. Four compounds, (py)8Th4S4(μ2-SPh)4(SC6F5)4, (py)8Th4S4(μ2-SPh)4(SeC6F5)4, (py)8Th4Se4(μ2-SePh)4(SeC6F5)4, and (py)8Th4Se4(μ2-SePh)4(SC6F5)4, were isolated and characterized by NMR spectroscopy and X-ray diffraction. These compounds clearly demonstrate the chemical impact of ring fluorination, with the less-nucleophilic EC6F5 ligands occupying the terminal binding sites and the EPh ligands bridging two metal centers. For this series of compounds, crystal packing and intermolecular π···π and H-bonding interactions result in a consistent motif and crystallization in a body-centered tetragonal unit cell. Solution-state 77Se NMR spectroscopy reveals that the solid-state structures are maintained in pyridine.
Collapse
Affiliation(s)
- Matthew A Stuber
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey , 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Anna Y Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey , 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey , 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G Brennan
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey , 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
23
|
Zhang C, Yang P, Zhou E, Deng X, Zi G, Walter MD. Reactivity of a Lewis Base Supported Thorium Terminal Imido Metallocene toward Small Organic Molecules. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Congcong Zhang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Pikun Yang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Enwei Zhou
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuebin Deng
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
24
|
Mullane KC, Carroll PJ, Schelter EJ. Synthesis and Reduction of Uranium(V) Imido Complexes with Redox‐Active Substituents. Chemistry 2017; 23:5748-5757. [DOI: 10.1002/chem.201605758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Kimberly C. Mullane
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories Department of Chemistry University of Pennsylvania 231 S. 34th St. Philadelphia PA 19104 USA
| |
Collapse
|
25
|
Azam M, Velmurugan G, Wabaidur SM, Trzesowska-Kruszynska A, Kruszynski R, Al-Resayes SI, Al-Othman ZA, Venuvanalingam P. Structural elucidation and physicochemical properties of mononuclear Uranyl(VI) complexes incorporating dianionic units. Sci Rep 2016; 6:32898. [PMID: 27595801 PMCID: PMC5011772 DOI: 10.1038/srep32898] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/11/2016] [Indexed: 11/09/2022] Open
Abstract
Two derivatives of organouranyl mononuclear complexes [UO2(L)THF] (1) and [UO2(L)Alc] (2), where L = (2,2'-(1E,1'E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene, THF = Tetrahydrofuran, Alc = Alcohol), have been prepared. These complexes have been determined by elemental analyses, single crystal X-ray crystallography and various spectroscopic studies. Moreover, the structure of these complexes have also been studied by DFT and time dependent DFT measurements showing that both the complexes have distorted pentagonal bipyramidal environment around uranyl ion. TD-DFT results indicate that the complex 1 displays an intense band at 458.7 nm which is mainly associated to the uranyl centered LMCT, where complex 2 shows a band at 461.8 nm that have significant LMCT character. The bonding has been further analyzed by EDA and NBO. The photocatalytic activity of complexes 1 and 2 for the degradation of rhodamine-B (RhB) and methylene blue (MB) under the irradiation of 500W Xe lamp has been explored, and found more efficient in presence of complex 1 than complex 2 for both dyes. In addition, dye adsorption and photoluminescence properties have also been discussed for both complexes.
Collapse
Affiliation(s)
- Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, KSA
| | - Gunasekaran Velmurugan
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India
| | - Saikh Mohammad Wabaidur
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, KSA
| | - Agata Trzesowska-Kruszynska
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Rafal Kruszynski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Saud I Al-Resayes
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, KSA
| | - Zeid A Al-Othman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, KSA
| | | |
Collapse
|
26
|
Yang P, Zhou E, Hou G, Zi G, Ding W, Walter MD. Experimental and Computational Studies on the Formation of Thorium-Copper Heterobimetallics. Chemistry 2016; 22:13845-13849. [DOI: 10.1002/chem.201603519] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Pikun Yang
- Department of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Enwei Zhou
- Department of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Guohua Hou
- Department of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Guofu Zi
- Department of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Wanjian Ding
- Department of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
27
|
Rehe D, Kornienko AY, Emge TJ, Brennan JG. Thorium Compounds with Bonds to Sulfur or Selenium: Synthesis, Structure, and Thermolysis. Inorg Chem 2016; 55:6961-7. [DOI: 10.1021/acs.inorgchem.6b00645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Rehe
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Anna Y. Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G. Brennan
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
28
|
|
29
|
Tamasi AL, Rungthanapathsophon P, Dame AN, Moody MA, Barnes CL, Wilkerson MP, Walensky JR. Pseudo-halide uranyl salicylaldiminate complexes including the isolation of a rare uranyl azide. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1189544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alison L. Tamasi
- Department of Chemistry, University of Missouri, Columbia, MO, USA
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Ashley N. Dame
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - Morgan A. Moody
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | | | | | | |
Collapse
|
30
|
Guo YR, Qu N, Pan QJ. A theoretical probe for pentavalent bis-imido uranium complexes containing diverse axial substituents and equatorial donors: UN multiple bond and structural/electronic properties. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Maria L, Santos IC, Sousa VR, Marçalo J. Uranium(III) redox chemistry assisted by a hemilabile bis(phenolate) cyclam ligand: uranium-nitrogen multiple bond formation comprising a trans-{RN═U(VI)═NR}(2+) complex. Inorg Chem 2015; 54:9115-26. [PMID: 26355956 DOI: 10.1021/acs.inorgchem.5b01547] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new monoiodide U(III) complex anchored on a hexadentate dianionic 1,4,8,11-tetraazacyclotetradecane-based bis(phenolate) ligand, [U(κ(6)-{((tBu2)ArO)2Me2-cyclam})I] (1), was synthesized from the reaction of [UI3(THF)4] (THF = tetrahydrofuran) and the respective potassium salt K2((tBu2)ArO)2Me2-cyclam and structurally characterized. Reactivity of 1 toward one-, two-, and four-electron oxidants was studied to explore the reductive chemistry of this new U(III) complex. Complex 1 reacts with one-electron oxidizers, such as iodine and TlBPh4, to form the seven-coordinate cationic uranium(IV) complexes [U(κ(6)-{((tBu2)ArO)2Me2-cyclam})I][X] (X = I (2-I), BPh4 (2-BPh4)). The new uranium(III) complex reacts with inorganic azides to yield the pseudohalide uranium(IV) complex [U(κ(6)-{((tBu2)ArO)2Me2-cyclam})(N3)2] (4) and the nitride-bridged diuranium(IV/IV) complex [(κ(4)-{((tBu2)ArO)2Me2-cyclam})(N3)U(μ-N)U(κ(5)-{((tBu2)ArO)2Me2-cyclam})] (5). Two equivalents of [U(κ(6)-{((tBu2)ArO)2Me2-cyclam})I] (1) effect the four-electron reduction of 1 equiv of PhN═NPh to form the bis(imido) complex [U(κ(4)-{((tBu2)ArO)2Me2-cyclam})(NPh)2] (6) and the U(IV) species 2-I. Moreover, the hemilability of the hexadentate ancillary ligand ((tBu2)ArO)2Me2-cyclam(2-) allows to perform the reductive cleavage of azobenzene with an unprecedented formation of a trans-bis(imido) complex. The complexes were characterized by NMR spectroscopy, and all the new uranium complexes were structurally authenticated by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Leonor Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa , Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Isabel C Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa , Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Vânia R Sousa
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa , Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Joaquim Marçalo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa , Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
32
|
Zhou E, Ren W, Hou G, Zi G, Fang DC, Walter MD. Small Molecule Activation Mediated by a Thorium Terminal Imido Metallocene. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00454] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Enwei Zhou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wenshan Ren
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
33
|
Bemowski RD, Singh AK, Bajorek BJ, DePorre Y, Odom AL. Effective donor abilities of E-t-Bu and EPh (E = O, S, Se, Te) to a high valent transition metal. Dalton Trans 2015; 43:12299-305. [PMID: 24986246 DOI: 10.1039/c4dt01314j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amido rotation in the chromium(vi), d(0)-system NCr(NPr(i)2)2X is under investigation as a method for the parameterization of ligands for their donor properties toward high valent metals. In this study, two new series were prepared and studied based on chalcogenide ligands, X = EBu(t) and EPh and where E = O, S, Se, Te; the OPh and SPh compounds were previously reported. The ligand donor parameters for these ligands correlate with the Cr-E-C angles in these chalcogenide series. In addition, it was found that NBO calculated overlaps and DFT calculated bond dissociation enthalpies correlate within X = halide-, EBu(t)- and EPh-series. All of the new complexes were characterized by X-ray diffraction.
Collapse
Affiliation(s)
- Ross D Bemowski
- Michigan State University, Department of Chemistry, 578 S. Shaw Ln, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
34
|
Vukovic S, Hay BP, Bryantsev VS. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory. Inorg Chem 2015; 54:3995-4001. [DOI: 10.1021/acs.inorgchem.5b00264] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sinisa Vukovic
- Oak Ridge National Laboratory, Chemical Sciences Division, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6119, United States
| | - Benjamin P. Hay
- Oak Ridge National Laboratory, Chemical Sciences Division, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6119, United States
| | - Vyacheslav S. Bryantsev
- Oak Ridge National Laboratory, Chemical Sciences Division, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6119, United States
| |
Collapse
|
35
|
Smiles DE, Wu G, Hayton TW. Reactivity of [U(CH2SiMe2NSiMe3)(NR2)2] (R = SiMe3) with elemental chalcogens: towards a better understanding of chalcogen atom transfer in the actinides. NEW J CHEM 2015. [DOI: 10.1039/c5nj00739a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Addition of elemental chalcogens to [U(CH2SiMe2NSiMe3)(NR2)2] results in formation of [U(ECH2SiMe2NSiMe3)(NR2)2] (R = SiMe3; E = S, Se, Te) via chalcogen insertion into the U–C bond.
Collapse
Affiliation(s)
- Danil E. Smiles
- Department of Chemistry and Biochemistry
- University of California Santa Barbara
- Santa Barbara
- USA
| | - Guang Wu
- Department of Chemistry and Biochemistry
- University of California Santa Barbara
- Santa Barbara
- USA
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry
- University of California Santa Barbara
- Santa Barbara
- USA
| |
Collapse
|
36
|
Matson EM, Breshears AT, Kiernicki JJ, Newell BS, Fanwick PE, Shores MP, Walensky JR, Bart SC. Trivalent uranium phenylchalcogenide complexes: exploring the bonding and reactivity with CS2 in the Tp*2UEPh series (E = O, S, Se, Te). Inorg Chem 2014; 53:12977-85. [PMID: 25415677 DOI: 10.1021/ic5020658] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The trivalent uranium phenylchalcogenide series, Tp*2UEPh (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate, E = O (1), S (2), Se (3), Te (4)), has been synthesized to investigate the nature of the U-E bond. All compounds have been characterized by (1)H NMR, infrared and electronic absorption spectroscopies, and in the case of 4, X-ray crystallography. Compound 4 was also studied by SQUID magnetometry. Computational studies establish Mulliken spin densities for the uranium centers ranging from 3.005 to 3.027 (B3LYP), consistent for uranium-chalcogenide bonds that are primarily ionic in nature, with a small covalent contribution. The reactivity of 2-4 toward carbon disulfide was also investigated and showed reversible CS2 insertion into the U(III)-E bond, forming Tp*2U(κ(2)-S2CEPh) (E = S (5), Se (6), Te (7)). Compound 5 was characterized crystallographically.
Collapse
Affiliation(s)
- Ellen M Matson
- H.C. Brown Laboratory, Department of Chemistry, Purdue University , West Lafayette 47907, Indiana, United States
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lv C, Pan L, Pan Q, Guo Y, Zhang H. Theoretical Design of
cis
‐Bis(imido)uranium Iodides – Electronic Structures and Spectroscopic Properties. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chun‐Mei Lv
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Ling‐Chao Pan
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Qing‐Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yuan‐Ru Guo
- Key Laboratory of Bio‐based Material Science & Technology of Education Ministry, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, P. R. China
| | - Hong‐Xing Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
38
|
Ren W, Zhou E, Fang B, Hou G, Zi G, Fang DC, Walter MD. Experimental and Computational Studies on the Reactivity of a Terminal Thorium Imidometallocene towards Organic Azides and Diazoalkanes. Angew Chem Int Ed Engl 2014; 53:11310-4. [DOI: 10.1002/anie.201406191] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 11/08/2022]
|
39
|
Ren W, Zhou E, Fang B, Hou G, Zi G, Fang DC, Walter MD. Experimental and Computational Studies on the Reactivity of a Terminal Thorium Imidometallocene towards Organic Azides and Diazoalkanes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
You Z, Möckel R, Bergunde J, Dehnen S. Organotin-oxido cluster-based multiferrocenyl complexes obtained by hydrolysis of ferrocenyl-functionalized organotin chlorides. Chemistry 2014; 20:13491-6. [PMID: 25164865 DOI: 10.1002/chem.201403657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Indexed: 11/05/2022]
Abstract
Three organotin-oxido clusters were formed by hydrolysis of ferrocenyl-functionalized organotin chloride precursors in the presence of NaEPh (E=S, Se). [R(Fc) SnCl3 ⋅HCl] (C; R(Fc) = CMe2 CH2 C(Me)=N-N=C(Me)Fc) and [SnCl6 ](2-) formed {(R(Fc) SnCl2 )3 [Sn(OH)6 ]}[SnCl3 ] (3 a) and {(R(Fc) SnCl2 )3 [Sn(OH)6 ]}[PhSeO3 ] (3 b), bearing an unprecedented [Sn4 O6 ] unit, in a one-pot synthesis or stepwise through [(R(Fc) SnCl2 )2 Se] (1) plus [(R(Fc) SnCl2 )SePh] (2). A one-pot reaction starting out from FcSnCl3 gave [(FcSn)9 (OH)6 O8 Cl5 ] (4), which represents the largest Fc-decorated Sn/O cluster reported to date.
Collapse
Affiliation(s)
- Zhiliang You
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 (Germany), Fax: (+49) 6421-282-5653
| | | | | | | |
Collapse
|
41
|
Mullane KC, Lewis AJ, Yin H, Carroll PJ, Schelter EJ. Anomalous One-Electron Processes in the Chemistry of Uranium Nitrogen Multiple Bonds. Inorg Chem 2014; 53:9129-39. [DOI: 10.1021/ic501149u] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kimberly C. Mullane
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Andrew J. Lewis
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Haolin Yin
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
42
|
La Pierre HS, Meyer K. Activation of Small Molecules by Molecular Uranium Complexes. PROGRESS IN INORGANIC CHEMISTRY 2014. [DOI: 10.1002/9781118792797.ch05] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Ren W, Zhou E, Fang B, Zi G, Fang DC, Walter MD. Si–H addition followed by C–H bond activation induced by a terminal thorium imido metallocene: a combined experimental and computational study. Chem Sci 2014. [DOI: 10.1039/c4sc00576g] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Kiernicki JJ, Fanwick PE, Bart SC. Utility of a redox-active pyridine(diimine) chelate in facilitating two electron oxidative addition chemistry at uranium. Chem Commun (Camb) 2014; 50:8189-92. [DOI: 10.1039/c4cc03355h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Sun X, Tian G, Xu C, Rao L, Vukovic S, Kang SO, Hay BP. Quantifying the binding strength of U(vi) with phthalimidedioxime in comparison with glutarimidedioxime. Dalton Trans 2014; 43:551-7. [DOI: 10.1039/c3dt52206g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Camp C, Pécaut J, Mazzanti M. Tuning Uranium–Nitrogen Multiple Bond Formation with Ancillary Siloxide Ligands. J Am Chem Soc 2013; 135:12101-11. [DOI: 10.1021/ja405815b] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Clément Camp
- Laboratoire de Reconnaissance
Ionique et Chimie de
Coordination, SCIB, UMR-E3 CEA-UJF, INAC, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble Cedex 09
| | - Jacques Pécaut
- Laboratoire de Reconnaissance
Ionique et Chimie de
Coordination, SCIB, UMR-E3 CEA-UJF, INAC, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble Cedex 09
| | - Marinella Mazzanti
- Laboratoire de Reconnaissance
Ionique et Chimie de
Coordination, SCIB, UMR-E3 CEA-UJF, INAC, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble Cedex 09
| |
Collapse
|
47
|
Guo YR, Wu Q, Odoh SO, Schreckenbach G, Pan QJ. Theoretical Study of Structural, Spectroscopic and Reaction Properties of trans-bis(imido) Uranium(VI) Complexes. Inorg Chem 2013; 52:9143-52. [DOI: 10.1021/ic401440w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science & Technology of Education Ministry, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Qian Wu
- Key Laboratory
of Functional Inorganic Material Chemistry of Education Ministry,
School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Samuel O. Odoh
- Department
of Chemistry, University of Manitoba, Winnipeg,
MB, Canada R3T 2N2
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352,
United States
| | - Georg Schreckenbach
- Department
of Chemistry, University of Manitoba, Winnipeg,
MB, Canada R3T 2N2
| | - Qing-Jiang Pan
- Key Laboratory
of Functional Inorganic Material Chemistry of Education Ministry,
School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
48
|
Vukovic S, Hay BP. De Novo Structure-Based Design of Bis-amidoxime Uranophiles. Inorg Chem 2013; 52:7805-10. [DOI: 10.1021/ic401089u] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sinisa Vukovic
- Chemical Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6119,
United States
| | - Benjamin P. Hay
- Chemical Sciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6119,
United States
| |
Collapse
|
49
|
Spencer LP, Yang P, Minasian SG, Jilek RE, Batista ER, Boland KS, Boncella JM, Conradson SD, Clark DL, Hayton TW, Kozimor SA, Martin RL, MacInnes MM, Olson AC, Scott BL, Shuh DK, Wilkerson MP. Tetrahalide complexes of the [U(NR)2]2+ ion: synthesis, theory, and chlorine K-edge X-ray absorption spectroscopy. J Am Chem Soc 2013; 135:2279-90. [PMID: 23320417 DOI: 10.1021/ja310575j] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synthetic routes to salts containing uranium bis-imido tetrahalide anions [U(NR)(2)X(4)](2-) (X = Cl(-), Br(-)) and non-coordinating NEt(4)(+) and PPh(4)(+) countercations are reported. In general, these compounds can be prepared from U(NR)(2)I(2)(THF)(x) (x = 2 and R = (t)Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl(-), the [U(NMe)(2)](2+) cation also reacts with Br(-) to form stable [NEt(4)](2)[U(NMe)(2)Br(4)] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO(2)](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh(4)](2)[U(N(t)Bu)(2)Cl(4)] and [PPh(4)](2)[UO(2)Cl(4)]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.
Collapse
Affiliation(s)
- Liam P Spencer
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jones MB, Gaunt AJ. Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. Chem Rev 2012; 113:1137-98. [PMID: 23130707 DOI: 10.1021/cr300198m] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew B Jones
- Inorganic, Isotope, and Actinide Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|