1
|
Ferentinos E, Tzeli D, Sottini S, Groenen EJJ, Ozerov M, Poneti G, Kaniewska-Laskowska K, Krzystek J, Kyritsis P. Magnetic anisotropy and structural flexibility in the field-induced single ion magnets [Co{(OPPh 2)(EPPh 2)N} 2], E = S, Se, explored by experimental and computational methods. Dalton Trans 2023; 52:2036-2050. [PMID: 36692040 PMCID: PMC9926333 DOI: 10.1039/d2dt03335f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/14/2023] [Indexed: 01/25/2023]
Abstract
During the last few years, a large number of mononuclear Co(II) complexes of various coordination geometries have been explored as potential single ion magnets (SIMs). In the work presented herein, the Co(II) S = 3/2 tetrahedral [Co{(OPPh2)(EPPh2)N}2], E = S, Se, complexes (abbreviated as CoO2E2), bearing chalcogenated mixed donor-atom imidodiphosphinato ligands, were studied by both experimental and computational techniques. Specifically, direct current (DC) magnetometry provided estimations of their zero-field splitting (zfs) axial (D) and rhombic (E) parameter values, which were more accurately determined by a combination of far-infrared magnetic spectroscopy and high-frequency and -field EPR spectroscopy studies. The latter combination of techniques was also implemented for the S = 3/2 tetrahedral [Co{(EPiPr2)2N}2], E = S, Se, complexes, confirming the previously determined magnitude of their zfs parameters. For both pairs of complexes (E = S, Se), it is concluded that the identity of the E donor atom does not significantly affect their zfs parameters. High-resolution multifrequency EPR studies of CoO2E2 provided evidence of multiple conformations, which are more clearly observed for CoO2Se2, in agreement with the structural disorder previously established for this complex by X-ray crystallography. The CoO2E2 complexes were shown to be field-induced SIMs, i.e., they exhibit slow relaxation of magnetization in the presence of an external DC magnetic field. Advanced quantum-chemical calculations on CoO2E2 provided additional insight into their electronic and structural properties.
Collapse
Affiliation(s)
- Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, GR-15771 Athens, Greece.
| | - Demeter Tzeli
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, GR-15771 Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., GR-11635 Athens, Greece
| | - Silvia Sottini
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Edgar J J Groenen
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA.
| | - Giordano Poneti
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil.
| | - Kinga Kaniewska-Laskowska
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdańsk PL-80-233, Poland
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA.
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, GR-15771 Athens, Greece.
| |
Collapse
|
2
|
Ksiądzyna M, Kinzhybalo V, Bieńko A, Medycki W, Jakubas R, Rajnák C, Boca R, Ozarowski A, Ozerov M, Piecha-Bisiorek A. Symmetry-Breaking Phase Transitions, Dielectric and Magnetic properties of Pyrrolidinium-Tetrahalidocobaltates. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00187j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report the physicochemical characteristics of novel Co-based pyrrolidinium analogs: (C4H10N)2CoCl4 (PCC) and (C4H10N)2CoBr4 (PCB). Both compounds consist of the zero-dimensional (OD) anionic network and disordered pyrolidinium cations. The structural...
Collapse
|
3
|
Nano K, Zahariou G, Ioannou PC, Alam MM, Pantazis DA, Raptopoulou CP, Psycharis V, Sanakis Y, Kyritsis P. Electronic properties of the S = 5/2 Mn(II) complexes [Mn{PhC(O)NP(O)PPh2}(N,N)(NO3)], (N,N) = phenanthroline, neocuproine, 2,2′-bipyridine. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Kowalkowska-Zedler D, Dołęga A, Nedelko N, Łyszczek R, Aleshkevych P, Demchenko I, Łuczak J, Slawska-Waniewska A, Pladzyk A. Structural, magnetic and spectral properties of tetrahedral cobalt(ii) silanethiolates: a variety of structures and manifestation of field-induced slow magnetic relaxation. Dalton Trans 2020; 49:697-710. [PMID: 31848544 DOI: 10.1039/c9dt03722e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Blue crystals of five heteroleptic cobalt(ii) silanethiolates 1-5 have been obtained by the reaction of [Co{SSi(tBuO)3}2(NH3)]2 with aminopyridines and aminomethylpyridines at an appropriate molar ratio and their structural, spectral, thermal and magnetic properties have been established and described. All complexes 1-5 contain Co(ii) ions in a tetrahedral CoN2S2 environment formed by (tBuO)3SiS- residues and pyridines and present variable structures. Complexes 1-3 are mononuclear [Co{SSi(tBuO)3}2(L1)2] (L1 = 2-aminopyridine 2AP, 3-aminopyridine 3AP, and 4-aminopyridine 4AP). The application of 3AMP and 4AMP (3-aminomethylpyridine and 4-aminomethylpyridine) allows either dinuclear complex 4 [Co{SSi(tBuO)3}2(μ-3AMP)]2 or 1D coordination polymer 5 with the formula of [Co{SSi(tBuO)3}2(μ-4AMP)]n to be obtained. The molecular structures of 1-5 were determined by single-crystal X-ray and powder diffraction, UV-vis and FTIR spectrocopy for solid samples and their thermal properties were characterized by TG-DSC and TG-FTIR methods. The dc and ac magnetic and EPR studies of polycrystalline samples have been performed. For all complexes, the obtained data show a behavior typical of paramagnetic high-spin Co(ii) ions in a tetrahedral geometry, with a considerable contribution of the ZFS effect in a low temperature range. All complexes were also probed for SIM behavior. The modeling of the magnetic and EPR data was done for samples 1, 3, 4 and 5 to estimate ZFS parameters. The obtained results imply a negative value of the axial parameter D in complex 4 and positive D values for the rest of the compounds. A comparative magneto-structural analysis of complexes 4 and 5 points to the high sensitivity of the single-ion magnetic anisotropy of tetrahedral Co(ii) complexes to subtle changes in the first and second coordination spheres of Co(ii) ions.
Collapse
Affiliation(s)
- D Kowalkowska-Zedler
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tripathi S, Vaidya S, Ansari KU, Ahmed N, Rivière E, Spillecke L, Koo C, Klingeler R, Mallah T, Rajaraman G, Shanmugam M. Influence of a Counteranion on the Zero-Field Splitting of Tetrahedral Cobalt(II) Thiourea Complexes. Inorg Chem 2019; 58:9085-9100. [DOI: 10.1021/acs.inorgchem.9b00632] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shalini Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Shefali Vaidya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kamal Uddin Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Naushad Ahmed
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud, Université Paris Saclay, 91405 Orsay Cedex, France
| | | | | | | | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
6
|
Lang L, Neese F. Spin-dependent properties in the framework of the dynamic correlation dressed complete active space method. J Chem Phys 2019; 150:104104. [DOI: 10.1063/1.5085203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lucas Lang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Ferentinos E, Xu M, Grigoropoulos A, Bratsos I, Raptopoulou CP, Psycharis V, Jiang SD, Kyritsis P. Field-induced slow relaxation of magnetization in the S = 3/2 octahedral complexes trans-[Co{(OPPh 2)(EPPh 2)N} 2(dmf) 2], E = S, Se: effects of Co–Se vs. Co–S coordination. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00135b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetometry studies on octahedral trans-[Co{(OPPh2)(EPPh2)N}2(dmf)2], E = S, Se, complexes.
Collapse
Affiliation(s)
- Eleftherios Ferentinos
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- GR-15771 Athens
- Greece
| | - Meixing Xu
- College of Chemistry and Molecular Engineering
- Beijing National Laboratory for Molecular Sciences
- Beijing Key Laboratory of Magnetoelectric Materials and Devices
- Peking University
- Beijing 100871
| | - Alexios Grigoropoulos
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- GR-15771 Athens
- Greece
| | - Ioannis Bratsos
- NCSR “Demokritos”
- Institute of Nanoscience and Nanotechnology
- Athens
- Greece
| | | | - Vassilis Psycharis
- NCSR “Demokritos”
- Institute of Nanoscience and Nanotechnology
- Athens
- Greece
| | - Shang-Da Jiang
- College of Chemistry and Molecular Engineering
- Beijing National Laboratory for Molecular Sciences
- Beijing Key Laboratory of Magnetoelectric Materials and Devices
- Peking University
- Beijing 100871
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- GR-15771 Athens
- Greece
| |
Collapse
|
8
|
Pérez AL, Kemmerer A, Rey MA, Dalosto SD, Ramos CA, Passeggi MCG, Rizzi AC, Brondino CD. Coupled High Spin Co
II
Ions Linked by Symmetrical Double Hydrogen Bonds: Role of a Slowly Relaxing Cu
II
Impurity in Interrupting the Co
II
–Co
II
Exchange Interaction. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana L. Pérez
- Departamento de Física Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral ‐ CONICET Ciudad Universitaria S3000ZAA Santa Fe Argentina
| | - Axel Kemmerer
- Departamento de Física Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral ‐ CONICET Ciudad Universitaria S3000ZAA Santa Fe Argentina
| | - Marilin A. Rey
- Departamento de Física Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral ‐ CONICET Ciudad Universitaria S3000ZAA Santa Fe Argentina
| | - Sergio D. Dalosto
- Instituto de Física del Litoral Universidad Nacional del Litoral ‐ CONICET Güemes 3450 3000 Santa Fe Argentina
| | - Carlos A. Ramos
- Centro Atómico Bariloche Comisión Nacional de Energía Atómica Av. Bustillo 9500 8400 Bariloche Río Negro Argentina
| | - Mario C. G. Passeggi
- Departamento de Física Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral ‐ CONICET Ciudad Universitaria S3000ZAA Santa Fe Argentina
- Instituto de Física del Litoral Universidad Nacional del Litoral ‐ CONICET Güemes 3450 3000 Santa Fe Argentina
| | - Alberto C. Rizzi
- Departamento de Física Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral ‐ CONICET Ciudad Universitaria S3000ZAA Santa Fe Argentina
| | - Carlos D. Brondino
- Departamento de Física Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral ‐ CONICET Ciudad Universitaria S3000ZAA Santa Fe Argentina
| |
Collapse
|
9
|
Vaidya S, Shukla P, Tripathi S, Rivière E, Mallah T, Rajaraman G, Shanmugam M. Substituted versus Naked Thiourea Ligand Containing Pseudotetrahedral Cobalt(II) Complexes: A Comparative Study on Its Magnetization Relaxation Dynamics Phenomenon. Inorg Chem 2018; 57:3371-3386. [DOI: 10.1021/acs.inorgchem.8b00160] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shefali Vaidya
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Pragya Shukla
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Shalini Tripathi
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud and Université Paris Saclay, Orsay, Cedex 91405, France
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud and Université Paris Saclay, Orsay, Cedex 91405, France
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076 Maharashtra, India
| |
Collapse
|
10
|
|
11
|
Magnetic Anisotropy and Field-induced Slow Relaxation of Magnetization in Tetracoordinate Co II Compound [Co(CH₃-im)₂Cl₂]. MATERIALS 2017; 10:ma10030249. [PMID: 28772606 PMCID: PMC5503352 DOI: 10.3390/ma10030249] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/27/2017] [Indexed: 12/04/2022]
Abstract
Static and dynamic magnetic properties of the tetracoordinate CoII complex [Co(CH3-im)2Cl2], (1, CH3-im = N-methyl-imidazole), studied using thorough analyses of magnetometry, and High-Frequency and -Field EPR (HFEPR) measurements, are reported. The study was supported by ab initio complete active space self-consistent field (CASSCF) calculations. It has been revealed that 1 possesses a large magnetic anisotropy with a large rhombicity (magnetometry: D = −13.5 cm−1, E/D = 0.33; HFEPR: D = −14.5(1) cm−1, E/D = 0.16(1)). These experimental results agree well with the theoretical calculations (D = −11.2 cm−1, E/D = 0.18). Furthermore, it has been revealed that 1 behaves as a field-induced single-ion magnet with a relatively large spin-reversal barrier (Ueff = 33.5 K). The influence of the Cl–Co–Cl angle on magnetic anisotropy parameters was evaluated using the CASSCF calculations.
Collapse
|
12
|
Suturina EA, Nehrkorn J, Zadrozny JM, Liu J, Atanasov M, Weyhermüller T, Maganas D, Hill S, Schnegg A, Bill E, Long JR, Neese F. Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh)4]2– Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and ab Initio Electronic Structure Calculations. Inorg Chem 2017; 56:3102-3118. [DOI: 10.1021/acs.inorgchem.7b00097] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizaveta A. Suturina
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
- Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Joscha Nehrkorn
- Berlin Joint EPR Lab, Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße
5, 12489 Berlin, Germany
| | - Joseph M. Zadrozny
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junjie Liu
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Mihail Atanasov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
- Bulgarian Academy of Sciences, Institute of General and Inorganic
Chemistry, Akad. Georgi
Bontchev Street 11, 1113 Sofia, Bulgaria
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios Maganas
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Stephen Hill
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander Schnegg
- Berlin Joint EPR Lab, Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße
5, 12489 Berlin, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Jeffrey R. Long
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
13
|
Yao XN, Yang MW, Xiong J, Liu JJ, Gao C, Meng YS, Jiang SD, Wang BW, Gao S. Enhanced magnetic anisotropy in a tellurium-coordinated cobalt single-ion magnet. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00543h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fine-tuning of the ligand field of a series of four-coordinate Co(ii) SIMs, yielding the first tellurium-coordinated SIM.
Collapse
Affiliation(s)
- Xiao-Nan Yao
- Beijing National Laboratory of Molecular Science
- College of Chemistry and Molecular Engineering
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- Peking University
- Beijing
| | - Mu-Wen Yang
- Beijing National Laboratory of Molecular Science
- College of Chemistry and Molecular Engineering
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- Peking University
- Beijing
| | - Jin Xiong
- Beijing National Laboratory of Molecular Science
- College of Chemistry and Molecular Engineering
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- Peking University
- Beijing
| | - Jia-Jia Liu
- Beijing National Laboratory of Molecular Science
- College of Chemistry and Molecular Engineering
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- Peking University
- Beijing
| | - Chen Gao
- Beijing National Laboratory of Molecular Science
- College of Chemistry and Molecular Engineering
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- Peking University
- Beijing
| | - Yin-Shan Meng
- Beijing National Laboratory of Molecular Science
- College of Chemistry and Molecular Engineering
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- Peking University
- Beijing
| | - Shang-Da Jiang
- Beijing National Laboratory of Molecular Science
- College of Chemistry and Molecular Engineering
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- Peking University
- Beijing
| | - Bing-Wu Wang
- Beijing National Laboratory of Molecular Science
- College of Chemistry and Molecular Engineering
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- Peking University
- Beijing
| | - Song Gao
- Beijing National Laboratory of Molecular Science
- College of Chemistry and Molecular Engineering
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- Peking University
- Beijing
| |
Collapse
|
14
|
Vaidya S, Tewary S, Singh SK, Langley SK, Murray KS, Lan Y, Wernsdorfer W, Rajaraman G, Shanmugam M. What Controls the Sign and Magnitude of Magnetic Anisotropy in Tetrahedral Cobalt(II) Single-Ion Magnets? Inorg Chem 2016; 55:9564-9578. [DOI: 10.1021/acs.inorgchem.6b01073] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shefali Vaidya
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra India
| | - Subrata Tewary
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra India
| | - Saurabh Kumar Singh
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra India
| | - Stuart K. Langley
- School
of Science and the Environment, Chemistry Division, Manchester Metropolitan University, Manchester M15 6HB, U.K
| | - Keith S. Murray
- School
of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Yanhua Lan
- Institut
Néel, CNRS and Université Grenoble Alpes, BP 166,
25 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Wolfgang Wernsdorfer
- Institut
Néel, CNRS and Université Grenoble Alpes, BP 166,
25 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Gopalan Rajaraman
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra India
| | - Maheswaran Shanmugam
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra India
| |
Collapse
|
15
|
Sottini S, Poneti G, Ciattini S, Levesanos N, Ferentinos E, Krzystek J, Sorace L, Kyritsis P. Magnetic Anisotropy of Tetrahedral Co II Single-Ion Magnets: Solid-State Effects. Inorg Chem 2016; 55:9537-9548. [PMID: 27636564 DOI: 10.1021/acs.inorgchem.6b00508] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study reports the static and dynamic magnetic characterization of two mononuclear tetrahedral CoII complexes, [Co{iPr2P(E)NP(E)iPr2}2], where E = S (CoS4) and Se (CoSe4), which behave as single-ion magnets (SIMs). Low-temperature (15 K) single-crystal X-ray diffraction studies point out that the two complexes exhibit similar structural features in their first coordination sphere, but a disordered peripheral iPr group is observed only in CoS4. Although the latter complex crystallizes in an axial space group, the observed structural disorder leads to larger transverse magnetic anisotropy for the majority of the molecules compared to CoSe4, as confirmed by electron paramagnetic resonance spectroscopy. Static magnetic characterization indicates that both CoS4 and CoSe4 show easy-axis anisotropy, with comparable D values (∼-30 cm-1). Moreover, alternating-current susceptibility measurements on these CoII complexes, magnetically diluted in their isostructural ZnII analogues, highlight the role of dipolar magnetic coupling in the mechanism of magnetization reversal. In addition, our findings suggest that, despite their similar anisotropic features, CoS4 and CoSe4 relax magnetically via different processes. This work provides experimental evidence that solid-state effects may affect the magnetic behavior of SIMs.
Collapse
Affiliation(s)
- Silvia Sottini
- Department of Chemistry "Ugo Schiff" and INSTM Research Unit of Florence, University of Florence , via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Giordano Poneti
- Department of Chemistry "Ugo Schiff" and INSTM Research Unit of Florence, University of Florence , via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Samuele Ciattini
- Centro Interdipartimentale di Crystallografia Strutturale CRIST, University of Florence , via della Lastruccia 5, 50019 Sesto Fiorentino, Italy
| | - Nikolaos Levesanos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens , Panepistimiopolis, GR-15771 Athens, Greece
| | - Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens , Panepistimiopolis, GR-15771 Athens, Greece
| | - J Krzystek
- National High Magnetic Field Laboratory (NHMFL), Florida State University , Tallahassee, Florida 32310, United States
| | - Lorenzo Sorace
- Department of Chemistry "Ugo Schiff" and INSTM Research Unit of Florence, University of Florence , via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens , Panepistimiopolis, GR-15771 Athens, Greece
| |
Collapse
|
16
|
Cobalt(II) complexes of organophosphorus ligands with XPNSO skeleton (X = O, S). Solid state structure and solution behavior. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Magnetic anisotropy in two- to eight-coordinated transition–metal complexes: Recent developments in molecular magnetism. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.06.013] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Rizzi AC, Neuman NI, González PJ, Brondino CD. EPR as a Tool for Study of Isolated and Coupled Paramagnetic Centers in Coordination Compounds and Macromolecules of Biological Interest. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Zadrozny JM, Greer SM, Hill S, Freedman DE. A flexible iron(ii) complex in which zero-field splitting is resistant to structural variation. Chem Sci 2015; 7:416-423. [PMID: 29861991 PMCID: PMC5952318 DOI: 10.1039/c5sc02477c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/02/2015] [Indexed: 01/19/2023] Open
Abstract
The zero-field splitting parameters D and E in the iron(ii) complex [Fe(C3S5)2]2– are shown to be remarkably resistant to a twist of the inter-ligand dihedral angle (θd) from 90 to 70°.
The relationship between electronic structure and zero-field splitting dictates key design parameters for magnetic molecules. In particular, to enable the directed synthesis of new electronic spin based qubits, developing complexes where zero-field splitting energies are invariant to structural changes is a critical challenge. Toward those ends, we report three salts of a new compound, a four-coordinate iron(ii) complex [Fe(C3S5)2]2– ([(18-crown-6)K]+ (1), Ph4P+ (2), Bu4N+ (3)) with a continuous structural variation in a single parameter, the dihedral angle (θd) between the two C3S52– ligands, as a function of counterion (θd = 89.98(4)° for 1 to 72.41(2)° for 3). Electron paramagnetic resonance data for 1–3 reveal zero-field splitting parameters that are unusually robust to the structural variation. Mössbauer spectroscopic measurements indicate that the structural variation in θd primarily affects the highest-energy 3d-orbitals (dxz and dyz) of the iron(ii) ion. These orbitals have the smallest impact on the zero-field splitting parameters, thus the distortion has a minor effect on D and E. These results represent the first part of a directed effort to understand how spin state energies may be fortified against structural distortions for future applications of qubits in non-crystalline environments.
Collapse
Affiliation(s)
- Joseph M Zadrozny
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA .
| | - Samuel M Greer
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , FL 32306 , USA.,National High Magnetic Field Laboratory , Tallahassee , FL 32310 , USA
| | - Stephen Hill
- National High Magnetic Field Laboratory , Tallahassee , FL 32310 , USA.,Department of Physics , Florida State University , Tallahassee , FL 32306 , USA
| | - Danna E Freedman
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA .
| |
Collapse
|
20
|
Azarkh M, Groenen EJJ. Simulation of multi-frequency EPR spectra for a distribution of the zero-field splitting. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 255:106-113. [PMID: 25955436 DOI: 10.1016/j.jmr.2015.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
We present a numerical procedure called 'grid-of-errors' to extract the distribution of magnetic interactions from continuous-wave electron-paramagnetic-resonance (EPR) spectra at multiple microwave frequencies. The approach is based on the analysis of the lineshape of the spectra and explicitly worked out for high-spin systems for which the lineshape is determined by a distribution of the zero-field splitting. Initial principal values of the zero-field splitting tensor are obtained from the EPR spectrum at a microwave frequency in the high-field limit, and the initial distribution is taken Gaussian. Subsequently, the grid-of-errors procedure optimizes this distribution, without any restriction to its shape, taking into account spectra at various microwave frequencies. The numerical procedure is illustrated for the Fe(III)-EDTA complex. An optimized distribution of the zero-field splitting is obtained, which provides a proper description of the EPR spectra at 9.5, 34, 94, and 275 GHz. The proposed approach can be used as well for distributions of magnetic interactions other than the zero-field splitting.
Collapse
Affiliation(s)
- Mykhailo Azarkh
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands.
| | - Edgar J J Groenen
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
21
|
Gupta SK, Kuppuswamy S, Walsh JPS, McInnes EJL, Murugavel R. Discrete and polymeric cobalt organophosphates: isolation of a 3-D cobalt phosphate framework exhibiting selective CO2 capture. Dalton Trans 2015; 44:5587-601. [DOI: 10.1039/c4dt03379e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Auxiliary ligand assisted control over the structural diversity has been achieved in the case of cobalt(ii) organophosphates.
Collapse
Affiliation(s)
- Sandeep K. Gupta
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400 076
- India
| | | | - James P. S. Walsh
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
| | - Eric J. L. McInnes
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
| | - Ramaswamy Murugavel
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400 076
- India
| |
Collapse
|
22
|
Chiu CC, Chen JH, Wang SS, Tung JY. Magnetic susceptibility and EPR spectra of Co(II) 2-N substituted N-confused porphyrin: Co(2-NCH2-p-C6H4-isoC3H7-21-CH2-p-C6H4CH3-NCTPP)Cl. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Ruamps R, Batchelor LJ, Guillot R, Zakhia G, Barra AL, Wernsdorfer W, Guihéry N, Mallah T. Ising-type magnetic anisotropy and single molecule magnet behaviour in mononuclear trigonal bipyramidal Co(ii) complexes. Chem Sci 2014. [DOI: 10.1039/c4sc00984c] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Azarkh M, Penkova LV, Kats SV, Varzatskii OA, Voloshin YZ, Groenen EJJ. A Mononuclear Mn(II) Pseudoclathrochelate Complex Studied by Multi-Frequency Electron-Paramagnetic-Resonance Spectroscopy. J Phys Chem Lett 2014; 5:886-889. [PMID: 26274083 DOI: 10.1021/jz5000963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Knowledge of the correlation between structural and spectroscopic properties of transition-metal complexes is essential to deepen the understanding of their role in catalysis, molecular magnetism, and biological inorganic chemistry. It provides topological and, sometimes, functional insight with respect to the active site properties of metalloproteins. The electronic structure of a high-spin mononuclear Mn(II) pseudoclathrochelate complex has been investigated by electron-paramagnetic-resonance (EPR) spectroscopy at 9.5 and 275.7 GHz. A substantial, virtually axial zero-field splitting with D = -9.7 GHz (-0.32 cm(-1)) is found, which is the largest one reported to date for a Mn(II) complex with six nitrogen atoms in the first coordination sphere.
Collapse
Affiliation(s)
- Mykhailo Azarkh
- †Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Larysa V Penkova
- ‡Department of Chemistry, Kyiv National Taras Shevchenko University, 01601 Kyiv, Ukraine
| | - Svitlana V Kats
- ‡Department of Chemistry, Kyiv National Taras Shevchenko University, 01601 Kyiv, Ukraine
| | - Oleg A Varzatskii
- §Vernadskii Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine
| | - Yan Z Voloshin
- ∥Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Edgar J J Groenen
- †Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
25
|
Zadrozny JM, Telser J, Long JR. Slow magnetic relaxation in the tetrahedral cobalt(II) complexes [Co(EPh)4]2− (EO, S, Se). Polyhedron 2013. [DOI: 10.1016/j.poly.2013.04.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Idešicová M, Titiš J, Krzystek J, Boča R. Zero-Field Splitting in Pseudotetrahedral Co(II) Complexes: a Magnetic, High-Frequency and -Field EPR, and Computational Study. Inorg Chem 2013; 52:9409-17. [DOI: 10.1021/ic400980b] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Monika Idešicová
- Department of Chemistry (FPV), University of SS. Cyril and Methodius, SK-917 01 Trnava,
Slovakia
| | - Ján Titiš
- Department of Chemistry (FPV), University of SS. Cyril and Methodius, SK-917 01 Trnava,
Slovakia
| | - J. Krzystek
- National High
Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Roman Boča
- Department of Chemistry (FPV), University of SS. Cyril and Methodius, SK-917 01 Trnava,
Slovakia
| |
Collapse
|
27
|
Davydov RM, McLaughlin MP, Bill E, Hoffman BM, Holland PL. Generation of high-spin iron(I) in a protein environment using cryoreduction. Inorg Chem 2013; 52:7323-5. [PMID: 24004284 DOI: 10.1021/ic4011339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
High-spin Fe(1+) sites are potentially important in iron-sulfur proteins but are rare in synthetic compounds and unknown in metalloproteins. Here, we demonstrate a spectroscopically characterized example of high-spin non-heme Fe(1+) in a protein environment. Cryoreduction of Fe(2+)-substituted azurin at 77 K with (60)Co γ radiation generates a new species with a S = (3)/2 (high-spin) Fe(1+) center having D > 0 and E/D ~ 0.25. This transient species is stable in a glycerol-water glass only up to ~170 K. A combination of electron paramagnetic resonance and Mössbauer spectroscopies provides a powerful means of identifying a transient high-spin Fe(1+) site in a protein scaffold.
Collapse
Affiliation(s)
- Roman M Davydov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
28
|
Coordination of iPr2P(O)NHP(O)iPr2 to Co(II): Simultaneous formation of octahedral and tetrahedral complexes. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2013.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Tzima TD, Ferentinos E, Maganas D, Melissas VS, Sanakis Y, Kyritsis P. Electronic and magnetic properties of the binuclear [Mn2{(OPPh2)2N}4] complex, as revealed by magnetometry, EPR and density functional broken-symmetry studies. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.07.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Grigoropoulos A, Maganas D, Symeonidis D, Giastas P, Cowley AR, Kyritsis P, Pneumatikakis G. Synthesis of Chalcogenidoimidodiphosphinato–Rh
I
Complexes and DFT Investigation of Their Catalytic Activation in Olefin Hydroformylation. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexios Grigoropoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece, Fax: +30‐210‐7274782, http://www.chem.uoa.gr/
| | - Dimitrios Maganas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece, Fax: +30‐210‐7274782, http://www.chem.uoa.gr/
- Max‐Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios Symeonidis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece, Fax: +30‐210‐7274782, http://www.chem.uoa.gr/
| | - Petros Giastas
- Laboratory of Structural and Supramolecular Chemistry, NCSR “Demokritos”, Agia Paraskevi 15310, Athens, Greece
| | - Andrew R. Cowley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece, Fax: +30‐210‐7274782, http://www.chem.uoa.gr/
| | - Georgios Pneumatikakis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece, Fax: +30‐210‐7274782, http://www.chem.uoa.gr/
| |
Collapse
|
31
|
Mathies G, Chatziefthimiou SD, Maganas D, Sanakis Y, Sottini S, Kyritsis P, Groenen EJJ. High-frequency EPR study of the high-spin FeII complex Fe[(SPPh2)2N]2. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 224:94-100. [PMID: 23064483 DOI: 10.1016/j.jmr.2012.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
We report continuous-wave electron-paramagnetic-resonance (EPR) spectra of the high-spin Fe(II) complex Fe[(SPPh(2))(2)N](2) at 275.7 GHz, 94.1 GHz and 9.5 GHz. Combined analysis of these EPR spectra shows that the complex occurs in multiple conformations. For two main conformations the spin-Hamiltonian parameters, which reflect the electronic structure of the complex, are accurately determined: (1) D=9.17 cm(-1) (275 GHz), E/D=0.021 and (2) D=8.87 cm(-1) (266 GHz), E/D=0.052. The EPR spectra obtained at 275.7 GHz on single crystals of the complex are essential for the analysis and in addition they reveal that the two main conformations occur at two magnetically distinguishable sites.
Collapse
Affiliation(s)
- Guinevere Mathies
- Huygens Laboratory, Department of Molecular Physics, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Mathies G, Almeida RM, Gast P, Moura JJG, Groenen EJJ. Multifrequency EPR study of Fe3+ and Co2+ in the active site of desulforedoxin. J Phys Chem B 2012; 116:7122-8. [PMID: 22612627 DOI: 10.1021/jp3025655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The understanding of the electronic structure of S > 1/2 transition-metal sites that show a large zero-field splitting (ZFS) of the magnetic sublevels benefits greatly from study by electron-paramagnetic-resonance (EPR) spectroscopy at frequencies above the standard 9.5 GHz. However, high-frequency EPR spectroscopy is technically challenging and still developing. Particularly the sensitivity of high-frequency EPR spectrometers is often too low to apply the technique in the study of transition-metal sites in proteins and enzymes. Here we report a multifrequency EPR study (at 9.5, 94.9, and 275.7 GHz) of the active site of the protein desulforedoxin, both in its natural Fe(3+) form and substituted with Co(2+). The 275.7 GHz EPR spectra made it possible to determine the ZFS parameters of the Fe(3+) site with high precision. No 275.7 GHz spectrum could be observed of the Co(2+) site, but based on 9.5 GHz spectra, its ZFS parameters could be estimated. We find that the typical variation in the geometry of the active site of a protein or enzyme, referred to as conformational strain, does not only make the detection of EPR spectra challenging, but also their analysis. Comparison of the EPR results on the active site of desulforedoxin to those of the closely related active site of rubredoxin illustrates the necessity of explicit quantum-chemical calculations in order to interrelate the electronic and geometric structure of biological transition-metal sites.
Collapse
Affiliation(s)
- Guinevere Mathies
- Department of Physics, Huygens Laboratory, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Sottini S, Groenen EJJ. A comment on the pseudo-nuclear Zeeman effect. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 218:11-15. [PMID: 22578549 DOI: 10.1016/j.jmr.2012.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 05/31/2023]
Abstract
For high-spin systems whose magnetic sublevels are arranged in doublets at zero field, the electron-paramagnetic-resonance (EPR) spectra are commonly described by an effective spin Hamiltonian. We show that also in this approach, if the mixing of the electron spin states by the hyperfine interaction is negligible, a proper description of electron-nuclear double resonance (ENDOR) spectra can be obtained using a nuclear spin Hamiltonian in which the electron spin angular momentum operator is replaced by its expectation value. Appropriate values of this expectation value can be obtained from a wave function correct to first-order in the electron Zeeman interaction. In terms of perturbation theory, such a description is more logical than the conventional practice based on the inclusion of a second-order cross term, the so-called pseudo-nuclear Zeeman effect, which involves both the electron Zeeman interaction and the hyperfine interaction. We illustrate our analysis with calculations of the expectation value of the electron spin angular momentum and of the energies of the hyperfine levels for a high-spin cobalt complex, which we studied by EPR and ENDOR recently.
Collapse
Affiliation(s)
- Silvia Sottini
- Department of Molecular Physics, Huygens Laboratory, Leiden University, The Netherlands
| | | |
Collapse
|
34
|
Inhibitory activity of the novel Zn[(OPPh2)(SePPh2)N]2 complex towards the Platelet Activating Factor (PAF) and thrombin: Comparison with its isomorphous Co(II) and Ni(II) analogues. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Maganas D, Sottini S, Kyritsis P, Groenen EJJ, Neese F. Theoretical Analysis of the Spin Hamiltonian Parameters in Co(II)S4 Complexes, Using Density Functional Theory and Correlated ab initio Methods. Inorg Chem 2011; 50:8741-54. [DOI: 10.1021/ic200299y] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dimitrios Maganas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-15771 Athens, Greece
- Institute of Theoretical and Physical Chemistry, Wegelerstrasse 12, D-53115 Bonn, Germany
| | - Silvia Sottini
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-15771 Athens, Greece
| | - Edgar J. J. Groenen
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Frank Neese
- Institute of Theoretical and Physical Chemistry, Wegelerstrasse 12, D-53115 Bonn, Germany
| |
Collapse
|
36
|
Gessmann R, Kyvelidou C, Papadovasilaki M, Petratos K. The crystal structure of cobalt-substituted pseudoazurin from Alcaligenes faecalis. Biopolymers 2010; 95:202-7. [DOI: 10.1002/bip.21553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Maganas D, Grigoropoulos A, Staniland SS, Chatziefthimiou SD, Harrison A, Robertson N, Kyritsis P, Neese F. Tetrahedral and square planar Ni[(SPR(2))(2)N](2) complexes, R = Ph & (i)Pr revisited: experimental and theoretical analysis of interconversion pathways, structural preferences, and spin delocalization. Inorg Chem 2010; 49:5079-93. [PMID: 20462270 DOI: 10.1021/ic100163g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur-containing mono- or bidentate types of ligands, usually form square planar Ni((II))S(4) complexes. However, it has already been established that the bidentate L(-) dithioimidodiphosphinato ligands, [R(2)P(S)NP(S)R'(2)](-), R, and R' = aryl or alkyl, can afford both tetrahedral and square planar, NiS(4)-containing, homoleptic Ni(R,R')L(2) complexes, owing to an apparent structural flexibility, which has not, so far, been probed. In this work, the literature tetrahedral Ni[R(2)P(S)NP(S)R(2)](2) complexes, R = Ph (Ni(Ph,Ph)L(2), 1(Td)) and R = (i)Pr (Ni(iPr,iPr)L(2), 2) as well as the newly synthesized Ni[(i)Pr(2)P(S)NP(S)Ph(2)](2) complex (Ni(iPr,Ph)L(2), 3), have been studied by UV-vis, IR, and (31)P NMR spectroscopy. Complex 3 was shown by X-ray crystallography to be square planar, and magnetic studies confirmed that it is diamagnetic in the solid state. However, it becomes paramagnetic in solution, as it shows a similar UV-vis spectrum to one of the tetrahedral 1(Td) and 2 complexes. The crystal structure of the potassium salt of the asymmetric ligand, [(i)Pr(2)P(S)NP(S)Ph(2)]K, has also been determined and compared to those of the protonated (i)Pr(2)P(S)NHP(S)Ph(2) ligand and complex 3. All three, 1(Td), 2, and 3, Ni(R,R')L(2) complexes show strong paramagnetic effects in their solution (31)P NMR spectra. The magnetic properties of paramagnetic complexes 1 and 2 in the solid state were investigated on oriented crystals, and their analysis afforded remarkably small values of the spin-orbit coupling constant (lambda) and orbital reduction factor (k) parameters, implying significant delocalization of unpaired electronic density toward the ligands. The above experimental findings are combined with data from standard density functional theory and correlated multiconfiguration ab initio theoretical methods, in an effort to investigate the interplay between the square planar and tetrahedral geometries of the NiS(4) core, the mechanistic pathway for the spin-state interconversion, the degree of covalency of the Ni-S bonds, and the distribution of the spin density in this type of system. The analysis provides justification for the structural flexibility of such ligands, affording Ni(R,R')L(2) complexes with variable metallacycle conformation and NiS(4) core geometries. Of particular importance are the large zero-field splitting values estimated by both experimental and theoretical means, which have not, as yet, been verified by direct methods, such as electron paramagnetic resonance spectroscopy. The findings of our work confirm earlier observations on the feasibility of synthesizing either tetrahedral or square planar NiS(4) complexes containing the same type of ligands. They can also form the basis of investigating structure-properties relationships in other NiS(4)-containing systems.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-157 71 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|