1
|
Elgendy A, Papaderakis AA, Ejigu A, Helmbrecht K, Spencer BF, Groß A, Walton AS, Lewis DJ, Dryfe RAW. Nanosized Chevrel phases for dendrite-free zinc-ion based energy storage: unraveling the phase transformations. NANOSCALE 2024; 16:13597-13612. [PMID: 38958552 DOI: 10.1039/d4nr01238k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The nanoscale form of the Chevrel phase, Mo6S8, is demonstrated to be a highly efficient zinc-free anode in aqueous zinc ion hybrid supercapacitors (ZIHSCs). The unique morphological characteristics of the material when its dimensions approach the nanoscale result in fast zinc intercalation kinetics that surpass the ion transport rate reported for some of the most promising materials, such as TiS2 and TiSe2. In situ Raman spectroscopy, post-mortem X-ray diffraction, Hard X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations were combined to understand the overall mechanism of the zinc ion (de)intercalation process. The previously unknown formation of the sulfur-deficient Zn2.9Mo15S19 (Zn1.6Mo6S7.6) phase is identified, leading to a re-evaluation of the mechanism of the (de)intercalation process. A full cell comprised of an activated carbon (YEC-8A) positive electrode delivers a cell capacity of 38 mA h g-1 and an energy density of 43.8 W h kg-1 at a specific current density of 0.2 A g-1. The excellent cycling stability of the device is demonstrated for up to 8000 cycles at 3 A g-1 with a coulombic efficiency close to 100%. Post-mortem microscopic studies reveal the absence of dendrite formation at the nanosized Mo6S8 anode, in stark contrast to the state-of-the-art zinc electrode.
Collapse
Affiliation(s)
- Amr Elgendy
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Egyptian Petroleum Research Institute, 11727, Cairo, Egypt
| | - Athanasios A Papaderakis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Andinet Ejigu
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Katharina Helmbrecht
- Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstraße 11, 89081 Ulm, Germany
| | - Ben F Spencer
- Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstraße 11, 89081 Ulm, Germany
| | - Alex S Walton
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - David J Lewis
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Robert A W Dryfe
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
2
|
Elgendy A, Papaderakis AA, Cai R, Polus K, Haigh SJ, Walton AS, Lewis DJ, Dryfe RAW. Nanocubes of Mo 6S 8 Chevrel phase as active electrode material for aqueous lithium-ion batteries. NANOSCALE 2022; 14:10125-10135. [PMID: 35792825 DOI: 10.1039/d2nr02014a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of intrinsically safe and environmentally sustainable energy storage devices is a significant challenge. Recent advances in aqueous rechargeable lithium-ion batteries (ARLIBs) have made considerable steps in this direction. In parallel to the ongoing progress in the design of aqueous electrolytes that expand the electrochemically stable potential window, the design of negative electrode materials exhibiting large capacity and low intercalation potential attracts great research interest. Herein, we report the synthesis of high purity nanoscale Chevrel Phase (CP) Mo6S8via a simple, efficient and controllable molecular precursor approach with significantly decreased energy consumption compared to the conventional approaches. Physical characterization of the obtained product confirms the successful formation of CP-Mo6S8 and reveals that it is crystalline nanostructured in nature. Due to their unique structural characteristics, the Mo6S8 nanocubes exhibit fast kinetics in a 21 m lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte as a result of the shorter Li+ ion diffusion distance. Full battery cells comprised of Mo6S8 and LiMn2O4 as negative and positive electrode materials, respectively, operate at 2.23 V delivering a high energy density of 85 W h kg-1 (calculated on the total mass of active materials) under 0.2 C-rate. At 4 C, the coulombic efficiency (CE) is determined to be 99% increasing to near 100% at certain cycles. Post-mortem physical characterization demonstrates that the Mo6S8 anode maintained its crystallinity, thereby exhibiting outstanding cycling stability. The cell outperforms the commonly used vanadium-based (VO2 (B), V2O5) or (NASICON)-type LiTi2(PO4)3 anodes, highlighting the promising character of the nanoscale CP-Mo6S8 as a highly efficient anode material. In summary, the proposed synthetic strategy is expected to stimulate novel research towards the widespread application of CP-based materials in various aqueous and non-aqueous energy storage systems.
Collapse
Affiliation(s)
- Amr Elgendy
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Egyptian Petroleum Research Institute, 11727, Cairo, Egypt
| | - Athanasios A Papaderakis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Rongsheng Cai
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Kacper Polus
- Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sarah J Haigh
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- National Graphene Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Alex S Walton
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - David J Lewis
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Robert A W Dryfe
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
3
|
Artemkina SB, Grayfer ED, Ivanova MN, Ledneva AY, Poltarak AA, Poltarak PA, Yarovoi SS, Kozlova SG, Fedorov VE. STRUCTURAL AND CHEMICAL FEATURES OF CHALCOGENIDES OF EARLY TRANSITION METALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s002247662207006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Srinivasan BR, Porob DG. Comments on the paper “Two-step in-situ hydrothermal synthesis of nanosheet-constructed porous MnMoS4 arrays on 3D Ni foam as a binder-free electrode in high performance supercapacitors”. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Badur S, Renz D, Cronau M, Göddenhenrich T, Dietzel D, Roling B, Schirmeisen A. Characterization of Vegard strain related to exceptionally fast Cu-chemical diffusion in Cu[Formula: see text]Mo[Formula: see text]S[Formula: see text] by an advanced electrochemical strain microscopy method. Sci Rep 2021; 11:18133. [PMID: 34518556 PMCID: PMC8438055 DOI: 10.1038/s41598-021-96602-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/04/2021] [Indexed: 12/04/2022] Open
Abstract
Electrochemical strain microscopy (ESM) has been developed with the aim of measuring Vegard strains in mixed ionic-electronic conductors (MIECs), such as electrode materials for Li-ion batteries, caused by local changes in the chemical composition. In this technique, a voltage-biased AFM tip is used in contact resonance mode. However, extracting quantitative strain information from ESM experiments is highly challenging due to the complexity of the signal generation process. In particular, electrostatic interactions between tip and sample contribute significantly to the measured ESM signals, and the separation of Vegard strain-induced signal contributions from electrostatically induced signal contributions is by no means a trivial task. Recently, we have published a compensation method for eliminating frequency-independent electrostatic contributions in ESM measurements. Here, we demonstrate the potential of this method for detecting Vegard strain in MIECs by choosing Cu[Formula: see text]Mo[Formula: see text]S[Formula: see text] as a model-type MIEC with an exceptionally high Cu chemical diffusion coefficient. Even for this material, Vegard strains are only measurable around and above room-temperature and with proper elimination of electrostatics. The analyis of the measured Vegards strains gives strong indication that due to a high charge transfer resistance at the tip/interface, the local Cu concentration variations are much smaller than predicted by the local Nernst equation. This suggests that charge transfer resistances have to be analyzed in more detail in future ESM studies.
Collapse
Affiliation(s)
- Sebastian Badur
- Institute of Applied Physics, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | - Diemo Renz
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Marvin Cronau
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Thomas Göddenhenrich
- Institute of Applied Physics, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | - Dirk Dietzel
- Institute of Applied Physics, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
- Center for Materials Research, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | - Bernhard Roling
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - André Schirmeisen
- Institute of Applied Physics, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
- Center for Materials Research, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| |
Collapse
|
6
|
Singstock NR, Ortiz-Rodríguez JC, Perryman JT, Sutton C, Velázquez JM, Musgrave CB. Machine Learning Guided Synthesis of Multinary Chevrel Phase Chalcogenides. J Am Chem Soc 2021; 143:9113-9122. [PMID: 34107683 DOI: 10.1021/jacs.1c02971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Chevrel phase (CP) is a class of molybdenum chalcogenides that exhibit compelling properties for next-generation battery materials, electrocatalysts, and other energy applications. Despite their promise, CPs are underexplored, with only ∼100 compounds synthesized to date due to the challenge of identifying synthesizable phases. We present an interpretable machine-learned descriptor (Hδ) that rapidly and accurately estimates decomposition enthalpy (ΔHd) to assess CP stability. To develop Hδ, we first used density functional theory to compute ΔHd for 438 CP compositions. We then generated >560 000 descriptors with the new machine learning method SIFT, which provides an easy-to-use approach for developing accurate and interpretable chemical models. From a set of >200 000 compositions, we identified 48 501 CPs that Hδ predicts are synthesizable based on the criterion that ΔHd < 65 meV/atom, which was obtained as a statistical boundary from 67 experimentally synthesized CPs. The set of candidate CPs includes 2307 CP tellurides, an underexplored CP subset with a predicted preference for channel site occupation by cation intercalants that is rare among CPs. We successfully synthesized five of five novel CP tellurides attempted from this set and confirmed their preference for channel site occupation. Our joint computational and experimental approach for developing and validating screening tools that enable the rapid identification of synthesizable materials within a sparse class is likely transferable to other materials families to accelerate their discovery.
Collapse
Affiliation(s)
- Nicholas R Singstock
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | | | - Joseph T Perryman
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Christopher Sutton
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jesús M Velázquez
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Charles B Musgrave
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States.,Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States.,Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
7
|
Jia X, Liu C, Neale ZG, Yang J, Cao G. Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chem Rev 2020; 120:7795-7866. [DOI: 10.1021/acs.chemrev.9b00628] [Citation(s) in RCA: 470] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaoxiao Jia
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chaofeng Liu
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Zachary G. Neale
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jihui Yang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Guozhong Cao
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Levi E, Aurbach D, Gatti C. A revisit of the bond valence model makes it universal. Phys Chem Chem Phys 2020; 22:13839-13849. [PMID: 32572424 DOI: 10.1039/d0cp02434a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of simple, intuitive equations to correlate the geometry of crystal structures with electron descriptors of chemical bonds and material structural stability is a great advantage of the Bond Valence Model (BVM), which is based on Pauling's principles of bond order (BO) conservation and exponential BO/bond length relationship. However, the high potential of BVM to be used as an important analytical tool was overlooked in recent inorganic chemistry due to its empirical character and serious restrictions for its application. Recent quantum chemistry data (BOs and electron densities at the bond critical points, ρc) enable us to establish the validity of the BVM to any type of chemical bonds, as well as a direct BO/ρc relationship. Such a BVM revisit overcomes most of the limitations anticipated previously for the model and thus makes it universal. This Perspective highlights the advance in model development, in particular its application to compounds with metal-metal bonds, which allows us to establish (i) a linear correlation between BOs and stretching force constants used as a measure of the bond strength and (ii) a quantitative description of the steric/electrostatic effects in cluster compounds enabling us to understand their nature and the influence of such effects on structural stability. Thus, using interatomic distances, the simple Pauling equation and empirical constants, it is possible to calculate effective BOs and predict stretching force constants and electron densities at the bond critical points in any complex compound, all of this at zero cost!
Collapse
Affiliation(s)
- Elena Levi
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Doron Aurbach
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Carlo Gatti
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Sezione di via Golgi, via Golgi 19, Milano I-20133, Italy. and Istituto Lombardo Accademia di Scienze e Lettere, via Brera 28, Milano I-20121, Italy
| |
Collapse
|
9
|
Wu F, Yang H, Bai Y, Wu C. Paving the Path toward Reliable Cathode Materials for Aluminum-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806510. [PMID: 30767291 DOI: 10.1002/adma.201806510] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/04/2018] [Indexed: 05/18/2023]
Abstract
Aluminum metal is a high-energy-density carrier with low cost, and thus endows rechargeable aluminum batteries (RABs) with the potential to act as an inexpensive and efficient electrochemical device, so as to supplement the increasing demand for energy storage and conversion. Despite the enticing aspects regarding cost and energy density, the poor reversibility of electrodes has limited the pursuit of RABs for a long time. Fortunately, ionic-liquid electrolytes enable reversible aluminum plating/stripping at room temperature, and they lay the very foundation of RABs. In order to integrate with the aluminum-metal anode, the selection of the cathode is pivotal, but is limited at present. The scant option of a reliable cathode can be accounted for by the intrinsic high charge density of Al3+ ions, which results in sluggish diffusion. Hence, reliable cathode materials are a key challenge of burgeoning RABs. Herein, the main focus is on the insertion cathodes for RABs also termed aluminum-ion batteries, and the recent progress and optimization methods are summarized. Finally, an outlook is presented to navigate the possible future work.
Collapse
Affiliation(s)
- Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haoyi Yang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
10
|
Yu P, Long X, Zhang N, Feng X, Fu J, Zheng S, Ren G, Liu Z, Wang C, Liu X. Charge Distribution on S and Intercluster Bond Evolution in Mo 6S 8 during the Electrochemical Insertion of Small Cations Studied by X-ray Absorption Spectroscopy. J Phys Chem Lett 2019; 10:1159-1166. [PMID: 30789737 DOI: 10.1021/acs.jpclett.8b03622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mo6S8 is regarded as a promising cathode material in rechargeable Mg batteries. Despite extensive studies, some fundamental questions are still unclarified, including the origination of the chemical stability, key factors inducing the structural evolution, and the factors determining the electrochemical reversibility. Herein Mo L2,3 and S K-edge X-ray absorption spectroscopy are utilized to uncover the underlying mechanism. Two kinds of S with different effective charge are found, indicating the nonuniform charge distribution. With one cation inserted, the charge distribution becomes homogeneous, relevant to the chemical stability and electrochemical reversibility. The structural evolution is attributed to the change of bond length induced by the delocalization of inserted cations. Moreover, the evolution of intercluster Mo-Mo bond length can be revealed by the drastic change of the S K pre-edge and is closely related to the electrochemical reversibility. This study can shed light on the aforementioned questions and guide the development of Mg cathode material.
Collapse
Affiliation(s)
- Pengfei Yu
- State Key Laboratory of Functional Materials for Informatics , Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences , Shanghai 200050 , China
- Tianmu Lake Institute of Advanced Energy Storage Technologies , Liyang City , Jiangsu 213300 , China
| | - Xinghui Long
- State Key Laboratory of Functional Materials for Informatics , Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences , Shanghai 200050 , China
| | - Nian Zhang
- State Key Laboratory of Functional Materials for Informatics , Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences , Shanghai 200050 , China
| | - Xuefei Feng
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jiamin Fu
- State Key Laboratory of Functional Materials for Informatics , Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences , Shanghai 200050 , China
- School of Physical Science and Technology , Shanghai Tech University , Shanghai 200031 , China
| | - Shun Zheng
- State Key Laboratory of Functional Materials for Informatics , Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences , Shanghai 200050 , China
| | - Guoxi Ren
- State Key Laboratory of Functional Materials for Informatics , Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences , Shanghai 200050 , China
| | - Zhi Liu
- State Key Laboratory of Functional Materials for Informatics , Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences , Shanghai 200050 , China
- School of Physical Science and Technology , Shanghai Tech University , Shanghai 200031 , China
| | - Cheng Wang
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Xiaosong Liu
- State Key Laboratory of Functional Materials for Informatics , Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences , Shanghai 200050 , China
- Tianmu Lake Institute of Advanced Energy Storage Technologies , Liyang City , Jiangsu 213300 , China
- School of Physical Science and Technology , Shanghai Tech University , Shanghai 200031 , China
| |
Collapse
|
11
|
Barbosa J, Prestipino C, Hernandez OJ, Paofai S, Dejoie C, Guilloux-Viry M, Boulanger C. In Situ Synchrotron Powder Diffraction Study of Cd Intercalation into Chevrel Phases: Crystal Structure and Kinetic Effect. Inorg Chem 2019; 58:2158-2168. [DOI: 10.1021/acs.inorgchem.8b03259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- José Barbosa
- CEM/CP2S, Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, 1 boulevard Arago, Metz 57078, France
| | - Carmelo Prestipino
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Olivier J. Hernandez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Serge Paofai
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Catherine Dejoie
- ESRF, 71 avenue des Martyrs, CS 40220, Grenoble 38043 Cedex 9, France
| | - Maryline Guilloux-Viry
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Clotilde Boulanger
- CEM/CP2S, Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, 1 boulevard Arago, Metz 57078, France
| |
Collapse
|
12
|
Ivanova MN, Enyashin AN, Grayfer ED, Fedorov VE. Theoretical and experimental comparative study of the stability and phase transformations of sesquichalcogenides M 2Q 3 (M = Nb, Mo; Q = S, Se). Phys Chem Chem Phys 2019; 21:1454-1463. [PMID: 30607400 DOI: 10.1039/c8cp07150k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extensive family of transition metal chalcogenides has been comprehensively investigated owing to their diverse useful properties. However, even among them, there are ones that have received comparatively less attention; in particular, these are molybdenum and niobium sulfides and selenides with the composition of M : Q = 2 : 3 (M = Mo, Nb; Q = S, Se). Mo or Nb chalcogenides with this stoichiometry may adopt one of two structures: (i) sesquichalcogenides M2Q3, where important structural elements are infinite metal chains, or (ii) self-intercalated compounds M1.33Q2, in which extra M atoms are inserted between MQ2 layers. Depending on the M-Q combination, in practice, either none, one, or both of them may exist. The reasons for chemical dissimilarity in the series of seemingly related compounds haven't been addressed until the present work. Here, we present the first generalized comparative study of these chalcogenides by quantum-chemical computations verified by laboratory experiments. High-temperature phases of Mo2S3 and Nb2Se3 may be stably isolated at room temperature, while "Nb2S3" and "Mo2Se3" had not been obtained, nor were they expected to exist from DFT data. The structure-determining motifs of sesquichalcogenides M2Q3 are metallic chains, and thus, apparently, if metal's electron deficiency (or excess) prevents the formation of M-M chains, then the M2Q3-type structure cannot form. If the metal has an adequate electron density and the structure does form at high temperature (as it happens for Mo2S3 and Nb2Se3), then it can be kinetically stabilized by quenching, and stored under laboratory conditions for long times. However, if Nb2Se3 is left to cool down slowly, it undergoes phase transition to iso-stoichiometric intercalate Nb1.333Se2, in good agreement with DFT predictions of the close values of their free energies. Isostructural intercalate Nb1.333S2 is found to be the only experimental product in the Nb-S system, in full accordance with DFT prediction. Effective stabilization of self-intercalated phases is provided by significant charge transfer from intercalated Nb atoms to the NbQ2 layers, as confirmed by DFT. The obtained data may serve to get insight into polymorphism of some less-studied transition metal chalcogenides and to promote their use for future functional materials.
Collapse
Affiliation(s)
- Mariia N Ivanova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev prospect, Novosibirsk, 630090, Russian Federation.
| | | | | | | |
Collapse
|
13
|
Andrews JL, Mukherjee A, Yoo HD, Parija A, Marley PM, Fakra S, Prendergast D, Cabana J, Klie RF, Banerjee S. Reversible Mg-Ion Insertion in a Metastable One-Dimensional Polymorph of V2O5. Chem 2018. [DOI: 10.1016/j.chempr.2017.12.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Mei L, Xu J, Wei Z, Liu H, Li Y, Ma J, Dou S. Chevrel Phase Mo 6 T 8 (T = S, Se) as Electrodes for Advanced Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701441. [PMID: 28719138 DOI: 10.1002/smll.201701441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/28/2017] [Indexed: 06/07/2023]
Abstract
With the large-scale applications of electric vehicles in recent years, future batteries are required to be higher in power and possess higher energy densities, be more environmental friendly, and have longer cycling life, lower cost, and greater safety than current batteries. Therefore, to develop alternative electrode materials for advanced batteries is an important research direction. Recently, the Chevrel phase Mo6 T8 (T = S, Se) has attracted increasing attention as electrode candidate for advanced batteries, including monovalent (e.g., lithium and sodium) and multivalent (e.g., magnesium, zinc and aluminum) ion batteries. Benefiting from its unique open crystal structure, the Chevrel phase Mo6 T8 cannot only ensure rapid ion transport, but also retain the structure stability during electrochemical reactions. Although the history of the research on Mo6 T8 as electrodes for advanced batteries is short, there has been significant progress on the design and fabrication of Mo6 T8 for various advanced batteries as above mentioned. An overview of the recent progress on Mo6 T8 electrodes applied in advanced batteries is provided, including synthesis methods and diverse structures for Mo6 T8 , and electrochemical mechanism and performance of Mo6 T8 . Additionally, a briefly conclusion on the significant progress, obvious drawbacks, emerging challenges and some perspectives on the research of Mo6 T8 for advanced batteries in the near future is provided.
Collapse
Affiliation(s)
- Lin Mei
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Jiantie Xu
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, 2500, Australia
| | - Zengxi Wei
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Huakun Liu
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, 2500, Australia
| | - Yutao Li
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, 2500, Australia
| |
Collapse
|
15
|
Canepa P, Sai Gautam G, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem Rev 2017; 117:4287-4341. [DOI: 10.1021/acs.chemrev.6b00614] [Citation(s) in RCA: 729] [Impact Index Per Article: 104.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pieremanuele Canepa
- Materials
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gopalakrishnan Sai Gautam
- Materials
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, University of California Berkeley, California 94720, United States
| | - Daniel C. Hannah
- Materials
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rahul Malik
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Miao Liu
- Energy
and Environmental Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin G. Gallagher
- Chemical
Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kristin A. Persson
- Energy
and Environmental Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Gerbrand Ceder
- Materials
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, University of California Berkeley, California 94720, United States
| |
Collapse
|
16
|
Zhou M, Xiao K, Jiang X, Huang H, Lin Z, Yao J, Wu Y. Visible-Light-Responsive Chalcogenide Photocatalyst Ba2ZnSe3: Crystal and Electronic Structure, Thermal, Optical, and Photocatalytic Activity. Inorg Chem 2016; 55:12783-12790. [DOI: 10.1021/acs.inorgchem.6b02072] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Molin Zhou
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ke Xiao
- Beijing
Key Laboratory of Materials Utilization of Nonmetallic Minerals and
Solid Wastes, National Laboratory of Mineral Materials, School of
Materials Science and Technology, China University of Geosciences, Beijing 100083, People’s Republic of China
| | - Xingxing Jiang
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Hongwei Huang
- Beijing
Key Laboratory of Materials Utilization of Nonmetallic Minerals and
Solid Wastes, National Laboratory of Mineral Materials, School of
Materials Science and Technology, China University of Geosciences, Beijing 100083, People’s Republic of China
| | | | | | | |
Collapse
|
17
|
Chen R, Luo R, Huang Y, Wu F, Li L. Advanced High Energy Density Secondary Batteries with Multi-Electron Reaction Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600051. [PMID: 27840796 PMCID: PMC5096057 DOI: 10.1002/advs.201600051] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/25/2016] [Indexed: 05/19/2023]
Abstract
Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi-electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in-depth understanding of multi-electron chemistries in terms of the charge transfer mechanisms occuring during their electrochemical processes is necessary and urgent for the modification of secondary battery materials and development of secondary battery systems. In this Review, multi-electron chemistry for high energy density electrode materials and the corresponding secondary battery systems are discussed. Specifically, four battery systems based on multi-electron reactions are classified in this review: lithium- and sodium-ion batteries based on monovalent cations; rechargeable batteries based on the insertion of polyvalent cations beyond those of alkali metals; metal-air batteries, and Li-S batteries. It is noted that challenges still exist in the development of multi-electron chemistries that must be overcome to meet the energy density requirements of different battery systems, and much effort has more effort to be devoted to this.
Collapse
Affiliation(s)
- Renjie Chen
- Beijing Key Laboratory of Environmental Science and EngineeringSchool of Material Science & EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Collaborative Innovation Center of Electric Vehicles in BeijingBeijing100081P. R. China
| | - Rui Luo
- Beijing Key Laboratory of Environmental Science and EngineeringSchool of Material Science & EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Collaborative Innovation Center of Electric Vehicles in BeijingBeijing100081P. R. China
| | - Yongxin Huang
- Beijing Key Laboratory of Environmental Science and EngineeringSchool of Material Science & EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and EngineeringSchool of Material Science & EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Collaborative Innovation Center of Electric Vehicles in BeijingBeijing100081P. R. China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and EngineeringSchool of Material Science & EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Collaborative Innovation Center of Electric Vehicles in BeijingBeijing100081P. R. China
| |
Collapse
|
18
|
Chae MS, Heo JW, Lim SC, Hong ST. Electrochemical Zinc-Ion Intercalation Properties and Crystal Structures of ZnMo6S8 and Zn2Mo6S8 Chevrel Phases in Aqueous Electrolytes. Inorg Chem 2016; 55:3294-301. [PMID: 26967205 DOI: 10.1021/acs.inorgchem.5b02362] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The crystal structures and electrochemical properties of ZnxMo6S8 Chevrel phases (x = 1, 2) prepared via electrochemical Zn(2+)-ion intercalation into the Mo6S8 host material, in an aqueous electrolyte, were characterized. Mo6S8 [trigonal, R3̅, a = 9.1910(6) Å, c = 10.8785(10) Å, Z = 3] was first prepared via the chemical extraction of Cu ions from Cu2Mo6S8, which was synthesized via a solid-state reaction for 24 h at 1000 °C. The electrochemical zinc-ion insertion into Mo6S8 occurred stepwise, and two separate potential regions were depicted in the cyclic voltammogram (CV) and galvanostatic profile. ZnMo6S8 first formed from Mo6S8 in the higher-voltage region around 0.45-0.50 V in the CV, through a pseudo two-phase reaction. The inserted zinc ions occupied the interstitial sites in cavities surrounded by sulfur atoms (Zn1 sites). A significant number of the inserted zinc ions were trapped in these Zn1 sites, giving rise to the first-cycle irreversible capacity of ∼46 mAh g(-1) out of the discharge capacity of 134 mAh g(-1) at a rate of 0.05 C. In the lower-voltage region, further insertion occurred to form Zn2Mo6S8 at around 0.35 V in the CV, also involving a two-phase reaction. The electrochemical insertion and extraction into the Zn2 sites appeared to be relatively reversible and fast. The crystal structures of Mo6S8, ZnMo6S8, and Zn2Mo6S8 were refined using X-ray Rietveld refinement techniques, while the new structure of Zn2Mo6S8 was determined for the first time in this study using the technique of structure determination from powder X-ray diffraction data. With the zinc ions inserted into Mo6S8 forming Zn2Mo6S8, the cell volume and a parameter increased by 5.3% and 5.9%, respectively, but the c parameter decreased by 6.0%. The average Mo-Mo distance in the Mo6 cluster decreased from 2.81 to 2.62 Å.
Collapse
Affiliation(s)
- Munseok S Chae
- Department of Energy Systems Engineering, DGIST , Daegu 42988, South Korea
| | - Jongwook W Heo
- Department of Energy Systems Engineering, DGIST , Daegu 42988, South Korea
| | - Sung-Chul Lim
- Department of Energy Systems Engineering, DGIST , Daegu 42988, South Korea
| | - Seung-Tae Hong
- Department of Energy Systems Engineering, DGIST , Daegu 42988, South Korea
| |
Collapse
|
19
|
Meutzner F, Münchgesang W, Kabanova NA, Zschornak M, Leisegang T, Blatov VA, Meyer DC. On the Way to New Possible Na-Ion Conductors: The Voronoi-Dirichlet Approach, Data Mining and Symmetry Considerations in Ternary Na Oxides. Chemistry 2015; 21:16601-8. [PMID: 26395985 DOI: 10.1002/chem.201501975] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Indexed: 11/09/2022]
Abstract
With the constant growth of the lithium battery market and the introduction of electric vehicles and stationary energy storage solutions, the low abundance and high price of lithium will greatly impact its availability in the future. Thus, a diversification of electrochemical energy storage technologies based on other source materials is of great relevance. Sodium is energetically similar to lithium but cheaper and more abundant, which results in some already established stationary concepts, such as Na-S and ZEBRA cells. The most significant bottleneck for these technologies is to find effective solid ionic conductors. Thus, the goal of this work is to identify new ionic conductors for Na ions in ternary Na oxides. For this purpose, the Voronoi-Dirichlet approach has been applied to the Inorganic Crystal Structure Database and some new procedures are introduced to the algorithm implemented in the programme package ToposPro. The main new features are the use of data mined values, which are then used for the evaluation of void spaces, and a new method of channel size calculation. 52 compounds have been identified to be high-potential candidates for solid ionic conductors. The results were analysed from a crystallographic point of view in combination with phenomenological requirements for ionic conductors and intercalation hosts. Of the most promising candidates, previously reported compounds have also been successfully identified by using the employed algorithm, which shows the reliability of the method.
Collapse
Affiliation(s)
- Falk Meutzner
- TU Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Straße 23, 09596 Freiberg (Germany).
| | - Wolfram Münchgesang
- TU Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Straße 23, 09596 Freiberg (Germany)
| | - Natalya A Kabanova
- Samara Center for Theoretical Materials Science (SCTMS), Samara State University, Ac. Pavlov Street 1, 443011 Samara (Russia).,Samara State Aerospace University named after academician S.P. Korolyev (National Research University), Moskovskoye Shosse 34, 443086 Samara (Russia)
| | - Matthias Zschornak
- TU Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Straße 23, 09596 Freiberg (Germany)
| | - Tilmann Leisegang
- TU Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Straße 23, 09596 Freiberg (Germany)
| | - Vladislav A Blatov
- Samara Center for Theoretical Materials Science (SCTMS), Samara State University, Ac. Pavlov Street 1, 443011 Samara (Russia).,Samara State Aerospace University named after academician S.P. Korolyev (National Research University), Moskovskoye Shosse 34, 443086 Samara (Russia)
| | - Dirk C Meyer
- TU Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Straße 23, 09596 Freiberg (Germany)
| |
Collapse
|
20
|
|
21
|
Hu X, Zhang W, Liu X, Mei Y, Huang Y. Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 2015; 44:2376-404. [DOI: 10.1039/c4cs00350k] [Citation(s) in RCA: 522] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on the recent progress in nanostructured Mo-based electrode materials for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors.
Collapse
Affiliation(s)
- Xianluo Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Wei Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Xiaoxiao Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Yueni Mei
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Yunhui Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| |
Collapse
|
22
|
Levi E, Aurbach D, Isnard O. Electronic Effect Related to the Nonuniform Distribution of Ionic Charges in Metal-Cluster Chalcogenide Halides. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Levi E, Aurbach D, Isnard O. Bond-valence model for metal cluster compounds. I. Common lattice strains. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2013; 69:419-425. [PMID: 24056350 DOI: 10.1107/s2052519213021271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
The bond-valence model was commonly considered as inappropriate to metal cluster compounds, but recently it was shown that the model provides unique information on the lattice strains and stabilization mechanisms in (TM)6-chalcohalides (TM = transition metal in the cluster). The previous study was mainly devoted to the non-uniform distribution of the anion valences (bond-valence sums) around clusters. This and the following paper focuses on two additional phenomena: (i) a steric conflict between counter-cations and the cluster-ligand framework resulting in `common' lattice strains (this paper), and (ii) steric conflict between the small (TM)6-cluster and the large coordination polyhedron around the cluster or so-called matrix effect [the next paper; Levi et al. (2013), Acta Cryst. B69, 426-438]. It was shown that both phenomena can be well described by changes in the bond-valence parameters. The calculations were based on the structural data known to date for a variety of (TM)6-cluster compounds, Mx(TM)6Ly (TM = Nb, Mo, W and Re; M = various additional cations, L = the chalcogen and/or halogen ligands). The results were used to explain the structural peculiarities of these compounds with remarkable physical properties and the mechanisms of their stabilization.
Collapse
Affiliation(s)
- Elena Levi
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | |
Collapse
|
24
|
Cheng G, Xu Q, Ding F, Sang L, Liu X, Cao D. Electrochemical behavior of aluminum in Grignard reagents/THF electrolytic solutions for rechargeable magnesium batteries. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|