1
|
Baharfar M, Hillier AC, Mao G. Charge-Transfer Complexes: Fundamentals and Advances in Catalysis, Sensing, and Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406083. [PMID: 39046077 DOI: 10.1002/adma.202406083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Supramolecular assemblies, formed through electronic charge transfer between two or more entities, represent a rich class of compounds dubbed as charge-transfer complexes (CTCs). Their distinctive formation pathway, rooted in charge-transfer processes at the interface of CTC-forming components, results in the delocalization of electronic charge along molecular stacks, rendering CTCs intrinsic molecular conductors. Since the discovery of CTCs, intensive research has explored their unique properties including magnetism, conductivity, and superconductivity. Their more recently recognized semiconducting functionality has inspired recent developments in applications requiring organic semiconductors. In this context, CTCs offer a tuneable energy gap, unique charge-transport properties, tailorable physicochemical interactions, photoresponsiveness, and the potential for scalable manufacturing. Here, an updated viewpoint on CTCs is provided, presenting them as emerging organic semiconductors. To this end, their electronic and chemical properties alongside their synthesis methods are reviewed. The unique properties of CTCs that benefit various related applications in the realms of organic optoelectronics, catalysts, and gas sensors are discussed. Insights for future developments and existing limitations are described.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| | - Andrew C Hillier
- Division of Materials Sciences and Engineering, Ames Laboratory, U.S. DOE and Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
2
|
Doménech-Carbó A, Dias D, Doménech-Carbó MT. Cation and anion electrochemically assisted solid-state transformations of malachite green. Phys Chem Chem Phys 2019; 22:1502-1510. [PMID: 31872822 DOI: 10.1039/c9cp05835d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The possibility of the electrochemical promotion of different solid-to-solid transformations including the performance of successive cation and anion insertion processes has been tested using malachite green, a triphenylmethane dye, in contact with aqueous NaCl electrolyte. Electrochemical data using the voltammetry of microparticles methodology reveal significant differences with the solution phase electrochemistry of the dye. Voltammetric data, combined with atomic force microscopy, focusing ion beam-field emission scanning electron microscopy, and high-resolution field emission scanning electron microscopy permit characterization of the oxidative dissolution, oxidation with anion insertion, reduction with cation insertion and reduction with anion issue processes, whose thermochemical aspects, involving separate ion and electron transport contributions, are discussed.
Collapse
Affiliation(s)
- Antonio Doménech-Carbó
- Departament de Química Analítica, Universitat de València, Dr Moliner, 50, 46100 Burjassot, València, Spain.
| | - Daiane Dias
- Laboratório de Eletro-Espectro Analítica (LEEA), Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, 96203-900, RS, Brazil
| | - María Teresa Doménech-Carbó
- Institut de Restauració del Patrimoni, Universitat Politècnica de València, Camí de Vera 14, 46022, València, Spain
| |
Collapse
|
3
|
Lu J, Nafady A, Abrahams BF, Abdulhamid M, Winther-Jensen B, Bond AM, Martin LL. Structural, Spectroscopic, and Electrochemical Characterization of Semi-Conducting, Solvated [Pt(NH3)4](TCNQ)2·(DMF)2 and Non-Solvated [Pt(NH3)4](TCNQ)2. Aust J Chem 2017. [DOI: 10.1071/ch17245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The demand for catalysts that are highly active and stable for electron-transfer reactions has been boosted by the discovery that [Pt(NH3)4](TCNQF4)2 (TCNQF4 = 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) is an efficient catalyst. In this work, we prepare and characterize the two related [Pt(NH3)4]2+ complexes, [Pt(NH3)4](TCNQ)2·(DMF)2 (1) and [Pt(NH3)4](TCNQ)2 (2). Reaction of [Pt(NH3)4](NO3)2 with LiTCNQ in a mixed solvent (methanol/dimethylformamide, 4 : 1 v/v) gives [Pt(NH3)4](TCNQ)2·(DMF)2 (1), whereas the same reaction in water affords [Pt(NH3)4](TCNQ)2 (2). 2 has been previously reported. Both 1 and 2 have now been characterized by single-crystal X-ray crystallography, Fourier-transform (FT)IR, Raman and UV-vis spectroscopy, and electrochemistry. Structurally, in 1, the TCNQ1− anions form infinite stacks with a separation between adjacent anions within the stack alternating between 3.12 and 3.42 Å. The solvated structure 1 differs from the non-solvated form 2 in that pairs of TCNQ1− anions are clearly displaced from each other. The conductivities of pressed pellets of 1 and 2 are both in the semi-conducting range at room temperature. 2 can be electrochemically synthesized by reduction of a TCNQ-modified electrode in contact with an aqueous solution of [Pt(NH3)4](NO3)2 via a nucleation growth mechanism. Interestingly, we discovered that 1 and 2 are not catalysts for the ferricyanide and thiosulfate reaction. Li+ and tetraalkylammonium salts of TCNQ1−/2− and TCNQF41−/2− were tested for potential catalytic activity towards ferricyanide and thiosulfate. Only TCNQF41−/2− salts were active, suggesting that the dianion redox level needs to be accessible for efficient catalytic activity and explaining why 1 and 2 are not good catalysts. Importantly, the origin of the catalytic activity of the highly active [Pt(NH3)4](TCNQF4)2 catalyst is now understood, enabling other families of catalysts to be developed for important electron-transfer reactions.
Collapse
|
4
|
Preferential synthesis of highly conducting Tl(TCNQ) phase II nanorod networks via electrochemically driven TCNQ/Tl(TCNQ) solid-solid phase transformation. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3359-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Nafady A, O’Mullane AP, Bond AM. Electrochemical and photochemical routes to semiconducting transition metal-tetracyanoquinodimethane coordination polymers. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.01.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Iguchi H, Nafady A, Takaishi S, Yamashita M, Bond AM. Solid-state electrochemistry of a semiconducting MMX-type diplatinum iodide chain complex. Inorg Chem 2014; 53:4022-8. [PMID: 24679160 DOI: 10.1021/ic402980t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron-transfer-facilitated dissolution, ion insertion, and desorption associated with an MMX-type quasi-one-dimensional iodide-bridged dinuclear Pt complex (MMX chain) have been investigated for the first time. K2(NC3N)[Pt2(pop)4I]·4H2O (1) (NC3N(2+) = (H3NC3H6NH3)(2+); pop = P2H2O5(2-)) is a semiconductor with a three-dimensional coordination-bond and hydrogen-bond network included in the chain. The cyclic voltammetry of 1 was studied by using 1-modified electrodes in contact with acetonitrile solutions containing electrolyte. The chemical reversibility for oxidation of 1 depended on the electrolyte cation size, with large cations such as tetrabutylammonium (Bu4N(+)) being too large to penetrate the pores formed by the loss of K(+) and NC3N(2+) upon oxidation. The potential for reduction of 1 decreased as the cation size increased. The presence of the acid induced additional well-defined processes but with gradual solid dissolution, attributed to the breaking of the coordination-bond networks.
Collapse
Affiliation(s)
- Hiroaki Iguchi
- Department of Chemistry, Graduate School of Science, Tohoku University , 6-3 Aramaki-Aza-Aoba, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
7
|
Nafady A, Al-Qahtani NJ, Al-Farhan KA, Bhargava S, Bond AM. Synthesis and characterization of microstructured sheets of semiconducting Ca[TCNQ]2 via redox-driven solid-solid phase transformation of TCNQ microcrystals. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2379-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Kinetic and thermodynamic interplay of cation ingress and egress at a TCNQ-modified electrode in contact with aqueous electrolyte mixtures containing Co(II) and Ni(II) cations. J Solid State Electrochem 2013. [DOI: 10.1007/s10008-013-2061-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Pearson A, O’Mullane AP, Bhargava SK, Bansal V. Synthesis of CuTCNQ/Au Microrods by Galvanic Replacement of Semiconducting Phase I CuTCNQ with KAuBr4 in Aqueous Medium. Inorg Chem 2012; 51:8791-801. [DOI: 10.1021/ic300555j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew Pearson
- School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne,
VIC 3001, Australia
| | - Anthony P. O’Mullane
- School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne,
VIC 3001, Australia
| | - Suresh K. Bhargava
- School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne,
VIC 3001, Australia
| | - Vipul Bansal
- School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne,
VIC 3001, Australia
| |
Collapse
|
10
|
Martin LL, Lu J, Nafady A, Le TH, Siriwardana AI, Qu X, Traore DAK, Wilce M, Bond AM. Novel Semiconducting Biomaterials Derived from a Proline Ester and Tetracyanoquinodimethane Identified by Handpicked Selection of Individual Crystals. Aust J Chem 2012. [DOI: 10.1071/ch12183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Complex mixtures of cation : anion stoichometries often result from the syntheses of tetracyanoquinodimethane (TCNQ) salts, and often these cannot be easily separated. In this study, the reaction of N,N-dimethyl-d-proline-methylester (Pro(CH3)3+) with LiTCNQ resulted in a mixture of crystals. Hand selection and characterisation of each crystal type by X-ray, infrared, Raman and electrochemistry has provided two stoichometries, 1 : 1 [Pro(CH3)3TCNQ] and 2 : 3 ([(Pro(CH3)3)2(TCNQ)3]). A detailed comparison of these structures is provided. The electrochemical method provides an exceptionally sensitive method of distinguishing differences in stoichiometry. The room temperature conductivity of the mixture is 3.1 × 10–2 S cm–1, which lies in the semiconducting range.
Collapse
|
11
|
Pearson A, O’Mullane AP, Bansal V, Bhargava SK. Galvanic Replacement of Semiconductor Phase I CuTCNQ Microrods with KAuBr4 to Fabricate CuTCNQ/Au Nanocomposites with Photocatalytic Properties. Inorg Chem 2011; 50:1705-12. [DOI: 10.1021/ic1021752] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew Pearson
- School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Australia
| | - Anthony P. O’Mullane
- School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Australia
| | - Vipul Bansal
- School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Australia
| | - Suresh K. Bhargava
- School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Australia
| |
Collapse
|
12
|
Lv QY, Lei WJ, Liu YL, Zhan SZ, Ye JS. Reactivity of tetracyanoquinodimethane with cobalt(II) chloride and bis(diphylphospino)methane in air. Polyhedron 2010. [DOI: 10.1016/j.poly.2010.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|