1
|
Li J, Wang Z, Chen Z, Xue X, Lin K, Chen H, Pan L, Yuan Y, Ma Z. Silver complexes with substituted terpyridines as promising anticancer metallodrugs and their crystal structure, photoluminescence, and DNA interactions. Dalton Trans 2023; 52:9607-9621. [PMID: 37377144 DOI: 10.1039/d2dt03463h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Six silver hexafluoroantimonate complexes (1-6) with 4'-(4'-substituted-phenyl)-2,2':6',2''-terpyridine compounds bearing hydrogen (L1), methyl (L2), methylsulfonyl (L3), chloro (L4), bromo (L5) and iodo (L6) were prepared and characterized by 1H NMR, 13C NMR, IR, elemental analysis and single crystal X-ray diffraction. All the compounds exhibit interesting photoluminescence properties in the solid state and solution. In vitro data demonstrate that all of them show higher antiproliferative activities than cisplatin against three human carcinoma cell lines, A549, Eca-109 and MCF-7. Compound 3 exhibits the lowest IC50 value (2.298 μM) against A549 cell lines, which is 2.963 μM for 4 against Eca-109 and 1.830 μM for 1 against MCF-7. For silver halogen-substituted terpyridine compounds, their anticancer activities decrease following the sequence of -Cl, -Br, and -I substituents. The comparison results show that their anticancer activity is significantly higher than that of their free ligands. The DNA interaction was studied by fluorescence titration, circular dichroism spectroscopy and molecular modeling methods. Spectrophotometric results reveal that the compounds have strong affinity binding with DNA as intercalators and molecular docking studies indicate that the binding is contributed by the π-π stacking and hydrogen bonds. The DNA binding ability of the complexes has been correlated with their anticancer activities, which could potentially provide a new rationale for the future design of terpyridine-based metal complexes with antitumor potential.
Collapse
Affiliation(s)
- Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, People's Republic of China
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, People's Republic of China
| | - Zhiyuan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Zhongting Chen
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, People's Republic of China
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Kejuan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, People's Republic of China
| | - Yulin Yuan
- Department of Laboratory Medicine, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
2
|
Choroba K, Machura B, Szlapa-Kula A, Malecki JG, Raposo L, Roma-Rodrigues C, Cordeiro S, Baptista PV, Fernandes AR. Square planar Au(III), Pt(II) and Cu(II) complexes with quinoline-substituted 2,2':6',2″-terpyridine ligands: From in vitro to in vivo biological properties. Eur J Med Chem 2021; 218:113404. [PMID: 33823390 DOI: 10.1016/j.ejmech.2021.113404] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Cancer is the second leading cause of death worldwide. Cisplatin has challenged cancer treatment; however, resistance and side effects hamper its use. New agents displaying improved activity and more reduced side effects relative to cisplatin are needed. In this work we present the synthesis, characterization and biological activities of three complexes with quinoline-substituted 2,2':6',2″-terpyridine ligand: [Pt(4'-(2-quin)-terpy)Cl](SO3CF3) (1), [Au(4'-(2-quin)-terpy)Cl](PF6)2·CH3CN (2) and [Cu(4'-(2-quin)-terpy)Cl](PF6) (3). The three complexes displayed a high antiproliferative activity in ovarian carcinoma cell line (A2780) and even more noticeable in a colorectal carcinoma cell line (HCT116) following the order 3 > 2 > 1. The complexes IC50 are at least 20 × lower than the IC50 displayed by cisplatin (15.4 μM) in HCT116 cell line while displaying at the same time, much reduced cytotoxicity in a normal dermal fibroblast culture. These cytotoxic activities seem to be correlated with the inclination angles of 2-quin unit to the central pyridine. Interestingly, all complexes can interact with calf-thymus DNA (CT-DNA) in vitro via different mechanisms, although intercalation seems to be the preferred mechanism at least for 2 and 3 at higher concentrations of DNA. Moreover, circular dichroism (CD) data seems to indicate that complex 3, more planar, induces a high destabilization of the DNA double helix (shift from B-form to Z-form). Higher the deviation from planar, the lower the cytotoxicity displayed by the complexes. Cellular uptake may be also responsible for the different cytotoxicity exhibited by complexes with 3 > 2 >1. Complex 2 seems to enter cells more passively while complex 1 and 3 might enter cells via energy-dependent and -independent mechanisms. Complexes 1-3 were shown to induce ROS are associated with the increased apoptosis and autophagy. Moreover, all complexes dissipate the mitochondrial membrane potential leading to an increased BAX/BCL-2 ratio that triggered apoptosis. Complexes 2 and 3 were also shown to exhibit an anti-angiogenic effect by significantly reduce the number of newly formed blood vessel in a CAM model with no toxicity in this in vivo model. Our results seem to suggest that the increased cytotoxicity of complex 3 in HCT116 cells and its potential interest for further translation to pre-clinical mice xenografts might be associated with: 1) higher % of internalization of HCT116 cells via energy-dependent and -independent mechanisms; 2) ability to intercalate DNA and due to its planarity induced higher destabilization of DNA; 3) induce intracellular ROS that trigger apoptosis and autophagy; 4) low toxicity in an in vivo model of CAM; 5) potential anti-angiogenic effect.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland.
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Agata Szlapa-Kula
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Jan G Malecki
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Luis Raposo
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Sandra Cordeiro
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
3
|
Nkabinde SV, Kinunda G, Jaganyi D, Mambanda A. Nucleophilic substitution of chloride from the [Pt(chlorido)(NNN)/(NCN)]+, (NNN) = bis(2-pyridyl/2-quinolyl)pyridine, (NCN) = bis(2-pyridyl/2-quinolyl)benzene) complexes by azoles. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Rabbani R, Saeedi S, Nazimuddin M, Barbero H, Kyritsakas N, White TA, Masson E. Enhanced photoreduction of water catalyzed by a cucurbit[8]uril-secured platinum dimer. Chem Sci 2021; 12:15347-15352. [PMID: 34976355 PMCID: PMC8635170 DOI: 10.1039/d1sc03743a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
A cucurbit[8]uril (CB[8])-secured platinum terpyridyl chloride dimer was used as a photosensitizer and hydrogen-evolving catalyst for the photoreduction of water. Volumes of produced hydrogen were up to 25 and 6 times larger than those obtained with the corresponding free and cucurbit[7]uril-bound platinum monomer, respectively, at equal Pt concentration. The thermodynamics of the proton-coupled electron transfer from the Pt(ii)–Pt(ii) dimer to the corresponding Pt(ii)–Pt(iii)–H hydride key intermediate, as quantified by density functional theory, suggest that CB[8] secures the Pt(ii)–Pt(ii) dimer in a particularly reactive conformation that promotes hydrogen formation. The cucurbit[8]uril macrocycle can secure a platinum terpyridyl complex into a particularly reactive dimer that catalyzes the photoreduction of water.![]()
Collapse
Affiliation(s)
- Ramin Rabbani
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | - Sima Saeedi
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | - Md Nazimuddin
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | - Héctor Barbero
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, E47011, Spain
| | - Nathalie Kyritsakas
- Molecular Tectonics Laboratory, University of Strasbourg, UMR UDS-CNRS 7140, Institut le Bel, F-67000 Strasbourg, France
| | - Travis A. White
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
5
|
Shingade VM, Grove LJ, Connick WB. Luminescent Pt(2,6-bis(N-methylbenzimidazol-2-yl)pyridine)X +: a comparison with the spectroscopic and electrochemical properties of Pt(tpy)X + (X = Cl, CCPh, Ph, or CH 3). Dalton Trans 2020; 49:9651-9661. [PMID: 32627792 DOI: 10.1039/d0dt01496f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of platinum(ii) pincer complexes of the formula Pt(mbzimpy)X+, 1(a-d), (mbzimpy = 2,6-bis(N-methylbenzimidazol-2-yl)pyridine; X = Cl; (a), CCPh; (b), Ph; (c), or CH3; (d), CCPh = phenylacetylide, and Ph = Phenyl) have been synthesized and characterized. Electronic absorption and emission, as well as electrochemical properties of these compounds, have been investigated. Pt(tpy)X+ analogs (tpy = 2,2';6'2''-terpyridine), 2(a-d), have also been investigated and compared. Electrochemistry shows that 1 and 2 analogs undergo two chemically reversible one-electron reduction processes that are shifted cathodically along the a < b < c < d series. Notably, these reductions occur at slightly higher negative potentials in the case of 1. The absorption spectra of 1 and 2 in acetonitrile exhibit ligand-centered (1LC) transitions (ε ≈ 104 M-1 cm-1) in the UV region and metal-to-ligand-charge transfer (1MLCT) transitions (ε ≈ 103 M-1 cm-1) in the visible region. The corresponding visible bands of 1b and 2b have been assigned to 1(LLCT/MLCT) mixed state (LLCT: ligand-to-ligand-charge transfer). The preceding 1LC and 1MLCT transitions of 1 occur at lower energies than that of 2. These 1LC transitions have distinctly been blue-shifted along a < c < d in 2, but occur at nearly identical energies in 1. Conversely, 1MLCT transitions are red-shifted along a < c < d in both the analogs. The 77 K glassy solutions of 1 and 2 exhibit an intense vibronically-structured emission band at λmax(0-0) in the 470-560 nm range. This band is red-shifted along b < a ≤ c < d in 1 and along a ≤ d ≈ c ≪ b in 2. The main character of these emissions is assigned to 3LLCT emissive state in 1b and 2b, whereas to 3LC in the rest of the compounds. Relative stabilization of these spin-forbidden emissive states is discussed by invoking configuration mixing with the higher-lying 3MLCT state.
Collapse
Affiliation(s)
- Vikas M Shingade
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA.
| | - Levi J Grove
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA.
| | - William B Connick
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
6
|
Maroń AM, Choroba K, Małecki JG, Kula S, Malicka E. Platinum(II) coordination compound with 4′-[4-(dimethylamino)phenyl]-2,2′:6′,2″-terpyridine – The new insight into the luminescence behavior and substituent effect. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Taylor SD, Shingade VM, Muvirimi R, Hicks SD, Krause JA, Connick WB. Spectroscopic Characterization of Platinum(IV) Terpyridyl Complexes. Inorg Chem 2019; 58:16364-16371. [DOI: 10.1021/acs.inorgchem.9b01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephen D. Taylor
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Vikas M. Shingade
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Ronnie Muvirimi
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Scott D. Hicks
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Jeanette A. Krause
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - William B. Connick
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
8
|
Altmann S, Choroba K, Skonieczna M, Zygadło D, Raczyńska-Szajgin M, Maroń A, Małecki JG, Szłapa-Kula A, Tomczyk M, Ratuszna A, Machura B, Szurko A. Platinum(II) coordination compounds with 4'-pyridyl functionalized 2,2':6',2″-terpyridines as an alternative to enhanced chemotherapy efficacy and reduced side-effects. J Inorg Biochem 2019; 201:110809. [PMID: 31494527 DOI: 10.1016/j.jinorgbio.2019.110809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
Two platinum(II) coordination compounds, [PtCl(4'-R1-terpy)](SO3CF3) (1) and [PtCl(4'-R2-terpy)](SO3CF3) (2), with 4'-(2-pyridyl)-2,2':6',2″-terpyridine (4'-R1-terpy) or 4'-(3-pyridyl)-2,2':6',2″-terpyridine (4'-R2-terpy) were synthesized and the impact of the pendant pyridyl ring on the structure and cytotoxic activity of Pt(II)-terpyridine complexes was explored. The single-crystal X-ray diffraction analysis confirmed square planar coordination of the cations [PtCl(4'-Rn-terpy)]+. The mode of binding of 1 and 2 to calf thymus DNA was examined by UV-Vis absorption titration, ethidium displacement assay and reaction with 9-ethylguanine, and the mixed covalent-intercalative mode was demonstrated. The cytotoxicity of the Pt(II) complexes against six cancer cell lines and three normal ones was determined using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and compared to cisplatin. The IC50 values for the compound 2 towards the cancer cell lines are in the low micromolar range. Most remarkably, 2 was over 4 times more effective than 1 and cisplatin against non-small lung adenocarcinoma (A549), and its selectivity index was ~60-80 times higher than that for 1 and cisplatin. The mechanisms underlying the loss of viability under treatment of 2 was further investigated including F-actin staining, mitotic index analysis, cytometric cell cycle analysis, Fluorescein isothiocyanate (FITC) -conjugated Annexin V antibody and propidium iodide (PI) staining, measurements of reactive oxygen species (ROS) in cells, analysis of changes in the mitochondrial mass and potential and quantitative real time polymerase chain reaction (qRT-PCR) genes analysis. The compound 2 was found to have a pro-oxidative effect by strong stimulation of cells for the production of reactive oxygen species and cytostatic effect through cell cycle arrest.
Collapse
Affiliation(s)
- Sandra Altmann
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Katarzyna Choroba
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Magdalena Skonieczna
- Systems Engineering Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Dorota Zygadło
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Magdalena Raczyńska-Szajgin
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Anna Maroń
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Jan Grzegorz Małecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Agata Szłapa-Kula
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Mateusz Tomczyk
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Alicja Ratuszna
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Barbara Machura
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Agnieszka Szurko
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| |
Collapse
|
9
|
Choroba K, Machura B, Raposo LR, Małecki JG, Kula S, Pająk M, Erfurt K, Maroń AM, Fernandes AR. Platinum(ii) complexes showing high cytotoxicity toward A2780 ovarian carcinoma cells. Dalton Trans 2019; 48:13081-13093. [PMID: 31411239 DOI: 10.1039/c9dt02894c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
2,6-Bis(thiazol-2-yl)pyridines functionalized with 9-anthryl (L1), 9-phenanthryl (L2), and 1-pyrenyl (L3) groups were used for the preparation of [Pt(Ln)Cl]CF3SO3 (1-3). The constitution of the Pt(ii) complexes was determined by 1H and 13C NMR spectroscopy, HR-MS spectrometry, elemental analysis and X-ray analysis (for (1)). The electrochemical and photophysical properties of [Pt(Ln)Cl]CF3SO3 were compared with the behaviour of the Pt(ii) complexes with aryl-substituted 2,2':6',2''-terpyridine ligands. What is noteworthy is that the coordination ability of dtpy toward the Pt(ii) centre was investigated for the first time. All complexes were tested in vitro by MTS assay on four tumor cell lines, A2780 (ovarian carcinoma), HTC116 (colon rectal carcinoma), MCF7 (breast adenocarcinoma), and PC3 (prostate carcinoma) and on normal primary fibroblasts. Compounds (1-3) showed a dose dependent antiproliferative effect in the A2780 cell line with (3) > (2) > (1) and this loss of A2780 cell viability was due to a combination of an apoptotic cell death mechanism via mitochondria and autophagic cell death. Exposure to IC50 concentration of (2) induced an increase in the number of apoptotic nuclei and a depolarization of the mitochondrial membrane which is consistent with the induction of apoptosis while exposure to IC50 concentration of (3) showed an increase in the apoptotic nuclei with a slight hyperpolarization of the mitochondrial membrane that might indicate an initial step of apoptosis induction. The complexes (2) and (3) induce an increase in the production of intracellular ROS which is associated with the trigger of the apoptotic pathways. The ROS production was augmented by the presence of oxidants and correlated with an increase of oxygen radicals. The IC50 of (2) and (3) (4.4 μM and 2.9 μM, respectively) was similar to the IC50 of cisplatin (3.4 μM) in the A2780 cell line, which together with their low cytotoxicity in normal fibroblasts, demonstrates their potential for further studies.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Luis R Raposo
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Jan G Małecki
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Slawomir Kula
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Michał Pająk
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Anna M Maroń
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
10
|
Po C, Tao CH, Li KF, Chan CKM, Fu HLK, Cheah KW, Yam VWW. Design, luminescence and non-linear optical properties of truxene-containing alkynylplatinum(II) terpyridine complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Synthesis and characterization of phosphorescent three-coordinate copper(I) complexes bearing bis(amino)cyclopropenylidene carbene (BAC). Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Affiliation(s)
- Van Ha Nguyen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Balamurugan Kandasamy
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - John H. K. Yip
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| |
Collapse
|
13
|
Houjou H, Hoga Y, Ma YL, Achira H, Yoshikawa I, Mutai T, Matsumura K. Dinuclear fused salen complexes of group-10 metals: Peculiarity of the crystal structure and near-infrared luminescence of a bis(Pt-salen) complex. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Chakraborty C, Rana U, Pandey RK, Moriyama S, Higuchi M. One-Dimensional Anhydrous Proton Conducting Channel Formation at High Temperature in a Pt(II)-Based Metallo-Supramolecular Polymer and Imidazole System. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13406-13414. [PMID: 28368106 DOI: 10.1021/acsami.6b12963] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
One dimensional (1D) Pt(II)-based metallo-supramolecular polymer with carboxylic acids (polyPtC) was synthesized using a new asymmetrical ditopic ligand with a pyridine moiety bearing two carboxylic acids. The carboxylic acids in the polymer successfully served as apohosts for imidazole loaded in the polymer interlayer scaffold to generate highly ordered 1D imidazole channels through the metallo-supramolecular polymer chains. The 1D structure of imidazole loaded polymer (polyPtC-Im) was analyzed in detail by thermogravimetric analysis, powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and ultraviolet-visible and photoluminescence spectroscopic measurements. PolyPtC-Im exhibited proton conductivity of 1.5 × 10-5 S cm-1 at 120 °C under completely anhydrous conditions, which is 6 orders of magnitude higher than that of the pristine metallo-supramolecular polymer.
Collapse
Affiliation(s)
- Chanchal Chakraborty
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
- International Center for Materials Nanoarchitectonics (MANA), NIMS , Tsukuba 305-0044, Japan
| | - Utpal Rana
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| | - Rakesh K Pandey
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| | - Satoshi Moriyama
- International Center for Materials Nanoarchitectonics (MANA), NIMS , Tsukuba 305-0044, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| |
Collapse
|
15
|
Yu HL, Wang WY, Hong B, Si YL, Ma TL, Zheng R. First hyperpolarizabilities of Pt(4-ethynylbenzo-15-crown-5)2(bpy) derivatives with the complexation of mono-cations (Li+, Na+, K+) and di-cations (Mg2+, Ca2+): development of a cation detector. RSC Adv 2017. [DOI: 10.1039/c7ra04919f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The coordination of mono-cations and di-cations onto the crown merits the design of the NLO-based cation detector.
Collapse
Affiliation(s)
- Hai-Ling Yu
- College of Resources and Environmental Science
- Jilin Agricultural University
- Changchun 130118
- People's Republic of China
| | - Wen-Yong Wang
- JiangSu XinHai Senior High School
- Lianyungang City 222000
- People's Republic of China
| | - Bo Hong
- College of Resources and Environmental Science
- Jilin Agricultural University
- Changchun 130118
- People's Republic of China
| | - Yan-Ling Si
- College of Resources and Environmental Science
- Jilin Agricultural University
- Changchun 130118
- People's Republic of China
| | - Tian-Liang Ma
- College of Resources and Environmental Science
- Jilin Agricultural University
- Changchun 130118
- People's Republic of China
| | - Ran Zheng
- College of Resources and Environmental Science
- Jilin Agricultural University
- Changchun 130118
- People's Republic of China
| |
Collapse
|
16
|
Effects of a semiflexible linker on the mechanochromic photoluminescence of bis(Pt-salen) complex. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Sesolis H, Dubarle-Offner J, Chan CKM, Puig E, Gontard G, Winter P, Cooksy AL, Yam VWW, Amouri H. Highly Phosphorescent Crystals of Square-Planar Platinum Complexes with Chiral Organometallic Linkers: Homochiral versus Heterochiral Arrangements, Induced Circular Dichroism, and TD-DFT Calculations. Chemistry 2016; 22:8032-7. [DOI: 10.1002/chem.201601161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Hugo Sesolis
- UPMC Paris 06; Institut Parisien de Chimie Moléculaire (IPCM) UMR CNRS 8232; 4 place Jussieu 75252 Paris cedex 05 France
| | - Julien Dubarle-Offner
- UPMC Paris 06; Institut Parisien de Chimie Moléculaire (IPCM) UMR CNRS 8232; 4 place Jussieu 75252 Paris cedex 05 France
| | - Carmen K. M. Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Emmanuel Puig
- UPMC Paris 06; Institut Parisien de Chimie Moléculaire (IPCM) UMR CNRS 8232; 4 place Jussieu 75252 Paris cedex 05 France
| | - Geoffrey Gontard
- UPMC Paris 06; Institut Parisien de Chimie Moléculaire (IPCM) UMR CNRS 8232; 4 place Jussieu 75252 Paris cedex 05 France
| | - Pierre Winter
- Department of Chemistry and Biochemistry; San Diego State University; 5500 Campanile Drive San Diego California 92182-1030 USA
| | - Andrew L. Cooksy
- Department of Chemistry and Biochemistry; San Diego State University; 5500 Campanile Drive San Diego California 92182-1030 USA
| | - Vivian W. W. Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Hani Amouri
- UPMC Paris 06; Institut Parisien de Chimie Moléculaire (IPCM) UMR CNRS 8232; 4 place Jussieu 75252 Paris cedex 05 France
| |
Collapse
|
18
|
Chung CYS, Li SPY, Lo KKW, Yam VWW. Synthesis and Electrochemical, Photophysical, and Self-Assembly Studies on Water-Soluble pH-Responsive Alkynylplatinum(II) Terpyridine Complexes. Inorg Chem 2016; 55:4650-63. [DOI: 10.1021/acs.inorgchem.6b00513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Clive Yik-Sham Chung
- Institute of Molecular
Functional Materials [Areas of Excellence Scheme, University Grants
Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Steve Po-Yam Li
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular
Functional Materials [Areas of Excellence Scheme, University Grants
Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
19
|
Chan K, Yik-Sham Chung C, Wing-Wah Yam V. Parallel folding topology-selective label-free detection and monitoring of conformational and topological changes of different G-quadruplex DNAs by emission spectral changes via FRET of mPPE-Ala-Pt(ii) complex ensemble. Chem Sci 2016; 7:2842-2855. [PMID: 30090278 PMCID: PMC6055111 DOI: 10.1039/c5sc04563k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/05/2016] [Indexed: 12/28/2022] Open
Abstract
The formation of supramolecular assemblies between [Pt(bzimpy-Et){C[triple bond, length as m-dash]CC6H4(CH2NMe3-4)}]Cl2 (1) and mPPE-Ala and the FRET properties of the ensemble have been revealed from the UV-vis absorption, steady-state emission and time-resolved emission decay studies. The two-component mPPE-Ala-1 ensemble has been employed in a "proof-of-principle" concept for label-free detection of G-quadruplex DNAs with the intramolecular propeller parallel folding topology, such as c-myc, in aqueous buffer solution. By the modulation of the aggregation/deaggregation of the polymer-metal complex aggregates and hence the FRET from the mPPE-Ala donor to the aggregated 1 as acceptor, the ensemble has been demonstrated for sensitive and selective label-free detection of c-myc via the monitoring of emission spectral changes of the ensemble. Ratiometric emission of the ensemble at 461 and 662 nm has been shown to distinguish the intramolecular propeller parallel G-quadruplex folding topology of c-myc from other G-quadruplex-forming sequences of different folding topologies, owing to the strong and specific interactions between c-myc and 1 as suggested by the UV-vis absorption and UV melting studies. In addition, the formation of high-order intermolecular multimeric G-quadruplexes from c-myc under molecular crowding conditions has been successfully probed by the ratiometric emission of the ensemble. The conformational and topological transition of human telomeric DNA from the mixed-hybrid form to the intramolecular propeller parallel form, as observed from the circular dichroism spectroscopy, has also been monitored by the ratiometric emission of the ensemble. The ability of the ensemble to detect these conformational and topological transitions of G-quadruplex DNAs has been rationalized by the excellent selectivity and sensitivity of the ensemble towards the intramolecular propeller parallel G-quadruplex DNAs and their high-order intermolecular multimers, which are due to the extra stabilization gained from Pt···Pt and π-π interactions in addition to the electrostatic and hydrophobic interactions found in the polymer-metal complex aggregates.
Collapse
Affiliation(s)
- Kevin Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Clive Yik-Sham Chung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , P. R. China .
| |
Collapse
|
20
|
Hau FKW, Lo HS, Yam VWW. Synthesis and Photophysical Studies of Calixarene-Based Alkynylplatinum(II) Terpyridine Complexes with Various Receptor Sites for Colorimetric and Luminescence Sensing of Anions. Chemistry 2016; 22:3738-49. [DOI: 10.1002/chem.201503401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Franky Ka-Wah Hau
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China), Fax
| | - Hiu-Suet Lo
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China), Fax
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China), Fax
| |
Collapse
|
21
|
Chan K, Chung CY, Yam VW. Conjugated Polyelectrolyte‐Induced Self‐Assembly of Alkynylplatinum(II) 2,6‐Bis(benzimidazol‐2′‐yl)pyridine Complexes. Chemistry 2015; 21:16434-47. [DOI: 10.1002/chem.201501804] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Kevin Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P. R. China)
| | - Clive Yik‐Sham Chung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P. R. China)
| | - Vivian Wing‐Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P. R. China)
| |
Collapse
|
22
|
Li K, Zou T, Chen Y, Guan X, Che CM. Pincer-Type Platinum(II) Complexes Containing N-Heterocyclic Carbene (NHC) Ligand: Structures, Photophysical and Anion-Binding Properties, and Anticancer Activities. Chemistry 2015; 21:7441-53. [PMID: 25828963 DOI: 10.1002/chem.201406453] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 01/13/2023]
Abstract
Two classes of pincer-type Pt(II) complexes containing tridentate N-donor ligands (1-8) or C-deprotonated N^C^N ligands derived from 1,3-di(2-pyridyl)benzene (10-13) and auxiliary N-heterocyclic carbene (NHC) ligand were synthesized. [Pt(trpy)(NHC)](2+) complexes 1-5 display green phosphorescence in CH2 Cl2 (Φ: 1.1-5.3 %; τ: 0.3-1.0 μs) at room temperature. Moderate-to-intense emissions are observed for 1-7 in glassy solutions at 77 K and for 1-6 in the solid state. The [Pt(N^C^N)(NHC)](+) complexes 10-13 display strong green phosphorescence with quantum yields up to 65 % in CHCl3 . The reactions of 1 with a wide variety of anions were examined in various solvents. The tridentate N-donor ligand of 1 undergoes displacement reaction with CN(-) in protic solvents. Similar displacement of the N^C^N ligand by CN(-) has been observed for 10, leading to a luminescence "switch-off" response. The water-soluble 7 containing anthracenyl-functionalized NHC ligand acts as a light "switch-on" sensor for the detection of CN(-) ion with high selectivity. The in vitro cytotoxicity of the Pt(II) complexes towards HeLa cells has been evaluated. Complex 12 showed high cytotoxicity with IC50 value of 0.46 μM, whereas 1-4 and 6-8 are less cytotoxic. The cellular localization of the strongly luminescent complex 12 traced by using emission microscopy revealed that it mainly localizes in the cytoplasmic structures rather than in the nucleus. This complex can induce mitochondria dysfunction and subsequent cell death.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P.R. China), Fax: (+852) 2915-5176; HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053 (P.R. China)
| | | | | | | | | |
Collapse
|
23
|
Chung CYS, Tamaru SI, Shinkai S, Yam VWW. Supramolecular Assembly of Achiral Alkynylplatinum(II) Complexes and Carboxylic β-1,3-Glucan into Different Helical Handedness Stabilized by Pt⋅⋅⋅Pt and/or π-π Interactions. Chemistry 2015; 21:5447-58. [DOI: 10.1002/chem.201405035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 12/19/2022]
|
24
|
Klaus DR, Keene M, Silchenko S, Berezin M, Gerasimchuk N. 1D polymeric platinum cyanoximate: a strategy toward luminescence in the near-infrared region beyond 1000 nm. Inorg Chem 2015; 54:1890-900. [PMID: 25615022 PMCID: PMC7441041 DOI: 10.1021/ic502805h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the synthesis and properties of the first representative of a new class of PtL2 complexes with ambidentate mixed-donor cyanoxime ligands [L = 2-cyano-2-oximino-N,N'-diethylaminoacetamide, DECO (1)]. Three differently colored polymorphs of "Pt(DECO)2" (3-5) were isolated, with the first two being crystallographically characterized. The dark-green complex [Pt(DECO)2]n (5) spontaneously forms in aqueous solution via aggregation of yellow monomeric complex 3 into the red dimer [Pt(DECO)2]2 (4), followed by further oligomerization into coordination polymer 5. A spectroscopic and light-scattering study revealed a "poker-chips"-type 1D polymeric structure of 5 in which units are held by noncovalent metallophilic interactions, forming a Pt---Pt wire. The polymer 5 shows a broad absorption at 400-900 nm and emission at unusually long wavelengths in the range of 1000-1100 nm in the solid state. The near-infrared (NIR) emission of polymer 5 is due to the formation of a small amount of nonstoichiometric mixed-valence Pt(II)/Pt(IV) species during synthesis. A featureless electron paramagnetic resonance spectrum of solid sample 5 recorded at +23 and -193 °C evidences the absence of Pt(III) states, and the compound represents a "solid solution" containing mixed-valence Pt(II)/Pt(IV) centers. Exposure of KBr pellets with 5% 5 to Br2 vapors leads to an immediate ∼30% increase in the intensity of photoluminescence at 1024 nm, which confirms the role and importance of mixed-valence species for the NIR emission. Thus, the emission is further enhanced upon additional oxidation of Pt(II) centers, which improves delocalization of electrons along the Pt---Pt vector. Other polymorph of the "Pt(DECO)2" complex--monomer--did not demonstrate luminescent properties in solutions and the solid state. An excitation scan of 5 embedded in KBr tablets revealed an emission only weakly dependent on the wavelength of excitation. The NIR emission of quasi-1D complex 5 was studied in the range of -193 to +67 °C. Data showed a blue shift of λmax and a simultaneous increase in the emission line intensity with a temperature rise, which is explained by analogy with similar behavior of known quasi-1D K2[Pt(CN)4]-based solids, quantum dots, and quantum wells with delocalized carriers. The presented finding opens a route to a new class of platinum cyanoxime based NIR emissive complexes that could be used in the design of novel NIR emitters and imaging agents.
Collapse
Affiliation(s)
- Danielle R. Klaus
- Department of Chemistry, Missouri State University (MSU), Temple Hall 456, Springfield, Missouri 56897, United States
| | - Matthew Keene
- Department of Chemistry, Missouri State University (MSU), Temple Hall 456, Springfield, Missouri 56897, United States
| | - Svitlana Silchenko
- Absorption Systems, Inc.; 440 Creamery Way, S. 300, Exton, Pennsylvania 19341, United States
| | - Mikhail Berezin
- Department of Radiology, Washington University of St. Louis Medical School, St. Louis, Missouri 63110, United States
| | - Nikolay Gerasimchuk
- Department of Chemistry, Missouri State University (MSU), Temple Hall 456, Springfield, Missouri 56897, United States
| |
Collapse
|
25
|
Yeung MCL, Chu BWK, Yam VWW. Anion Binding Properties of Alkynylplatinum(II) Complexes with Amide-Functionalized Terpyridine: Host-Guest Interactions and Fluoride Ion-Induced Deprotonation. ChemistryOpen 2014; 3:172-6. [PMID: 25478312 PMCID: PMC4234213 DOI: 10.1002/open.201402019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Indexed: 11/15/2022] Open
Abstract
Molecular sensors able to detect ions are of interest due to their potential application in areas such as pollutant sequestration. Alkynylplatinum(II) terpyridine complexes with an amide-based receptor moiety have been synthesized and characterized. Their anion binding properties based on host-guest interactions have been examined with the use of UV-vis absorption and emission spectral titration studies. Spectral changes were observed for both complexes upon the addition of spherical and nonspherical anions. Their titration profiles were shown to be in good agreement with theoretical results predicting a 1:1 binding model, and the binding constants were determined from the experimental data. Drastic color changes from yellow to orange-red were observed for one of the complexes upon titration with fluoride (F(-)) ion in acetone. These changes were ascribed to the deprotonation of the amide functionalities induced by F(-) ion, and this was confirmed by the restoration of spectral changes upon addition of trifluoroacetic acid to the F(-) ion-complex mixture as well as by electrospray ionization mass spectrometry (ESI-MS) data.
Collapse
Affiliation(s)
- Margaret Ching-Lam Yeung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee) and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong (P. R. China) E-mail:
| | - Ben Wai-Kin Chu
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee) and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong (P. R. China) E-mail:
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee) and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong (P. R. China) E-mail:
| |
Collapse
|
26
|
Induced Self-Assembly of Platinum(II) Alkynyl Complexes through Specific Interactions between Citrate and Guanidinium for Proof-of-Principle Detection of Citrate and an Assay of Citrate Lyase. Chemistry 2014; 20:13016-27. [DOI: 10.1002/chem.201402137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Indexed: 01/26/2023]
|
27
|
Chen JL, Tan XZ, Fu XF, Guo ZH, Wang JY, Yu HG, He LH, Wen HR. Luminescent platinum(II) chloride complexes of 6-(1-alkyl-5-tetrazolyl)-4,4′-dimethyl-2,2′-bipyridine terdentate chelating ligands. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Stengel I, Strassert CA, De Cola L, Bäuerle P. Tracking Intramolecular Interactions in Flexibly Linked Binuclear Platinum(II) Complexes. Organometallics 2014. [DOI: 10.1021/om4004237] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ilona Stengel
- Institute of Organic Chemistry II and Advanced
Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Cristian A. Strassert
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
- Center for Nanotechnology and Physikalisches
Institut, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse
11, 48149 Münster, Germany
| | - Luisa De Cola
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
- Center for Nanotechnology and Physikalisches
Institut, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse
11, 48149 Münster, Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced
Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| |
Collapse
|
29
|
Kwok ECH, Chan MY, Wong KMC, Yam VWW. Molecular Dyads Comprising Metalloporphyrin and Alkynylplatinum(II) Polypyridine Terminal Groups for Use as a Sensitizer in Dye-Sensitized Solar Cells. Chemistry 2014; 20:3142-53. [DOI: 10.1002/chem.201304051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Indexed: 11/10/2022]
|
30
|
Sekiya R, Tsutsui Y, Choi W, Sakurai T, Seki S, Bando Y, Maeda H. Ion-based assemblies of planar anion complexes and cationic PtII complexes. Chem Commun (Camb) 2014; 50:10615-8. [DOI: 10.1039/c4cc04565c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because the metallophilicity of attractive PtII⋯PtII interactions helps in the fabrication of columnar structures, terpyridine–PtII complexes were used as planar counter cationic species for formation of charge-segregated assemblies using π-conjugated receptor–Cl− complexes as planar anions.
Collapse
Affiliation(s)
- Ryo Sekiya
- College of Pharmaceutical Sciences
- Ritsumeikan University
- Kusatsu 525–8577, Japan
| | - Yusuke Tsutsui
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita 565–0871, Japan
| | - Wookjin Choi
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita 565–0871, Japan
| | - Tsuneaki Sakurai
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita 565–0871, Japan
| | - Shu Seki
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita 565–0871, Japan
| | - Yuya Bando
- College of Pharmaceutical Sciences
- Ritsumeikan University
- Kusatsu 525–8577, Japan
| | - Hiromitsu Maeda
- College of Pharmaceutical Sciences
- Ritsumeikan University
- Kusatsu 525–8577, Japan
| |
Collapse
|
31
|
Liang J, Zheng X, He L, Huang H, Bu W. Remarkable luminescence enhancement of chloroplatinum(ii) complexes of hexaethylene glycol methyl ether substituted 2,6-bis(benzimidazol-2′-yl)pyridine in water triggered by PF6−. Dalton Trans 2014; 43:13174-7. [DOI: 10.1039/c4dt01243g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Upon addition of hexafluorophosphate salts, the nonemissive aqueous solution of a chloroplatinum(ii) complex showed a remarkable luminescence enhancement.
Collapse
Affiliation(s)
- Jianjun Liang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City, China
| | - Xiaorui Zheng
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City, China
| | - Lipeng He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City, China
| | - Huanting Huang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City, China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City, China
| |
Collapse
|
32
|
Molecular Design of Novel Classes of Luminescent Transition Metal Complexes and Their Use in Sensing, Biolabeling, and Cell Imaging. LUMINESCENT AND PHOTOACTIVE TRANSITION METAL COMPLEXES AS BIOMOLECULAR PROBES AND CELLULAR REAGENTS 2014. [DOI: 10.1007/430_2014_172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Po C, Ke Z, Tam AYY, Chow HF, Yam VWW. A Platinum(II) Terpyridine Metallogel with anL-Valine-Modified Alkynyl Ligand: Interplay of Pt⋅⋅⋅Pt, π-π and Hydrogen-Bonding Interactions. Chemistry 2013; 19:15735-44. [DOI: 10.1002/chem.201302702] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Indexed: 11/09/2022]
|
34
|
Li Y, Zhao L, Tam AYY, Wong KMC, Wu L, Yam VWW. Luminescent Amphiphilic 2,6-Bis(1,2,3-triazol-4-yl)pyridinePlatinum(II) Complexes: Synthesis, Characterization, Electrochemical, Photophysical, and Langmuir-Blodgett Film-Formation Studies. Chemistry 2013; 19:14496-505. [DOI: 10.1002/chem.201301788] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Indexed: 11/08/2022]
|
35
|
Chung CYS, Yam VWW. Dual pH- and Temperature-Responsive Metallosupramolecular Block Copolymers with Tunable Critical Micelle Temperature by Modulation of the Self-Assembly of NIR-Emissive Alkynylplatinum(II) Complexes Induced by Changes in Hydrophilicity and Electrostatic Ef. Chemistry 2013; 19:13182-92. [DOI: 10.1002/chem.201301547] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 12/18/2022]
|
36
|
Uahengo V, Zhou N, Xiong B, Cai P, Hu K, Cheng G. Synthesis and characterization of a new dinuclear platinum(II) alkynyl complex with a ferrocene bridge and its interaction with silver ion. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Chung CYS, Yam VWW. Selective label-free detection of G-quadruplex structure of human telomere by emission spectral changes in visible-and-NIR region under physiological condition through the FRET of a two-component PPE-SO3−–Pt(ii) complex ensemble with Pt⋯Pt, electrostatic and π–π interactions. Chem Sci 2013. [DOI: 10.1039/c2sc20897k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
38
|
Chung CYS, Li SPY, Louie MW, Lo KKW, Yam VWW. Induced self-assembly and disassembly of water-soluble alkynylplatinum(ii) terpyridyl complexes with “switchable” near-infrared (NIR) emission modulated by metal–metal interactions over physiological pH: demonstration of pH-responsive NIR luminescent probes in cell-imaging studies. Chem Sci 2013. [DOI: 10.1039/c3sc50196e] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
39
|
Chen Y, Lu W, Che CM. Luminescent Pincer-Type Cyclometalated Platinum(II) Complexes with Auxiliary Isocyanide Ligands: Phase-Transfer Preparation, Solvatomorphism, and Self-Aggregation. Organometallics 2012. [DOI: 10.1021/om300965b] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Chen
- State Key
Laboratory of Synthetic Chemistry, Institute of Molecular Functional
Materials, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong,
People's Republic of China
- Key Laboratory of Photochemical
Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wei Lu
- State Key
Laboratory of Synthetic Chemistry, Institute of Molecular Functional
Materials, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong,
People's Republic of China
- Department of Chemistry, South University of Science and Technology of China, 1088 Xueyuan Boulevard,
Shenzhen, Guangdong 518055, People's Republic of China
| | - Chi-Ming Che
- State Key
Laboratory of Synthetic Chemistry, Institute of Molecular Functional
Materials, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong,
People's Republic of China
| |
Collapse
|
40
|
Stengel I, Strassert CA, Plummer EA, Chien CH, De Cola L, Bäuerle P. Postfunctionalization of Luminescent Bipyridine PtII Bisacetylides by Click Chemistry. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Luminescent Cyclometalated Diimine Platinum(II) Complexes: Photophysical Studies and Applications. TRANSITION METAL AND RARE EARTH COMPOUNDS 2012. [DOI: 10.1007/b96859] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
42
|
Ongoma P, Jaganyi D. The π-acceptor effect in the substitution reactions of tridentate N-donor ligand complexes of platinum(ii): a detailed kinetic and mechanistic study. Dalton Trans 2012; 41:10724-30. [DOI: 10.1039/c2dt31041d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Field JS, Munro OQ, Waldron BP. Sorption of small molecule vapours by single crystals of [Pt{4′-(Ph)trpy}(NCS)]SbF6 where trpy = 2,2′:6′,2′′-terpyridine: a porous material with a structure stabilised by extended π–π interactions. Dalton Trans 2012; 41:5486-96. [DOI: 10.1039/c2dt12398c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Chung CYS, Yam VWW. Induced Self-Assembly and Förster Resonance Energy Transfer Studies of Alkynylplatinum(II) Terpyridine Complex Through Interaction With Water-Soluble Poly(phenylene ethynylene sulfonate) and the Proof-of-Principle Demonstration of this Two-Component Ensemble for Selective Label-Free Detection of Human Serum Albumin. J Am Chem Soc 2011; 133:18775-84. [DOI: 10.1021/ja205996e] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Clive Yik-Sham Chung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| |
Collapse
|
45
|
Field JS, Wilson CR, Munro OQ. Non-covalent interactions between cations in the crystal structure of [Pt{4′-(p-tolyl)trpy}Cl]SbF6, where trpy is 2,2′:6′,2″-terpyridine, underpin the salt’s complex solid-state luminescence spectrum. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.03.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Bortoluzzi M, Paolucci G, Pitteri B, Zennaro P, Bertolasi V. New platinum(II) and palladium(II) quinoline-imine-pyridine, quinoline-imine-thiazole and quinoline-imine-imidazole complexes by metal-assisted condensation reactions. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2011.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Kui SCF, Law YC, Tong GSM, Lu W, Yuen MY, Che CM. Spectacular luminescent behaviour of tandem terpyridyl platinum(ii) acetylide complexes attributed to solvent effect on ordering of excited states, “ion-pair” formation and molecular conformations. Chem Sci 2011. [DOI: 10.1039/c0sc00427h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Chung CYS, Chan KHY, Yam VWW. “Proof-of-principle” concept for label-free detection of glucose and α-glucosidase activity through the electrostatic assembly of alkynylplatinum(ii) terpyridyl complexes. Chem Commun (Camb) 2011; 47:2000-2. [DOI: 10.1039/c0cc04437g] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Hu Y, Chan KHY, Chung CYS, Yam VWW. Reversible thermo-responsive luminescent metallo-supramolecular triblock copolymers based on platinum(ii) terpyridyl chromophores with unusual aggregation behaviour and red-near-infrared (NIR) emission upon heating. Dalton Trans 2011; 40:12228-34. [DOI: 10.1039/c1dt10741k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Strassert CA, Mauro M, De Cola L. Photophysics of soft and hard molecular assemblies based on luminescent complexes. ADVANCES IN INORGANIC CHEMISTRY 2011. [DOI: 10.1016/b978-0-12-385904-4.00009-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|