1
|
Song J, Li X, Xu X, Lu J, Hu H, Li J. Development of Multiscale Force Field for Actinide (An 3+) Solutions. J Chem Theory Comput 2024. [PMID: 39535267 DOI: 10.1021/acs.jctc.4c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A multiscale force field (FF) is developed for an aqueous solution of trivalent actinide cations An3+ (An = U, Np, Pu, Am, Cm, Bk, and Cf) by using a 12-6-4 Lennard-Jones type potential considering ion-induced dipole interaction. Potential parameters are rigorously and automatically optimized by the meta-multilinear interpolation parametrization (meta-MIP) algorithm via matching the experimental properties, including ion-oxygen distance (IOD) and coordination number (CN) in the first solvation shell and hydration free energy (HFE). The water solvent models incorporate an especially developed polar coarse-grained (CG) water scheme named PW32 and three widely used all-atom (AA) level SPC/E, TIP3P, and TIP4P water schemes. Each PW32 is modeled as two bonded beads to represent three neighboring water molecules, the simulation efficiency of which is 1 to 2 orders of magnitude higher than that of AA waters. The newly developed FF shows high accuracy and transferability in reproducing the IOD, CN, and HFE of An3+. The molecular structure and water exchange dynamics of the first An3+ hydration shell and the ionic (van der Waals) radii are reinvestigated in this work. Moreover, the new FF can readily be transferred to other popular FFs, as it has practicably predicted the permeability of An3+ in a graphene oxide filter within the framework of optimized potentials for liquid simulations (OPLS)-AA FF. It holds promise for applications in exploring actinide aqueous solutions with multiscale computational overhead.
Collapse
Affiliation(s)
- Junjie Song
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiang Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiaocheng Xu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Junbo Lu
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Hanshi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Raposo-Hernández G, Pappalardo RR, Réal F, Vallet V, Sánchez Marcos E. Toward a realistic theoretical electronic spectra of metal aqua ions in solution: The case of Ce(H2O)n3+ using statistical methods and quantum chemistry calculations. J Chem Phys 2024; 161:144109. [PMID: 39387406 DOI: 10.1063/5.0228155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Accurately predicting spectra for heavy elements, often open-shell systems, is a significant challenge typically addressed using a single cluster approach with a fixed coordination number. Developing a realistic model that accounts for temperature effects, variable coordination numbers, and interprets experimental data is even more demanding due to the strong solute-solvent interactions present in solutions of heavy metal cations. This study addresses these challenges by combining multiple methodologies to accurately predict realistic spectra for highly charged metal cations in aqueous media, with a focus on the electronic absorption spectrum of Ce3+ in water. Utilizing highly correlated relativistic quantum mechanical (QM) wavefunctions and structures from molecular dynamics (MD) simulations, we show that the convolution of individual vertical transitions yields excellent agreement with experimental results without the introduction of empirical broadening. Good results are obtained for both the normalized spectrum and that of absolute intensity. The study incorporates a statistical machine learning algorithm, Gaussian Mixture Models-Nuclear Ensemble Approach (GMM-NEA), to convolute individual spectra. The microscopic distribution provided by MD simulations allows us to examine the contributions of the octa- and ennea-hydrate of Ce3+ in water to the final spectrum. In addition, the temperature dependence of the spectrum is theoretically captured by observing the changing population of these hydrate forms with temperature. We also explore an alternative method for obtaining statistically representative structures in a less demanding manner than MD simulations, derived from QM Wigner distributions. The combination of Wigner-sampling and GMM-NEA broadening shows promise for wide application in spectroscopic analysis and predictions, offering a computationally efficient alternative to traditional methods.
Collapse
Affiliation(s)
| | - Rafael R Pappalardo
- Department of Physical Chemistry, University of Seville, 41012 Seville, Spain
| | - Florent Réal
- Université de Lille, CNRS, UMR 8523-PhLAM, Physique des Lasers, Atomes et Molecules, F-59000 Lille, France
| | - Valérie Vallet
- Université de Lille, CNRS, UMR 8523-PhLAM, Physique des Lasers, Atomes et Molecules, F-59000 Lille, France
| | | |
Collapse
|
3
|
Lu JB, Zhang YY, Jiang XL, Ye LW, Li J. Improved Gaussian basis sets for norm-conserving 4f-in-core pseudopotentials of trivalent lanthanides (Ln = Ce-Lu). J Chem Phys 2024; 161:134115. [PMID: 39373205 DOI: 10.1063/5.0228388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
The first-principles quantum chemical computations often scale as Nk (N = basis sets; k = 1-4 for linear scaling, Hartree-Fock or density functional theory methods), which makes the development of accurate pseudopotentials and efficient basis sets necessary ingredients in modeling of heavy elements such as lanthanides and actinides. Recently, we have developed 4f-in-core norm-conserving pseudopotentials and associated basis sets for the trivalent lanthanides [Lu et al., J. Chem. Theory Comput. 19, 82-96 (2023)]. In the present paper, we present a unified approach to optimize high-quality Gaussian basis sets for modeling and simulations of condensed-phase systems. The newly generated basis sets not only capture the low total energy and fairly reasonable condition number of overlap matrix of lanthanide-containing systems, but also exhibit good transferability and reproducibility. These advantages ensure the accuracy of the basis sets while avoiding linear dependency concern of atom-centered basis sets. The performance of the basis sets is further illustrated in lanthanide molecular and condensed-phase systems by using Gaussian-plane wave density functional approach of CP2K. These new basis sets can be of particular interest to model structurally complicated lanthanide molecules, clusters, solutions, and solid systems.
Collapse
Affiliation(s)
- Jun-Bo Lu
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang-Yang Zhang
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue-Lian Jiang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lian-Wei Ye
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Chang S, Hou W, Del Valle-Perez A, Ullah I, Qiu S, Rodriguez JL, Díaz-Vázquez LM, Cunci L, Morell G, Wu X. A Low-Acidity Chloride Electrolyte Enables Exceptional Reversibility and Stability in Aqueous Tin Metal Batteries. Angew Chem Int Ed Engl 2024:e202414346. [PMID: 39302244 DOI: 10.1002/anie.202414346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Tin (Sn) metal has emerged as a promising anode for aqueous batteries, due to its high capacity, non-toxicity, and cost-effectiveness. However, Sn metal has often been coupled with strong and corrosive sulfuric acids (2-3 M), leading to severe electrode corrosion and hydrogen evolution issues. Although high efficiency and long cycling were reported, the results were achieved using high currents to kinetically mask electrode-electrolyte side reactions. Herein, we introduce a low-acidity tin chloride electrolyte (pH=1.09) as a more viable option, which eliminates the need of strong acids and enables a reversible dendrite-free Sn plating chemistry. Remarkably, the plating efficiency approaches unity (99.97 %) under standard testing conditions (1 mA cm-2 for 1 mAh cm-2), which maintains high at 99.23-99.93 % across various aggressive conditions, including low current (0.1-0.25 mA cm-2), high capacity (5-10 mAh cm-2), and extended resting time (24-72 hours). The battery calendar life is further prolonged to 3064 hours, significantly surpassing literature reports. Additionally, we presented an effective method to mitigate the potential Sn2+ oxidization issue on the cathode, demonstrating long-cycling Sn||LiMn2O4 hybrid batteries. This work offers critical insights for developing highly reversible Sn metal batteries.
Collapse
Affiliation(s)
- Songyang Chang
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | - Wentao Hou
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | | | - Irfan Ullah
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | - Shen Qiu
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | | | - Liz M Díaz-Vázquez
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | - Gerardo Morell
- Department of Physics, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | - Xianyong Wu
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| |
Collapse
|
5
|
Kuz'micheva G, Trigub A, Rogachev A, Dorokhov A, Domoroshchina E. Physicochemical Characterization and Antimicrobial Properties of Lanthanide Nitrates in Dilute Aqueous Solutions. Molecules 2024; 29:4023. [PMID: 39274872 PMCID: PMC11396220 DOI: 10.3390/molecules29174023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
This work presents the results of studying dilute aqueous solutions of commercial Ln(NO3)3 · xH2O salts with Ln = Ce-Lu using X-ray diffraction (XRD), IR spectroscopy, X-ray absorption spectroscopy (XAS: EXAFS/XANES), and pH measurements. As a reference point, XRD and XAS measurements for characterized Ln(NO3)3 · xH2O microcrystalline powder samples were performed. The local structure of Ln-nitrate complexes in 20 mM Ln(NO3)3 · xH2O aqueous solution was studied under total external reflection conditions and EXAFS geometry was applied to obtain high-quality EXAFS data for solutions with low concentrations of Ln3+ ions. Results obtained by EXAFS spectroscopy showed significant contraction of the first coordination sphere during the dissolution process for metal ions located in the middle of the lanthanide series. It was established that in Ln(NO3)3 · xH2O solutions with Ln = Ce, Sm, Gd, Yb (c = 134, 100, 50 and 20 mM) there are coordinated and, to a greater extent, non-coordinated nitrate groups with bidentate and predominantly monodentate bonds with Ln ions, the number of which increases upon transition from cerium to ytterbium. For the first time, the antibacterial and antifungal activity of Ln(NO3)3 · xH2O Ln = Ce, Sm, Gd, Tb, Yb solutions with different concentrations and pH was presented. Cross-relationships between the concentration of solutions and antimicrobial activity with the type of Ln = Ce, Sm, Gd, Tb, Yb were established, as well as the absence of biocidal properties of solutions with a concentration of 20 mM, except for Ln = Yb. The important role of experimental conditions in obtaining and interpreting the results was noted.
Collapse
Affiliation(s)
- Galina Kuz'micheva
- Research and Educational Center "Multi-scale Materials Engineering", MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Alexander Trigub
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | | | - Andrey Dorokhov
- Lomonosov Institute of Fine Chemical Technologies, Department of Inorganic Chemistry Named after A.N. Reformatsky, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Elena Domoroshchina
- Research and Educational Center "Multi-scale Materials Engineering", MIREA-Russian Technological University, 119454 Moscow, Russia
| |
Collapse
|
6
|
Chae I, Shivkumar A, Doyle FM, Lee SW. Virus-Based Separation of Rare Earth Elements. NANO LETTERS 2024; 24:9946-9952. [PMID: 39101944 DOI: 10.1021/acs.nanolett.4c02510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The utilization of biomaterials for the separation of rare earth elements (REEs) has attracted considerable interest due to their inherent advantages, including diverse molecular structures for selective binding and the use of eco-friendly materials for sustainable systems. We present a pioneering methodology for developing a safe virus to selectively bind REEs and facilitate their release through pH modulation. We engineered the major coat protein of M13 bacteriophage (phage) to incorporate a lanthanide-binding peptide. The engineered lanthanide-binding phage (LBPh), presenting ∼3300 copies of the peptide, serves as an effective biological template for REE separation. Our findings demonstrate the LBPh's preferential binding for heavy REEs over light REEs. Moreover, the LBPh exhibits remarkable robustness with excellent recyclability and stability across multiple cycles of separations. This study underscores the potential of genetically integrating virus templates with selective binding motifs for REE separation, offering a promising avenue for environmentally friendly and energy-efficient separation processes.
Collapse
Affiliation(s)
- Inseok Chae
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Arjun Shivkumar
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Fiona M Doyle
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Dutra FR, Vasiliu M, Gomez AN, Xia D, Dixon DA. Prediction of Redox Potentials for U, Np, Pu, and Am in Aqueous Solution. J Phys Chem A 2024; 128:5612-5626. [PMID: 38959054 DOI: 10.1021/acs.jpca.4c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The redox properties of the actinides in aqueous solution are important for fuel production/reprocessing and understanding the environmental impact of nuclear waste. The redox potentials for U, Np, Pu, and Am in oxidation states from 0 up to VII (as appropriate) in aqueous solutions have been predicted at the density functional theory level with the B3LYP functional, Stuttgart small core pseudopotential basis sets for the actinides, and explicit (30H2O molecules)/implicit treatment of the aqueous solvent using the self-consistent reaction field COSMO and SMD approaches for the implicit solvation. The predictions of the structural parameters of clusters incorporating first and second solvation shells are consistent with the available experimental data. Our results are typically within 0.2 V of the available experimental data using two explicit solvation shells with an implicit solvent model. The use of the PW91 functional substantially improved the prediction of the Pu(VI/V) redox couple. The redox couples for An(VI/IV) and An(V/IV) which involve the addition of protons and removal of the actinyl oxygens led to slightly larger differences from an experiment. The An(IV/0) and An(III/0) couples were reliably predicted with our approach. Predictions of the unknown An(II/I) redox potentials were negative, consistent with expectations, and predictions for unknown An(VII/VI), An(III/II), and An(II/0) redox couples improve prior estimates.
Collapse
Affiliation(s)
- Felipe R Dutra
- Instituto de Química, Universidade Estadual de Campinas, Barão Geraldo, P.O. Box 6154, Campinas 13083-970, São Paulo, Brazil
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Amber N Gomez
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Donna Xia
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
8
|
Driscoll DM, White FD, Pramanik S, Einkauf JD, Ravel B, Bykov D, Roy S, Mayes RT, Delmau LH, Cary SK, Dyke T, Miller A, Silveira M, VanCleve SM, Davern SM, Jansone-Popova S, Popovs I, Ivanov AS. Observation of a promethium complex in solution. Nature 2024; 629:819-823. [PMID: 38778232 PMCID: PMC11111410 DOI: 10.1038/s41586-024-07267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 05/25/2024]
Abstract
Lanthanide rare-earth metals are ubiquitous in modern technologies1-5, but we know little about chemistry of the 61st element, promethium (Pm)6, a lanthanide that is highly radioactive and inaccessible. Despite its importance7,8, Pm has been conspicuously absent from the experimental studies of lanthanides, impeding our full comprehension of the so-called lanthanide contraction phenomenon: a fundamental aspect of the periodic table that is quoted in general chemistry textbooks. Here we demonstrate a stable chelation of the 147Pm radionuclide (half-life of 2.62 years) in aqueous solution by the newly synthesized organic diglycolamide ligand. The resulting homoleptic PmIII complex is studied using synchrotron X-ray absorption spectroscopy and quantum chemical calculations to establish the coordination structure and a bond distance of promethium. These fundamental insights allow a complete structural investigation of a full set of isostructural lanthanide complexes, ultimately capturing the lanthanide contraction in solution solely on the basis of experimental observations. Our results show accelerated shortening of bonds at the beginning of the lanthanide series, which can be correlated to the separation trends shown by diglycolamides9-11. The characterization of the radioactive PmIII complex in an aqueous environment deepens our understanding of intra-lanthanide behaviour12-15 and the chemistry and separation of the f-block elements16.
Collapse
Affiliation(s)
- Darren M Driscoll
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Frankie D White
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Subhamay Pramanik
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jeffrey D Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Bruce Ravel
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Dmytro Bykov
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Richard T Mayes
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Lætitia H Delmau
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Samantha K Cary
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Thomas Dyke
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - April Miller
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Matt Silveira
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Shelley M VanCleve
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sandra M Davern
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
9
|
Sachin AR, Gopakumar G, Brahmananda Rao CVS. Understanding the Complexation Behavior of Carbamoylphosphine Oxide Ligands with Representative f-Block Elements. J Phys Chem A 2024; 128:1085-1097. [PMID: 38294200 DOI: 10.1021/acs.jpca.3c07758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The complexation behavior of carbamoylmethylphosphine oxide ligands (CMPO), a bifunctional phosphine oxide, and their substituted derivatives with Ce(III), Eu(III), Th(IV), U(VI), and Am(III) was probed at the density functional theory (DFT) level. The enhanced extraction of trivalent rare earth elements by the 2-diphenylphosphinylethyl derivative over the conventional CMPO ligand is identified due to the availability of an additional P═O donor group in the former. In addition, the orbital and dispersive interactions play a vital role in the preference of Th(IV) over U(VI) during extraction using CMPO ligands. The better complexing ability of ligands having long alkyl chain substituents at the P atom is justified due to the observed enhanced dispersion interactions in these systems.
Collapse
Affiliation(s)
- Aditya Ramesh Sachin
- Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Gopinadhanpillai Gopakumar
- Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Cherukuri Venkata Siva Brahmananda Rao
- Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
10
|
Knapp JG, Livshits MY, Gilhula JC, Hanna SL, Piedmonte ID, Rice NT, Wang X, Stein BW, Kozimor SA, Farha OK. Influence of Linker Identity on the Photochemistry of Uranyl-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43667-43677. [PMID: 37672765 DOI: 10.1021/acsami.3c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
While uranyl-based metal-organic frameworks (MOFs) boast impressive photocatalytic abilities, significant questions remain regarding their excitation pathways and methods to fine-tune their performance due to the lack of information regarding heterogeneous uranyl catalysis. Herein, we investigated how linker identity and photoexcitation impact uranyl photocatalysis when the uranyl coordination environment remains constant. Toward this end, we prepared three uranyl-based MOFs (NU-1301, NU-1307, and ZnTCPP-U2) and then examined the structural and photochemical properties of each through X-ray diffraction, X-ray absorption, and photoluminescence. We then correlated our observations to the photocatalytic performance for fluorination of cyclooctane. The excitation profile from NU-1301 and NU-1307 exhibited spin-forbidden linker transitions and uranyl vibronic progressions, with uranyl excitation and emission being most dominant in NU-1301. Consequently, NU-1301 was a more active photocatalyst than NU-1307. In contrast, the excitation profile from ZnTCPP-U2 contained transitions associated with the porphyrin linker exclusively. Photocatalytic activity from ZnTCPP-U2 significantly underperformed in comparison to that of the other two MOFs. These data suggest that linkers' photophysical properties can be used to predict the photocatalytic behavior of uranyl-containing MOFs.
Collapse
Affiliation(s)
- Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Maksim Y Livshits
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - J Connor Gilhula
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sylvia L Hanna
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ida D Piedmonte
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Natalie T Rice
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xingjie Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Benjamin W Stein
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Stosh A Kozimor
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Smerigan A, Biswas S, Vila FD, Hong J, Perez-Aguilar J, Hoffman AS, Greenlee L, Getman RB, Bare SR. Aqueous Structure of Lanthanide-EDTA Coordination Complexes Determined by a Combined DFT/EXAFS Approach. Inorg Chem 2023; 62:14523-14532. [PMID: 37624729 DOI: 10.1021/acs.inorgchem.3c01334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Sustainable production of rare earth elements (REEs) is critical for technologies needed for climate change mitigation, including wind turbines and electric vehicles. However, separation technologies currently used in REE production have large environmental footprints, necessitating more sustainable strategies. Aqueous, affinity-based separations are examples of such strategies. To make these technologies feasible, it is imperative to connect aqueous ligand structure to ligand selectivity for individual REEs. As a step toward this goal, we analyzed the extended X-ray absorption fine structure (EXAFS) of four lanthanides (La, Ce, Pr, and Nd) complexed by a common REE chelator, ethylenediaminetetraacetic acid (EDTA) to determine the aqueous-phase structure. Reference structures from density functional theory (DFT) were used to help fit the EXAFS spectra. We found that all four Ln-EDTA coordination complexes formed 9-coordinate structures with 6 coordinating atoms from EDTA (4 carboxyl oxygen atoms and 2 nitrogen atoms) and 3 oxygen atoms from water molecules. All EXAFS fits were of high quality (R-factor < 0.02) and showed decreasing average first-shell coordination distance across the series (2.62-2.57 Å from La-Nd), in agreement with DFT (2.65-2.56 Å from La-Nd). The insights determined herein will be useful in the development of ligands for sustainable rare earth elements (REE) separation technologies.
Collapse
Affiliation(s)
- Adam Smerigan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sayani Biswas
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Jiyun Hong
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jorge Perez-Aguilar
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Adam S Hoffman
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Lauren Greenlee
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Simon R Bare
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
12
|
McElhany SJ, Summers TJ, Shiery RC, Cantu DC. Analysis of the First Ion Coordination Sphere: A Toolkit to Analyze the Coordination Sphere of Ions. J Chem Inf Model 2023; 63:2699-2706. [PMID: 37083437 DOI: 10.1021/acs.jcim.3c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Rapid and accurate approaches to characterizing the coordination structure of an ion are important for designing ligands and quantifying structure-property trends. Here, we introduce AFICS (Analysis of the First Ion Coordination Sphere), a tool written in Python 3 for analyzing the structural and geometric features of the first coordination sphere of an ion over the course of molecular dynamics simulations. The principal feature of AFICS is its ability to quantify the distortion a coordination geometry undergoes compared to uniform polyhedra. This work applies the toolkit to analyze molecular dynamics simulations of the well-defined coordination structure of aqueous Cr3+ along with the more ambiguous structure of aqueous Eu3+ chelated to ethylenediaminetetraacetic acid. The tool is targeted for analyzing ions with fluxional or irregular coordination structures (e.g., solution structures of f-block elements) but is generalized such that it may be applied to other systems.
Collapse
Affiliation(s)
- Stuart J McElhany
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Thomas J Summers
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Richard C Shiery
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
13
|
Summers TJ, Sobrinho JA, de Bettencourt-Dias A, Kelly SD, Fulton JL, Cantu DC. Solution Structures of Europium Terpyridyl Complexes with Nitrate and Triflate Counterions in Acetonitrile. Inorg Chem 2023; 62:5207-5218. [PMID: 36940386 DOI: 10.1021/acs.inorgchem.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Lanthanide-ligand complexes are key components of technological applications, and their properties depend on their structures in the solution phase, which are challenging to resolve experimentally or computationally. The coordination structure of the Eu3+ ion in different coordination environments in acetonitrile is examined using ab initio molecular dynamics (AIMD) simulations and extended X-ray absorption fine structure (EXAFS) spectroscopy. AIMD simulations are conducted for the solvated Eu3+ ion in acetonitrile, both with or without a terpyridyl ligand, and in the presence of either triflate or nitrate counterions. EXAFS spectra are calculated directly from AIMD simulations and then compared to experimentally measured EXAFS spectra. In acetonitrile solution, both nitrate and triflate anions are shown to coordinate directly to the Eu3+ ion forming either ten- or eight-coordinate solvent complexes where the counterions are binding as bidentate or monodentate structures, respectively. Coordination of a terpyridyl ligand to the Eu3+ ion limits the available binding sites for the solvent and anions. In certain cases, the terpyridyl ligand excludes any solvent binding and limits the number of coordinated anions. The solution structure of the Eu-terpyridyl complex with nitrate counterions is shown to have a similar arrangement of Eu3+ coordinating molecules as the crystal structure. This study illustrates how a combination of AIMD and EXAFS can be used to determine how ligands, solvent, and counterions coordinate with the lanthanide ions in solution.
Collapse
Affiliation(s)
- Thomas J Summers
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557-0388, United States
| | - Josiane A Sobrinho
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557-0705, United States
| | | | - Shelly D Kelly
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4801, United States
| | - John L Fulton
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557-0388, United States
| |
Collapse
|
14
|
Nosov VG, Toikka YN, Petrova AS, Butorlin OS, Kolesnikov IE, Orlov SN, Ryazantsev MN, Kolesnik SS, Bogachev NA, Skripkin MY, Mereshchenko AS. Brightly Luminescent (Tb xLu 1-x) 2bdc 3·nH 2O MOFs: Effect of Synthesis Conditions on Structure and Luminescent Properties. Molecules 2023; 28:molecules28052378. [PMID: 36903620 PMCID: PMC10005128 DOI: 10.3390/molecules28052378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Luminescent, heterometallic terbium(III)-lutetium(III) terephthalate metal-organic frameworks (MOFs) were synthesized via direct reaction between aqueous solutions of disodium terephthalate and nitrates of corresponding lanthanides by using two methods: synthesis from diluted and concentrated solutions. For (TbxLu1-x)2bdc3·nH2O MOFs (bdc = 1,4-benzenedicarboxylate) containing more than 30 at. % of Tb3+, only one crystalline phase was formed: Ln2bdc3·4H2O. At lower Tb3+ concentrations, MOFs crystallized as the mixture of Ln2bdc3·4H2O and Ln2bdc3·10H2O (diluted solutions) or Ln2bdc3 (concentrated solutions). All synthesized samples that contained Tb3+ ions demonstrated bright green luminescence upon excitation into the 1ππ* excited state of terephthalate ions. The photoluminescence quantum yields (PLQY) of the compounds corresponding to the Ln2bdc3 crystalline phase were significantly larger than for Ln2bdc3·4H2O and Ln2bdc3·10H2O phases due to absence of quenching from water molecules possessing high-energy O-H vibrational modes. One of the synthesized materials, namely, (Tb0.1Lu0.9)2bdc3·1.4H2O, had one of the highest PLQY among Tb-based MOFs, 95%.
Collapse
Affiliation(s)
- Viktor G. Nosov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Yulia N. Toikka
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Anna S. Petrova
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Oleg S. Butorlin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Ilya E. Kolesnikov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Sergey N. Orlov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Federal State Unitary Enterprise “Alexandrov Research Institute of Technology”, 72 Koporskoe Shosse, 188540 Sosnovy Bor, Russia
- Institute of Nuclear Industry, Peter the Great St. Petersburg Polytechnic University (SPbSU), 29 Polytechnicheskaya Street, 195251 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, ul. Khlopina 8/3, 194021 St. Petersburg, Russia
| | - Stefaniia S. Kolesnik
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Nikita A. Bogachev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Mikhail Yu. Skripkin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Andrey S. Mereshchenko
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-951-677-5465
| |
Collapse
|
15
|
Wait EE, Gourary J, Liu C, Spoerke ED, Rempe SB, Ren P. Development of AMOEBA Polarizable Force Field for Rare-Earth La 3+ Interaction with Bioinspired Ligands. J Phys Chem B 2023; 127:1367-1375. [PMID: 36735638 PMCID: PMC9957963 DOI: 10.1021/acs.jpcb.2c07237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rare-earth metals (REMs) are crucial for many important industries, such as power generation and storage, in addition to cancer treatment and medical imaging. One promising new REM refinement approach involves mimicking the highly selective and efficient binding of REMs observed in relatively recently discovered proteins. However, realizing any such bioinspired approach requires an understanding of the biological recognition mechanisms. Here, we developed a new classical polarizable force field based on the AMOEBA framework for modeling a lanthanum ion (La3+) interacting with water, acetate, and acetamide, which have been found to coordinate the ion in proteins. The parameters were derived by comparing to high-level ab initio quantum mechanical (QM) calculations that include relativistic effects. The AMOEBA model, with advanced atomic multipoles and electronic polarization, is successful in capturing both the QM distance-dependent La3+-ligand interaction energies and experimental hydration free energy. A new scheme for pairwise polarization damping (POLPAIR) was developed to describe the polarization energy in La3+ interactions with both charged and neutral ligands. Simulations of La3+ in water showed water coordination numbers and ion-water distances consistent with previous experimental and theoretical findings. Water residence time analysis revealed both fast and slow kinetics in water exchange around the ion. This new model will allow investigation of fully solvated lanthanum ion-protein systems using GPU-accelerated dynamics simulations to gain insights on binding selectivity, which may be applied to the design of synthetic analogues.
Collapse
Affiliation(s)
- Elizabeth E. Wait
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Justin Gourary
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Erik D. Spoerke
- Electronic, Optical, and Nano Materials Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Susan B. Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
16
|
Travadi M, Jadeja RN, Butcher RJ. Uranyl(VI) Mixed-ligand complex synthesis and characterization using 4-Acylhydrazone-5-pyrazolone and 4-acylpyrazolone: Covalency, Crystal assay, DFT study and Hirshfeld analysis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
17
|
Lu JB, Jiang XL, Hu HS, Li J. Norm-Conserving 4f-in-Core Pseudopotentials and Basis Sets Optimized for Trivalent Lanthanides (Ln = Ce-Lu). J Chem Theory Comput 2023; 19:82-96. [PMID: 36512750 DOI: 10.1021/acs.jctc.2c00922] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present here a set of scalar-relativistic norm-conserving 4f-in-core pseudopotentials, together with complementary valence-shell Gaussian basis sets, for the lanthanide (Ln) series (Ce-Lu). The Goedecker, Teter, and Hutter (GTH) formalism is adopted with the generalized gradient approximation (GGA) for the exchange-correlation Perdew-Burke-Ernzerhof (PBE) functional. The 4f-in-core pseudopotentials are built through attributing 4f-subconfiguration 4fn (n = 1-14) for Ln (Ln = Ce-Lu) into the atomic core region, making it possible to circumvent the difficulty of the description of the open 4fn valence shell. A wide variety of computational benchmarks and tests have been carried out on lanthanide systems including Ln3+-containing molecular complexes, aqueous solutions, and bulk solids to validate the accuracy, reliability, and efficiency of the optimized 4f-in-core GTH pseudopotentials and basis sets. The 4f-in-core GTH pseudopotentials successfully replicate the main features of lanthanide structural chemistry and reaction energetics, particularly for nonredox reactions. The chemical bonding features and solvation shells, hydrolysis energetics, acidity constants, and solid-state properties of selected lanthanide systems are also discussed in detail by utilizing these new 4f-in-core GTH pseudopotentials. This work bridges the idea of keeping highly localized 4f electrons in the atomic core and efficient pseudopotential formalism of GTH, thus providing a highly efficient approach for studying lanthanide chemistry in multi-scale modeling of constituent-wise and structurally complicated systems, including electronic structures of the condensed phase and first-principles molecular dynamics simulations.
Collapse
Affiliation(s)
- Jun-Bo Lu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue-Lian Jiang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Vinod S, Ebenezer C, Solomon RV. Do mono- or diphenol substitutions in phenanthroline-based ligands serve in effective separation of Am 3+/Eu 3+ ions?- Insights from DFT calculations. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2160352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shruti Vinod
- Department of Chemistry, Madras Christian College (Autonomous), Chennai, India
| | - Cheriyan Ebenezer
- Department of Chemistry, Madras Christian College (Autonomous), Chennai, India
| | | |
Collapse
|
19
|
Buchanan C, Herrera D, Balasubramanian M, Goldsmith BR, Singh N. Unveiling the Cerium(III)/(IV) Structures and Charge-Transfer Mechanism in Sulfuric Acid. JACS AU 2022; 2:2742-2757. [PMID: 36590268 PMCID: PMC9795571 DOI: 10.1021/jacsau.2c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
The Ce3+/Ce4+ redox couple has a charge transfer (CT) with extreme asymmetry and a large shift in redox potential depending on electrolyte composition. The redox potential shift and CT behavior are difficult to understand because neither the cerium structures nor the CT mechanism are well understood, limiting efforts to improve the Ce3+/Ce4+ redox kinetics in applications such as energy storage. Herein, we identify the Ce3+ and Ce4+ structures and CT mechanism in sulfuric acid via extended X-ray absorption fine structure spectroscopy (EXAFS), kinetic measurements, and density functional theory (DFT) calculations. We show EXAFS evidence that confirms that Ce3+ is coordinated by nine water molecules and suggests that Ce4+ is complexed by water and three bisulfates in sulfuric acid. Despite the change in complexation within the first coordination shell between Ce3+ and Ce4+, we show that the kinetics are independent of the electrode, suggesting outer-sphere electron-transfer behavior. We identify a two-step mechanism where Ce4+ exchanges the bisulfate anions with water in a chemical step followed by a rate-determining electron transfer step that follows Marcus theory (MT). This mechanism is consistent with all experimentally observed structural and kinetic data. The asymmetry of the Ce3+/Ce4+ CT and the observed shift in the redox potential with acid is explained by the addition of the chemical step in the CT mechanism. The fitted parameters from this rate law qualitatively agree with DFT-predicted free energies and the reorganization energy. The combination of a two-step mechanism with MT should be considered for other metal ion CT reactions whose kinetics have not been appropriately described.
Collapse
Affiliation(s)
- Cailin
A. Buchanan
- Department
of Chemical Engineering, University of Michigan-Ann
Arbor, Ann Arbor, Michigan48109, United
States
- Catalysis
Science and Technology Institute, University
of Michigan-Ann Arbor, Ann Arbor, Michigan48109, United States
| | - Dylan Herrera
- Department
of Chemical Engineering, University of Michigan-Ann
Arbor, Ann Arbor, Michigan48109, United
States
- Catalysis
Science and Technology Institute, University
of Michigan-Ann Arbor, Ann Arbor, Michigan48109, United States
| | - Mahalingam Balasubramanian
- Advanced
Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| | - Bryan R. Goldsmith
- Department
of Chemical Engineering, University of Michigan-Ann
Arbor, Ann Arbor, Michigan48109, United
States
- Catalysis
Science and Technology Institute, University
of Michigan-Ann Arbor, Ann Arbor, Michigan48109, United States
| | - Nirala Singh
- Department
of Chemical Engineering, University of Michigan-Ann
Arbor, Ann Arbor, Michigan48109, United
States
- Catalysis
Science and Technology Institute, University
of Michigan-Ann Arbor, Ann Arbor, Michigan48109, United States
| |
Collapse
|
20
|
Actinides in complex reactive media: A combined ab initio molecular dynamics and machine learning analytics study of transuranic ions in molten salts. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
D'Angelo P, Migliorati V, Gibiino A, Busato M. Direct Observation of Contact Ion-Pair Formation in La 3+ Methanol Solution. Inorg Chem 2022; 61:17313-17321. [PMID: 36255362 PMCID: PMC9627567 DOI: 10.1021/acs.inorgchem.2c02932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
An approach combining molecular dynamics (MD) simulations
and X-ray
absorption spectroscopy (XAS) has been used to carry out a comparative
study about the solvation properties of dilute La(NO3)3 solutions in water and methanol, with the aim of elucidating
the still elusive coordination of the La3+ ion in the latter
medium. The comparison between these two systems enlightened a different
behavior of the nitrate counterions in the two environments: while
in water the La(NO3)3 salt is fully dissociated
and the La3+ ion is coordinated by water molecules only,
the nitrate anions are able to enter the metal first solvation shell
to form inner-sphere complexes in methanol solution. The speciation
of the formed complexes showed that the 10-fold coordination is preferential
in methanol solution, where the nitrate anions coordinate the La3+ cations in a monodentate fashion and the methanol molecules
complete the solvation shell to form an overall bicapped square antiprism
geometry. This is at variance with the aqueous solution where a more
balanced situation is observed between the 9- and 10-fold coordination.
An experimental confirmation of the MD results was obtained by La
K-edge XAS measurements carried out on 0.1 M La(NO3)3 solutions in the two solvents, showing the distinct presence
of the nitrate counterions in the La3+ ion first solvation
sphere of the methanol solution. The analysis of the extended X-ray
absorption fine structure (EXAFS) part of the absorption spectrum
collected on the methanol solution was carried out starting from the
MD results and confirmed the structural arrangement observed by the
simulations. The formation of contact ion pairs between
the La3+ ions and the nitrate anions has been demonstrated
in diluted methanol
solution using a combined approach using Molecular Dynamics simulations
and X-ray absorption spectroscpy.
Collapse
Affiliation(s)
- Paola D'Angelo
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Migliorati
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Alice Gibiino
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Matteo Busato
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
22
|
Jordan N, Thoenen T, Starke S, Spahiu K, Brendler V. A critical review of the solution chemistry, solubility, and thermodynamics of europium: Recent advances on the Eu3+ aqua ion and the Eu(III) aqueous complexes and solid phases with the sulphate, chloride, and phosphate inorganic ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Dhiman D, Vatsa R, Sood A. Challenges and opportunities in developing Actinium-225 radiopharmaceuticals. Nucl Med Commun 2022; 43:970-977. [PMID: 35950353 DOI: 10.1097/mnm.0000000000001594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Actinium-225 (225Ac) has emerged as a promising therapeutic radioisotope for targeted alpha therapy. It emits net four alpha particles during its decay to stable daughter bismuth-209, rightly called an in-vivo nano-generator. Compared to the worldwide demand of 225Ac, the amount produced via depleted thorium-229 sources is minimal, making it an expensive radionuclide. However, many research groups are working on optimizing the parameters for the production of 225Ac via different routes, including cyclotrons, reactors and high-energy linear accelerators. The present review article focuses on the various aspects associated with the development of 225Ac radiopharmaceuticals. It includes the challenges and opportunities associated with the production methods, labeling chemistry, in-vivo kinetics and dosimetry of 225Ac radiopharmaceuticals. A brief description is also given about the 225Ac radiopharmaceuticals at preclinical stages, clinical trials and used routinely.
Collapse
Affiliation(s)
- Deeksha Dhiman
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Rakhee Vatsa
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
- Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| |
Collapse
|
24
|
Carter KP, Wacker JN, Smith KF, Deblonde GJP, Moreau LM, Rees JA, Booth CH, Abergel RJ. In situ beam reduction of Pu(IV) and Bk(IV) as a route to trivalent transuranic coordination complexes with hydroxypyridinone chelators. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:315-322. [PMID: 35254293 PMCID: PMC8900832 DOI: 10.1107/s1600577522000200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The solution-state interactions of plutonium and berkelium with the octadentate chelator 3,4,3-LI(1,2-HOPO) (343-HOPO) were investigated and characterized by X-ray absorption spectroscopy, which revealed in situ reductive decomposition of the tetravalent species of both actinide metals to yield Pu(III) and Bk(III) coordination complexes. X-ray absorption near-edge structure (XANES) measurements were the first indication of in situ synchrotron redox chemistry as the Pu threshold and white-line position energies for Pu-343-HOPO were in good agreement with known diagnostic Pu(III) species, whereas Bk-343-HOPO results were found to mirror the XANES behavior of Bk(III)-DTPA. Extended X-ray absorption fine structure results revealed An-OHOPO bond distances of 2.498 (5) and 2.415 (2) Å for Pu and Bk, respectively, which match well with bond distances obtained for trivalent actinides and 343-HOPO via density functional theory calculations. Pu(III)- and Bk(III)-343-HOPO data also provide initial insight into actinide periodicity as they can be compared with previous results with Am(III)-, Cm(III)-, Cf(III)-, and Es(III)-343-HOPO, which indicate there is likely an increase in 5f covalency and heterogeneity across the actinide series.
Collapse
Affiliation(s)
- Korey P. Carter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer N. Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt F. Smith
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Liane M. Moreau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Julian A. Rees
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corwin H. Booth
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rebecca J. Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
25
|
Zhang Y, Wu S, Li A. Theoretically investigating the ability of phenanthroline derivatives to separate transuranic elements and their bonding properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj02160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bonding and separation properties of actinide Np3+, Pu3+, Am3+, and Cm3+ complexes formed with phenanthroline derivatives were studied using the DFT method.
Collapse
Affiliation(s)
- Yiying Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shouqiang Wu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Anyong Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
26
|
Driscoll DM, Shiery RC, Balasubramanian M, Fulton JL, Cantu DC. Ionic Contraction across the Lanthanide Series Decreases the Temperature-Induced Disorder of the Water Coordination Sphere. Inorg Chem 2021; 61:287-294. [PMID: 34919399 DOI: 10.1021/acs.inorgchem.1c02837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In liquid, temperature affects the structures of lanthanide complexes in multiple ways that depend upon complex interactions between ligands, anions, and solvent molecules. The relative simplicity of lanthanide aqua ions (Ln3+) make them well suited to determine how temperature induces structural changes in lanthanide complexes. We performed a combination of ab initio molecular dynamics (AIMD) simulations and extended X-ray absorption fine structure (EXAFS) measurements, both at 25 and 90 °C, to determine how temperature affects the first- and second-coordination spheres of three Ln3+ (Ce3+, Sm3+, and Lu3+) aqua ions. AIMD simulations show first lanthanide coordination spheres that are similar at 25 and 90 °C, more so for the Lu3+ ion that remains as eight-coordinate than for the Ce3+ and Sm3+ ions that change their preferred coordination number from nine (at 25 °C) to eight (at 90 °C). The measured EXAFS spectra are very similar at 25 and 90 °C, for the Ce3+, Sm3+, and Lu3+ ions, suggesting that the dynamical disorder of the Ln3+ ions in liquid water is sufficient such that temperature-induced changes do not clearly manifest changes in the structure of the three ions. Both AIMD simulations and EXAFS measurements show very similar structures of the first coordination sphere of the Lu3+ ion at 25 and 90 °C.
Collapse
Affiliation(s)
- Darren M Driscoll
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Richard C Shiery
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | | | - John L Fulton
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
27
|
MacInnes MM, Jones ZR, Li B, Anderson NH, Batista ER, DiMucci IM, Eiroa-Lledo C, Knope KE, Livshits MY, Kozimor SA, Mocko V, Pace KA, Rocha FR, Stein BW, Wacker JN, Yang P. Using molten salts to probe outer-coordination sphere effects on lanthanide(III)/(II) electron-transfer reactions. Dalton Trans 2021; 50:15696-15710. [PMID: 34693951 DOI: 10.1039/d1dt02708e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Controlling structure and reactivity by manipulating the outer-coordination sphere around a given reagent represents a longstanding challenge in chemistry. Despite advances toward solving this problem, it remains difficult to experimentally interrogate and characterize outer-coordination sphere impact. This work describes an alternative approach that quantifies outer-coordination sphere effects. It shows how molten salt metal chlorides (MCln; M = K, Na, n = 1; M = Ca, n = 2) provided excellent platforms for experimentally characterizing the influence of the outer-coordination sphere cations (Mn+) on redox reactions accessible to lanthanide ions; Ln3+ + e1- → Ln2+ (Ln = Eu, Yb, Sm; e1- = electron). As a representative example, X-ray absorption spectroscopy and cyclic voltammetry results showed that Eu2+ instantaneously formed when Eu3+ dissolved in molten chloride salts that had strongly polarizing cations (like Ca2+ from CaCl2) via the Eu3+ + Cl1- → Eu2+ + ½Cl2 reaction. Conversely, molten salts with less polarizing outer-sphere M1+ cations (e.g., K1+ in KCl) stabilized Ln3+. For instance, the Eu3+/Eu2+ reduction potential was >0.5 V more positive in CaCl2 than in KCl. In accordance with first-principle molecular dynamics (FPMD) simulations, we postulated that hard Mn+ cations (high polarization power) inductively removed electron density from Lnn+ across Ln-Cl⋯Mn+ networks and stabilized electron-rich and low oxidation state Ln2+ ions. Conversely, less polarizing Mn+ cations (like K1+) left electron density on Lnn+ and stabilized electron-deficient and high-oxidation state Ln3+ ions.
Collapse
Affiliation(s)
- Molly M MacInnes
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Zachary R Jones
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Bo Li
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Nickolas H Anderson
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Enrique R Batista
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Ida M DiMucci
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Cecilia Eiroa-Lledo
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Karah E Knope
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, USA
| | - Maksim Y Livshits
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Stosh A Kozimor
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Veronika Mocko
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Kristen A Pace
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Francisca R Rocha
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Benjamin W Stein
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Jennifer N Wacker
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA. .,Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, USA
| | - Ping Yang
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| |
Collapse
|
28
|
Li X, Li Z, Binnemans K. Closed-loop process for recovery of metals from NdFeB magnets using a trichloride ionic liquid. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Deblonde GJP, Zavarin M, Kersting AB. The coordination properties and ionic radius of actinium: A 120-year-old enigma. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Smirnov PR, Grechin OV. Structure of the Nearest Environment of Ions in Aqueous Solutions of Praseodymium Chloride in a Wide Range of Concentrations. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s003602442110023x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
George Thomas M, Ebenezer C, Solomon RV. Tuning the structure of disulfonated phenanthroline based ligands for effective separation of Am(III)/Eu(III) ions : A DFT investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Pappalardo RR, Caralampio DZ, Martínez JM, Sánchez Marcos E. Hydration of Heavy Alkaline-Earth Cations Studied by Molecular Dynamics Simulations and X-ray Absorption Spectroscopy. Inorg Chem 2021; 60:13578-13587. [PMID: 34387993 PMCID: PMC8512670 DOI: 10.1021/acs.inorgchem.1c01888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physicochemical properties of the three heaviest alkaline-earth cations, Sr2+, Ba2+, and Ra2+ in water have been studied by means of classical molecular dynamics (MD) simulations. A specific set of cation-water intermolecular potentials based on ab initio potential energy surfaces has been built on the basis of the hydrated ion concept. The polarizable and flexible model of water MCDHO2 was adopted. The theoretical-experimental comparison of structural, dynamical, energetic, and spectroscopical properties of Sr2+ and Ba2+ aqueous solutions is satisfactory, which supports the methodology developed. This good behavior allows a reasonable reliability for the predicted Ra2+ physicochemical data not experimentally determined yet. Simulated extended X-ray absorption fine-structure (EXAFS) and X-ray absorption near-edge spectroscopy spectra have been computed from the snapshots of the MD simulations and compared with the experimental information available for Sr2+ and Ba2+. For the Ra2+ case, the Ra L3-edge EXAFS spectrum is proposed. Structural and dynamical properties of the aqua ions for the three cations have been obtained and analyzed. Along the [M(H2O)n]m+ series, the M-O distance for the first-hydration shell is 2.57, 2.81, and 2.93 Å for Sr2+, Ba2+, and Ra2+, respectively. The hydration number also increases when one is going down along the group: 8.1, 9.4, and 9.8 for Sr2+, Ba2+, and Ra2+, respectively. Whereas [Sr(H2O)8]2+ is a typical aqua ion with a well-defined structure, the Ba2+ and Ra2+ hydration provides a picture exhibiting an average between the ennea- and the deca-hydration. These results show a similar chemical behavior of Ba2+ and Ra2+ aqueous solutions and support experimental studies on the removal of Ra-226 of aquifers by different techniques, where Ra2+ is replaced by Ba2+. A comparison of the heavy alkaline ions, Rb+ and Cs+, with the heavy alkaline-earth ions is made.
Collapse
Affiliation(s)
- Rafael R Pappalardo
- Department of Physical Chemistry, University of Seville, 41012 Seville, Seville, Spain
| | - Daniel Z Caralampio
- Department of Physical Chemistry, University of Seville, 41012 Seville, Seville, Spain
| | - José M Martínez
- Department of Physical Chemistry, University of Seville, 41012 Seville, Seville, Spain
| | | |
Collapse
|
33
|
Alizadeh S, Abdollahy M, Darban AK, Mohseni M. Nitrate ions effects on solvent extraction of rare earth elements from aqueous solutions by D2EHPA: Experimental studies and molecular simulations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Kofod N, Nawrocki P, Platas-Iglesias C, Sørensen TJ. Electronic Structure of Ytterbium(III) Solvates-a Combined Spectroscopic and Theoretical Study. Inorg Chem 2021; 60:7453-7464. [PMID: 33949865 DOI: 10.1021/acs.inorgchem.1c00743] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The wide range of optical and magnetic properties of lanthanide(III) ions is associated with their intricate electronic structures which, in contrast to lighter elements, is characterized by strong relativistic effects and spin-orbit coupling. Nevertheless, computational methods are now capable of describing the ladder of electronic energy levels of the simpler trivalent lanthanide ions, as well as the lowest energy term of most of the series. The electronic energy levels result from electron configurations that are first split by spin-orbit coupling into groups of energy levels denoted by the corresponding Russell-Saunders terms. Each of these groups are then split by the ligand field into the actual electronic energy levels known as microstates or sometimes mJ levels. The ligand-field splitting directly informs on the coordination geometry and is a valuable tool for determining the structure and thus correlating the structure and properties of metal complexes in solution. The issue with lanthanide complexes is that the determination of complex structures from ligand-field splitting remains a very challenging task. In this paper, the optical spectra-absorption, luminescence excitation, and luminescence emission-of ytterbium(III) solvates were recorded in water, methanol, dimethyl sulfoxide (DMSO), and N,N-dimethylformamide (DMF). The electronic energy levels, that is, the microstates, were resolved experimentally. Subsequently, density functional theory calculations were used to model the structures of the solvates, and ab initio relativistic complete active space self-consistent field calculations (CASSCF) were employed to obtain the microstates of the possible structures of each solvate. By comparing the experimental and theoretical data, it was possible to determine both the coordination number and solution structure of each solvate. In water, methanol, and N,N-dimethylformamide, the solvates were found to be eight-coordinated and have a square antiprismatic coordination geometry. In DMSO, the speciation was found to be more complicated. The robust methodology developed for comparing experimental spectra and computational results allows the solution structures of homoleptic lanthanide complexes to be determined.
Collapse
Affiliation(s)
- Nicolaj Kofod
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Patrick Nawrocki
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Thomas Just Sørensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| |
Collapse
|
35
|
Wacker JN, Nicholas AD, Vasiliu M, Marwitz AC, Bertke JA, Dixon DA, Knope KE. Impact of Noncovalent Interactions on the Structural Chemistry of Thorium(IV)-Aquo-Chloro Complexes. Inorg Chem 2021; 60:6375-6390. [PMID: 33885290 DOI: 10.1021/acs.inorgchem.1c00099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Five novel tetravalent thorium (Th) compounds that consist of Th(H2O)xCly structural units were isolated from acidic aqueous solutions using a series of nitrogen-containing heterocyclic hydrogen (H) bond donors. Taken together with three previously reported phases, the compounds provide a series of monomeric ThIV complexes wherein the effects of noncovalent interactions (and H-bond donor identity) on Th structural chemistry can be examined. Seven distinct structural units of the general formulas [Th(H2O)xCl8-x]x-4 (x = 2, 4) and [Th(H2O)xCl9-x]x-5 (x = 5-7) are described. The complexes range from chloride-deficient [Th(H2O)7Cl2]2+ to chloride-rich [Th(H2O)2Cl6]2- species, and theory was used to understand the relative energies that separate complexes within this series via the stepwise chloride addition to an aquated Th cation. Electronic structure theory predicted the reaction energies of chloride addition and release of water through a series of transformations, generally highlighting an energetic driving force for chloride complexation. To probe the role of the counterion in the stabilization of these complexes, electrostatic potential (ESP) surfaces were calculated. The ESP surfaces indicated a dependence of the chloride distribution about the Th metal center on the pKa of the countercation, highlighting the directing effects of noncovalent interactions (e.g., Hbonding) on Th speciation.
Collapse
Affiliation(s)
- Jennifer N Wacker
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| | - Aaron D Nicholas
- Department of Chemistry, The George Washington University, Washington, D.C. 20052, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Alexander C Marwitz
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Karah E Knope
- Department of Chemistry, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
36
|
Cantu DC. Predicting lanthanide coordination structures in solution with molecular simulation. Methods Enzymol 2021; 651:193-233. [PMID: 33888204 DOI: 10.1016/bs.mie.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chemical and physical properties of lanthanide coordination complexes can significantly change with small variations in their molecular structure. Further, in solution, coordination structures (e.g., lanthanide-ligand complexes) are dynamic. Resolving solution structures, computationally or experimentally, is challenging because structures in solution have limited spatial restrictions and are responsive to chemical or physical changes in their surroundings. To determine structures of lanthanide-ligand complexes in solution, a molecular simulation approach is presented in this chapter, which concurrently considers chemical reactions and molecular dynamics. Lanthanide ion, ligand, solvent, and anion molecules are explicitly included to identify, in atomic resolution, lanthanide coordination structures in solution. The computational protocol described is applicable to determining the molecular structure of lanthanide-ligand complexes, particularly with ligands known to bind lanthanides but whose structures have not been resolved, as well as with ligands not previously known to bind lanthanide ions. The approach in this chapter is also relevant to elucidating lanthanide coordination in more intricate structures, such as in the active site of enzymes.
Collapse
Affiliation(s)
- David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, NV, United States.
| |
Collapse
|
37
|
Jones ZR, Livshits MY, White FD, Dalodière E, Ferrier MG, Lilley LM, Knope KE, Kozimor SA, Mocko V, Scott BL, Stein BW, Wacker JN, Woen DH. Advancing understanding of actinide(iii) (Ac, Am, Cm) aqueous complexation chemistry. Chem Sci 2021; 12:5638-5654. [PMID: 34168798 PMCID: PMC8179631 DOI: 10.1039/d1sc00233c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 01/07/2023] Open
Abstract
The positive impact of having access to well-defined starting materials for applied actinide technologies - and for technologies based on other elements - cannot be overstated. Of numerous relevant 5f-element starting materials, those in complexing aqueous media find widespread use. Consider acetic acid/acetate buffered solutions as an example. These solutions provide entry into diverse technologies, from small-scale production of actinide metal to preparing radiolabeled chelates for medical applications. However, like so many aqueous solutions that contain actinides and complexing agents, 5f-element speciation in acetic acid/acetate cocktails is poorly defined. Herein, we address this problem and characterize Ac3+ and Cm3+ speciation as a function of increasing acetic acid/acetate concentrations (0.1 to 15 M, pH = 5.5). Results obtained via X-ray absorption and optical spectroscopy show the aquo ion dominated in dilute acetic acid/acetate solutions (0.1 M). Increasing acetic acid/acetate concentrations to 15 M increased complexation and revealed divergent reactivity between early and late actinides. A neutral Ac(H2O)6 (1)(O2CMe)3 (1) compound was the major species in solution for the large Ac3+. In contrast, smaller Cm3+ preferred forming an anion. There were approximately four bound O2CMe1- ligands and one to two inner sphere H2O ligands. The conclusion that increasing acetic acid/acetate concentrations increased acetate complexation was corroborated by characterizing (NH4)2M(O2CMe)5 (M = Eu3+, Am3+ and Cm3+) using single crystal X-ray diffraction and optical spectroscopy (absorption, emission, excitation, and excited state lifetime measurements).
Collapse
Affiliation(s)
- Zachary R Jones
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Maksim Y Livshits
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Frankie D White
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Elodie Dalodière
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Maryline G Ferrier
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Laura M Lilley
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Karah E Knope
- Department of Chemistry, Georgetown University 37th and O Streets NW Washington D.C. 20057 USA
| | - Stosh A Kozimor
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Veronika Mocko
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Brian L Scott
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Benjamin W Stein
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| | - Jennifer N Wacker
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
- Department of Chemistry, Georgetown University 37th and O Streets NW Washington D.C. 20057 USA
| | - David H Woen
- Los Alamos National Laboratory (LANL) P.O. Box 1663, Los Alamos New Mexico 87545 USA
| |
Collapse
|
38
|
Shiery RC, Fulton JL, Balasubramanian M, Nguyen MT, Lu JB, Li J, Rousseau R, Glezakou VA, Cantu DC. Coordination Sphere of Lanthanide Aqua Ions Resolved with Ab Initio Molecular Dynamics and X-ray Absorption Spectroscopy. Inorg Chem 2021; 60:3117-3130. [PMID: 33544594 DOI: 10.1021/acs.inorgchem.0c03438] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To resolve the fleeting structures of lanthanide Ln3+ aqua ions in solution, we (i) performed the first ab initio molecular dynamics (AIMD) simulations of the entire series of Ln3+ aqua ions in explicit water solvent using pseudopotentials and basis sets recently optimized for lanthanides and (ii) measured the symmetry of the hydrating waters about Ln3+ ions (Nd3+, Dy3+, Er3+, Lu3+) for the first time with extended X-ray absorption fine structure (EXAFS). EXAFS spectra were measured experimentally and generated from AIMD trajectories to directly compare simulation, which concurrently considers the electronic structure and the atomic dynamics in solution, with experiment. We performed a comprehensive evaluation of EXAFS multiple-scattering analysis (up to 6.5 Å) to measure Ln-O distances and angular correlations (i.e., symmetry) and elucidate the molecular geometry of the first hydration shell. This evaluation, in combination with symmetry-dependent L3- and L1-edge spectral analysis, shows that the AIMD simulations remarkably reproduces the experimental EXAFS data. The error in the predicted Ln-O distances is less than 0.07 Å for the later lanthanides, while we observed excellent agreement with predicted distances within experimental uncertainty for the early lanthanides. Our analysis revealed a dynamic, symmetrically disordered first coordination shell, which does not conform to a single molecular geometry for most lanthanides. This work sheds critical light on the highly elusive coordination geometry of the Ln3+ aqua ions.
Collapse
Affiliation(s)
- Richard C Shiery
- Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - John L Fulton
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Manh-Thuong Nguyen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jun-Bo Lu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Roger Rousseau
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - David C Cantu
- Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
39
|
Ryzhkov MV, Enyashin AN, Delley B. Plutonium complexes in water: new approach to ab initio modeling. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2020-0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Geometry optimization and the electronic structure calculations of Pu
Z+ complexes (Z = 3–6) in water solution have been performed, within the framework of the DMol3 and Relativistic Discrete-Variational (RDV) methods. For the simulation of Pu
Z+ molecular environment in aqueous solution we used 22 and 32 water molecules randomly distributed around cation. To model the effect of bulk solvent environment we used COSMO (Conductor-like Screening Model) potential for water (ε = 78.54). The obtained results showed that this approach allows the modeling of water dissociation and the formation of hydrolysis products. Our previously suggested scheme for the calculation of interaction energies between selected fragments of multi-molecular systems provides the quantitative estimation of the interaction strengths between plutonium in various oxidation states and each ligand in the first and second coordination shells in water solution.
Collapse
Affiliation(s)
- Mikhail V. Ryzhkov
- Institute of Solid State Chemistry, Ural Division of the Russian Academy of Science , Ekaterinburg , Russia
| | - Andrei N. Enyashin
- Institute of Solid State Chemistry, Ural Division of the Russian Academy of Science , Ekaterinburg , Russia
| | - Bernard Delley
- Paul Scherrer Institut WHGA 123 , CH-5232 , Villigen PSI , Switzerland
| |
Collapse
|
40
|
Gao Y, Grover P, Schreckenbach G. Stabilization of hydrated Ac III cation: the role of superatom states in actinium-water bonding. Chem Sci 2021; 12:2655-2666. [PMID: 34164034 PMCID: PMC8179294 DOI: 10.1039/d0sc02342f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/03/2021] [Indexed: 12/02/2022] Open
Abstract
225Ac-based radiopharmaceuticals have the potential to become invaluable in designated cancer therapy. However, the limited understanding of the solution chemistry and bonding properties of actinium has hindered the development of existing and emerging targeted radiotherapeutics, which also poses a significant challenge in the discovery of new agents. Herein, we report the geometric and electronic structural properties of hydrated AcIII cations in the [AcIII(H2O) n ]3+ (n = 4-11) complexes in aqueous solution and gas-phase using density functional theory. We found that nine water molecules coordinated to the AcIII cation is the most stable complex due to an enhanced hydration Gibbs free energy. This complex adopts a closed-shell 18-electron configuration (1S 21P 61D 10) of a superatom state, which indicates a non-negligible covalent character and involves H2O → AcIII σ donation interaction between s-/p-/d-type atomic orbitals of the Ac atom and 2p atomic orbitals of the O atoms. Furthermore, potentially existing 10-coordinated complexes need to overcome an energy barrier (>0.10 eV) caused by hydrogen bonding to convert to 9-coordination. These results imply the importance of superatom states in actinide chemistry generally, and specifically in AcIII solution chemistry, and highlight the conversion mechanism between different coordination numbers.
Collapse
Affiliation(s)
- Yang Gao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
- Department of Chemistry, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Payal Grover
- Department of Chemistry, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| |
Collapse
|
41
|
Xian D, Zhou W, Wang J, Pan D, Li X, Li Y, Shi Y, Wu W, Tan Z, Liu C. Multiple investigations of aqueous Eu(III)-oxalate complexes: the reduction in coordination number and validation of spectral linear correlation. Dalton Trans 2021; 50:9388-9398. [PMID: 34096939 DOI: 10.1039/d1dt00609f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detailed information on the An(iii)/Ln(iii) complexation properties in solution is essential for separation chemistry and the prediction of their potential for radionuclide migration from nuclear waste repositories into natural aquifers. In the present study, to better reveal and confirm the structural information of [Eu(Ox)x (H2O)h-2x]3-2x (h = 8, 9; x = 0-3) aqueous species, especially the variable coordination number (CN), and explore the validity of the spectral linear correlation between the luminescence lifetime and the residual hydration number in the first coordination sphere of Eu(iii) compounds in solution, a comparison between the spectral results and the theoretical calculations in a wide parametric space in terms of the pH value and oxalate concentration was carried out by combining time-resolved luminescence spectroscopy (TRLS) with speciation modelling and density functional theory (DFT) calculations. We have found direct and clear evidence for the 9-fold to 8-fold coordination number reduction of Eu(iii) atoms upon coordination with more than one oxalate in an aqueous medium, and as well systematically validated the applicability of the spectral linear correlation in an aqueous system (otherwise solid state) involving multiple species with the support of relatively reliable and clear speciation modelling.
Collapse
Affiliation(s)
- Dongfan Xian
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Wanqiang Zhou
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Jingyi Wang
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Duoqiang Pan
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Xiaolong Li
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Yao Li
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Yanlin Shi
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Wangsuo Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhaoyi Tan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Chunli Liu
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
42
|
Bengio D, Dumas T, Arpigny S, Husar R, Mendes E, Solari PL, Schlegel ML, Schlegel D, Pellet-Rostaing S, Moisy P. Electrochemical and Spectroscopic Study of Eu III and Eu II Coordination in the 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquid. Chemistry 2020; 26:14385-14396. [PMID: 32529746 DOI: 10.1002/chem.202001469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/05/2020] [Indexed: 11/09/2022]
Abstract
Separation processes based on room temperature ionic liquids (RTIL) and electrochemical refining are promising strategies for the recovery of lanthanides from primary ores and electronic waste. However, they require the speciation of dissolved elements to be known with accuracy. In the present study, Eu coordination and EuIII /EuII electrochemical behavior as a function of water content in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2 ]) was investigated using UV-visible spectrophotometry, time-resolved laser fluorescence spectroscopy, electrochemistry, and X-ray absorption spectroscopy. In situ measurements were performed in spectroelectrochemical cells. Under anhydrous conditions, EuIII and EuII were complexed by NTf2 , forming Eu-O and Eu-(N,O) bonds with the anion sulfoxide function and N atoms, respectively. This complexation resulted in a greater stability of EuII , and in quasi-reversible oxidation-reduction with an E0 ' potential of 0.18 V versus the ferrocenium/ferrocene (Fc+ /Fc) couple. Upon increasing water content, progressive incorporation of water in the EuIII coordination sphere occurred. This led to reversible oxidation-reduction reactions, but also to a decrease in stability of the +II oxidation state (E0 '=-0.45 V vs. Fc+ /Fc in RTIL containing 1300 mm water).
Collapse
Affiliation(s)
- David Bengio
- CEA, DES, ISEC, DMRC, Univ Montpellier, Site de Marcoule, 30207, Bagnols-sur-Cèze, France
| | - Thomas Dumas
- CEA, DES, ISEC, DMRC, Univ Montpellier, Site de Marcoule, 30207, Bagnols-sur-Cèze, France
| | - Sylvie Arpigny
- CEA, DES, ISEC, DMRC, Univ Montpellier, Site de Marcoule, 30207, Bagnols-sur-Cèze, France
| | - Richard Husar
- CEA, DES, ISEC, DMRC, Univ Montpellier, Site de Marcoule, 30207, Bagnols-sur-Cèze, France
| | - Eric Mendes
- CEA, DES, ISEC, DMRC, Univ Montpellier, Site de Marcoule, 30207, Bagnols-sur-Cèze, France
| | - Pier Lorenzo Solari
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91190, Gif-sur-Yvette, France
| | - Michel L Schlegel
- CEA, Service d'Études Analytiques et de Réactivité des Surfaces, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Daniel Schlegel
- ESTA-École Supérieure des Technologies et des Affaires, 90004, Belfort Cedex, France
| | | | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ Montpellier, Site de Marcoule, 30207, Bagnols-sur-Cèze, France
| |
Collapse
|
43
|
Pallares RM, Panyala NR, Sturzbecher-Hoehne M, Illy MC, Abergel RJ. Characterizing the general chelating affinity of serum protein fetuin for lanthanides. J Biol Inorg Chem 2020; 25:941-948. [DOI: 10.1007/s00775-020-01815-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022]
|
44
|
Buchanan CA, Ko E, Cira S, Balasubramanian M, Goldsmith BR, Singh N. Structures and Free Energies of Cerium Ions in Acidic Electrolytes. Inorg Chem 2020; 59:12552-12563. [PMID: 32845625 DOI: 10.1021/acs.inorgchem.0c01645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Ce3+/Ce4+ redox potential changes with the electrolyte, which could be due to unequal anion complexation free energies between Ce3+ and Ce4+ or a change in the solvent electrostatic screening. Ce complexation with anions and solvent screening also affect the solubility of Ce and charge transfer kinetics for electrochemical reactions involving waste remediation and energy storage. We report the structures and free energies of cerium complexes in seven acidic electrolytes based on Extended X-ray Absorption Fine Structure, UV-vis, and Density Functional Theory calculations. Ce3+ coordinates with nine water molecules as [Ce(H2O)9]3+ in all studied electrolytes. However, Ce4+ complexes with anions in all electrolytes except HClO4. Thus, our results suggest that Ce4+-anion complexation leads to the large shifts in standard redox potential. Long range screening effects are smaller than the anion complexation energies but could be responsible for changes in the Ce solubility with acid.
Collapse
Affiliation(s)
- Cailin A Buchanan
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eunbyeol Ko
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Spencer Cira
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mahalingam Balasubramanian
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Bryan R Goldsmith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nirala Singh
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
45
|
Liu Y, Wang CZ, Wu QY, Lan JH, Chai ZF, Liu Q, Shi WQ. Theoretical Prediction of the Potential Applications of Phenanthroline Derivatives in Separation of Transplutonium Elements. Inorg Chem 2020; 59:11469-11480. [PMID: 32799470 DOI: 10.1021/acs.inorgchem.0c01271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recovery of transplutonium elements from adjacent actinides is extremely complicated in spent fuel reprocessing. Uncovering the electronic structures of transplutonium compounds is essential for designing robust ligands for in-group separation of transplutonium actinides. Here, we demonstrate the in-group transplutonium actinides separation ability of the recent developed phenanthroline ligand Et-Tol-DAPhen (N2,N9-diethyl-N2,N9-di-p-tolyl-1,10-phenanthroline-2,9-dicarboxamide, La) and its derivatives (5-bromo-(N2,N9-diethyl-N2,N9-di-p-tolyl-1,10-phenanthroline-2,9-dicarboxamide, Lb), and 5-(4-(λ1-oxidaneyl)phenyl)-(N2,N9-diethyl-N2,N9-di-p-tolyl-1,10-phenanthroline-2,9- dicarboxamide, Lc) through quasi-relativistic density functional theory (DFT). Both electrostatic potential and molecular orbital analyses of the ligands indicate that the electron-donating group substituted ligand Lc is a better electron donor to actinides than La and Lb. The possible extracted complexes AnL(NO3)3 and [AnL2(NO3)]2+ (L = La, Lb, Lc; An = Am, Cm, Bk, Cf) possess similar structures. Bonding nature analysis validates that the covalent interactions of the metal-ligand bonds are enhanced across actinide series from Am to Cf, which stem from the energy degeneracy of the 5f orbitals of actinides and the 2p orbitals of the ligand coordinating atoms. The Lc ligand displays slightly stronger covalent bonding compared to the other two ligands. Simultaneously, thermodynamic analysis confirms the stronger metal-ligand bonding of the Cf3+ complexes and the higher stability of the extraction species with Lc. Consequently, the covalency between the DAPhen derivatives and transplutonium actinides seems to be positively correlated with the extraction ability of these ligands. Nevertheless, these ligands exhibit diverse separation abilities to in-group actinide recovery. Therefore, the enhancement of covalency does not necessarily lead to the improvement of separation ability due to different extraction capabilities. We hope that these results will provide some inspiration for designing novel ligands for in-group transplutonium separation.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Weßling P, Schenk T, Braun F, Beele BB, Trumm S, Trumm M, Schimmelpfennig B, Schild D, Geist A, Panak PJ. Trivalent Actinide Ions Showing Tenfold Coordination in Solution. Inorg Chem 2020; 59:12410-12421. [PMID: 32794734 DOI: 10.1021/acs.inorgchem.0c01526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trivalent actinides generally exhibit ninefold coordination in solution. 2,6-Bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (nPr-BTP), a tridentate nitrogen donor ligand, is known to form ninefold coordinated 1:3 complexes, [An(nPr-BTP)3]3+ (An = U, Pu, Am, Cm) in solution. We report a Cm(III) complex with tenfold coordination in solution, [Cm(nPr-BTP)3(NO3)]2+. This species was identified using time-resolved laser fluorescence spectroscopy (TRLFS), vibronic side band spectroscopy (VSBS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT). Adding nitrate to a solution of the [Cm(nPr-BTP)3]3+ complex in 2-propanol shifts the Cm(III) emission band from 613.1 to 617.3 nm. This bathochromic shift is due to a higher coordination number of the Cm(III) ion in solution, in agreement with the formation of the [Cm(nPr-BTP)3(NO3)]2+ complex. The formation of this complex exhibits slow kinetics in the range of 5 to 12 days, depending on the water content of the solvent. Formation of a complex [Cm(nPr-BTP)3(X)]2+ was not observed for anions other than nitrate (X- = NO2-, CN-, or OTf-). The formation of the [Cm(nPr-BTP)3(NO3)]2+ complex was studied as a function of NO3- and nPr-BTP concentrations, and slope analyses confirmed the addition of one nitrate anion to the [Cm(nPr-BTP)3]3+ complex. Experiments with varied nPr-BTP concentration show that [Cm(nPr-BTP)3(NO3)]2+ only forms at nPr-BTP concentrations below 10-4 mol/L whereas for concentrations greater than 10-4 mol/L the formation of the tenfold species is suppressed and [Cm(nPr-BTP)3]3+ is the only species present. The presence of the tenfold coordinated complex is supported by VSBS, XPS, and DFT calculations. The vibronic side band of the [Cm(nPr-BTP)3(NO3)]2+ complex exhibits a nitrate stretching mode not observed in the [Cm(nPr-BTP)3]3+ complex. Moreover, XPS on [M(nPr-BTP)3(NO3)](NO3)2 (M = Eu, Am) yields signals from both non-coordinated and coordinated nitrate. Finally, DFT calculations reveal that the energetically most favored structure is obtained if the nitrate is positioned on the C2 axis of the D3 symmetrical [Cm(nPr-BTP)3]3+ complex with a bond distance of 413 pm. Combining results from TRLFS, VSBS, XPS, and DFT provides sound evidence for a unique tenfold coordinated Cm(III) complex in solution-a novelty in An(III) solution chemistry.
Collapse
Affiliation(s)
- Patrik Weßling
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany.,Ruprecht-Karls-Universität Heidelberg, Institut für Physikalische Chemie, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Tobias Schenk
- Ruprecht-Karls-Universität Heidelberg, Institut für Physikalische Chemie, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Felix Braun
- Ruprecht-Karls-Universität Heidelberg, Institut für Physikalische Chemie, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Björn B Beele
- Bergische Universität Wuppertal, Inorganic Chemistry, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Sascha Trumm
- Karlsruhe Institute of Technology (KIT), Center for Advanced Technological and Environmental Training (FTU), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Michael Trumm
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Bernd Schimmelpfennig
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Dieter Schild
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Andreas Geist
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Petra J Panak
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany.,Ruprecht-Karls-Universität Heidelberg, Institut für Physikalische Chemie, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Tamain C, Bonato L, Aupiais J, Dumas T, Guillaumont D, Barkleit A, Berthon C, Solari PL, Ikeda‐Ohno A, Guilbaud P, Moisy P. Role of the Hydroxo Group in the Coordination of Citric Acid to Trivalent Americium. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Laura Bonato
- CEA, DES, DMRC, Univ Montpellier Marcoule France
| | | | - Thomas Dumas
- CEA, DES, DMRC, Univ Montpellier Marcoule France
| | | | - Astrid Barkleit
- Institute of Resource Ecology Helmholtz‐Zentrum Dresden Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
| | | | - Pier L. Solari
- Synchrotron SOLEIL L'Orme des Merisiers Saint Aubin, BP 48 F‐91192 Gif‐sur‐Yvette Cedex France
| | - Atsushi Ikeda‐Ohno
- Institute of Resource Ecology Helmholtz‐Zentrum Dresden Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
- Collaborative Laboratories for Advanced Nuclear Decommissioning (CLADS) Japan Atomic Energy Agency (JAEA) 2‐4 Shirakata Tokai‐mura, Naka‐gun Ibaraki 319‐1195 Japan
| | | | | |
Collapse
|
48
|
Lozano A, Fernández-Martínez A, Ayora C, Di Tommaso D, Poulain A, Rovezzi M, Marini C. Solid and Aqueous Speciation of Yttrium in Passive Remediation Systems of Acid Mine Drainage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11153-11161. [PMID: 31436961 DOI: 10.1021/acs.est.9b01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Yttrium belongs to the rare earth elements (REEs) together with lanthanides and scandium. REEs are commonly used in modern technologies, and their limited supply has made it necessary to look for new alternative resources. Acid mine drainage (AMD) is a potential resource since it is moderately enriched in REEs. In fact, in passive remediation systems, which are implemented to minimize the environmental impacts of AMD, REEs are mainly retained in basaluminite, an aluminum hydroxysulfate precipitate. In this study, the solid and liquid speciation and the local structure of yttrium are studied in high-sulfate aqueous solutions, basaluminite standards, and samples from remediation columns using synchrotron-based techniques and molecular modeling. Pair distribution function (PDF) analyses and ab initio molecular dynamics density functional theory models of the yttrium sulfate solution show that the YSO4+ ion pair forms a monodentate inner-sphere complex. Extended X-ray absorption fine structure (EXAFS) and PDF analyses show that Y is retained by basaluminite, forming a monodentate inner-sphere surface complex on the aluminum hydroxide surface. EXAFS of the column samples shows that more than 72% of their signal is represented by the signal of basaluminite with which YSO4+ forms an inner-sphere complex. The atomic view of the REE configuration in AMD environments could facilitate a deeper research of REE recovery from waste generated in AMD remediation systems.
Collapse
Affiliation(s)
- Alba Lozano
- Institute of Environmental Assessment and Water Research, (IDAEA-CSIC) , Jordi Girona 18-26 , 08034 Barcelona , Spain
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Cristal-lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia , Universitat de Barcelona (UB) , C/Martí Franquès, S/N , 08028 Barcelona , Spain
| | | | - Carlos Ayora
- Institute of Environmental Assessment and Water Research, (IDAEA-CSIC) , Jordi Girona 18-26 , 08034 Barcelona , Spain
| | - Devis Di Tommaso
- Thomas Young Centre, Materials Research Institute, Department of Chemistry , Queen Mary University of London , Mile End Road , E1 4NS London , U.K
| | - Agnieszka Poulain
- ESRF, The European Synchrotron , 71 Avenue des Martyrs , 38000 Grenoble , France
| | - Mauro Rovezzi
- Univ Grenoble Alpes, CNRS, IRD, Irstea, Météo France, OSUG, FAME , 38000 Grenoble , France
| | - Carlo Marini
- CELLS-ALBA Synchrotron Radiation Facility , Carrer de la Llum 2-26 , Cerdanyola del Valles, 08290 Barcelona , Spain
| |
Collapse
|
49
|
Willberger C, Amayri S, Häußler V, Scholze R, Reich T. Investigation of the Electrophoretic Mobility of the Actinides Th, U, Np, Pu, and Am in Different Oxidation States. Anal Chem 2019; 91:11537-11543. [PMID: 31393112 DOI: 10.1021/acs.analchem.9b00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electrophoretic mobilities (μe) of the actinides Th and U-Am in different oxidation states (prepared in 1 M HCl and 1 M HClO4) have been determined by capillary electrophoresis (CE)-inductively coupled plasma mass spectrometry (ICPMS) using 1 M acetic acid as the background electrolyte, which has proven to provide an excellent setup for trace analysis at environmentally relevant concentrations (1 × 10-9 M). The values are independent of the respective acid solution. The μe of the Pu oxidation states +III to +VI have been measured. They agree with both the available literature data and the redox-stable analogues (Eu(III), Th(IV), Np(V), U(VI)) that have also been investigated. The trend in the μe for the actinides U-Pu was found to be An(III) > An(VI) > An(V) > An(IV). The μe values of Am(III) (μe(Am(III)) = 3.86 × 10-4 cm2/(Vs)), U(IV) (μe(U(IV)) = 0.34 × 10-4 cm2/(Vs)), and U(VI) (μe(U(VI)) = 1.51 × 10-4 cm2/(Vs)) have been measured for the first time under these experimental conditions. Furthermore, the measured μe values show systematic trends that can be rationalized on the basis of the calculated species distribution of the actinides in 1 M acetic acid and the corresponding average effective charges (qeff).
Collapse
Affiliation(s)
- Christian Willberger
- Institute of Nuclear Chemistry , Johannes Gutenberg University Mainz , 55099 Mainz , Germany
| | - Samer Amayri
- Institute of Nuclear Chemistry , Johannes Gutenberg University Mainz , 55099 Mainz , Germany
| | - Verena Häußler
- Institute of Nuclear Chemistry , Johannes Gutenberg University Mainz , 55099 Mainz , Germany
| | - Raphael Scholze
- Institute of Nuclear Chemistry , Johannes Gutenberg University Mainz , 55099 Mainz , Germany
| | - Tobias Reich
- Institute of Nuclear Chemistry , Johannes Gutenberg University Mainz , 55099 Mainz , Germany
| |
Collapse
|
50
|
Rodriguez Quiroz N, Norton AM, Nguyen H, Vasileiadou E, Vlachos DG. Homogeneous Metal Salt Solutions for Biomass Upgrading and Other Select Organic Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01853] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Natalia Rodriguez Quiroz
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Angela M. Norton
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Hannah Nguyen
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Efterpi Vasileiadou
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Dionisios G. Vlachos
- Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|