1
|
Jacob MM, Ponnuchamy M, Roshin A, Kapoor A. Adsorptive removal of oxytetracycline hydrochloride using bagasse-based biochar powder and beads. CHEMOSPHERE 2024; 363:143016. [PMID: 39103098 DOI: 10.1016/j.chemosphere.2024.143016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 06/15/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Oxytetracycline Hydrochloride (OTC), a common antibiotic used to treat specific illnesses in humans and animals, is characterized by poor absorption into cells, low volatility, and high hydrophilicity. It is a potent contaminant that poses a serious threat to the ecosystem, particularly the aquatic sources. Adsorption onto natural adsorbents is one of the most successful, economical, and ecologically friendly ways to remove antibiotics from waste water. The present work focuses on the adsorption of OTC utilizing alginate biochar beads (AlBCB) and biochar powder (BC) derived from bagasse. The influence of several factors were studies and optimized through batch studies employing BC and AlBCB. After 50 min BC displayed a removal of 97%, at an initial concentration of 10 ppm. The experimental data was discovered to follow PFO kinetics and fit with the Freundlich isotherm adsorption model. AlBCB, after a contact time of 40 min, indicated a maximum percentage removal of 86% for initial concentration of 10 ppm OTC. Al-biochar beads showed the maximum percentage removal at pH 10. 0.5 g of adsorbent was used to carry out all batch experiments at room temperature. The adsorption fitted Freundlich adsorption isotherm and intraparticle diffusion kinetics.
Collapse
Affiliation(s)
- Meenu Mariam Jacob
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, 603 202
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, 603 202.
| | - Akhina Roshin
- Functional Materials Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, 603 202
| | - Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj, Kanpur, UP, India, 208 002
| |
Collapse
|
2
|
Thamer BM, Al-aizari FA, Abdo HS. Enhanced Adsorption of Textile Dyes by a Novel Sulfonated Activated Carbon Derived from Pomegranate Peel Waste: Isotherm, Kinetic and Thermodynamic Study. Molecules 2023; 28:7712. [PMID: 38067443 PMCID: PMC10708109 DOI: 10.3390/molecules28237712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
The rapid growth of the dye and textile industry has raised significant public concerns regarding the pollution caused by dye wastewater, which poses potential risks to human health. In this study, we successfully improved the adsorption efficiency of activated carbon derived from pomegranate peel waste (PPAC) through a single-step and surface modification approach using 5-sulfonate-salicylaldehyde sodium salt. This innovative and effective sulfonation approach to produce sulfonated activated carbon (S-PPAC) proved to be highly effective in removing crystal violet dye (CV) from polluted water. The prepared PPAC and S-PPAC were characterized via FESEM, EDS, FTIR and BET surface area. Characterization studies confirmed the highly porous structure of the PPAC and its successful surface modification, with surface areas reaching 1180.63 m2/g and 740.75 m2/g for the PPAC and S-PPAC, respectively. The maximum adsorption capacity was achieved at 785.53 mg/g with the S-PPAC, an increase of 22.76% compared to the PPAC at 45 °C. The isothermic adsorption and kinetic studies demonstrated that the adsorption process aligned well with the Freundlich isotherm model and followed the Elovich kinetic model, respectively. The thermodynamic study confirmed that the adsorption of CV dye was endothermic, spontaneous and thermodynamically favorable onto PPAC and S-PPAC.
Collapse
Affiliation(s)
- Badr M. Thamer
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Faiz A. Al-aizari
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hany S. Abdo
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
| |
Collapse
|
3
|
Mohd Radhuwan SN, Abdulhameed AS, Jawad AH, ALOthman ZA, Wilson LD, Algburi S. Production of activated carbon from food wastes (chicken bones and rice waste) by microwave assisted ZnCl 2 activation: an optimized process for crystal violet dye removal. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:699-709. [PMID: 37740478 DOI: 10.1080/15226514.2023.2260004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
A major worldwide challenge that presents significant economic, environmental, and social concerns is the rising generation of food waste. The current work used chicken bones (CB) and rice (R) food waste as alternate precursors for the production of activated carbon (CBRAC) by microwave radiation-assisted ZnCl2 activation. The adsorption characteristics of CBRAC were investigated in depth by removing an organic dye (crystal violet, CV) from an aquatic environment. To establish ideal conditions from the significant adsorption factors (A: CBRAC dosage (0.02-0.12 g/100 mL); B: pH (4-10); and C: duration (30-420), a numerical desirability function of Box-Behnken design (BBD) was utilized. The highest CV decolorization by CBRAC was reported to be 90.06% when the following conditions were met: dose = 0.118 g/100 mL, pH = 9.0, and time = 408 min. Adsorption kinetics revealed that the pseudo-first order (PFO) model best matches the data, whereas the Langmuir model was characterized by equilibrium adsorption, where the adsorption capacity of CBRAC for CV dye was calculated to be 57.9 mg/g. CV adsorption is accomplished by several processes, including electrostatic forces, pore diffusion, π-π stacking, and H-bonding. This study demonstrates the use of CB and R as biomass precursors for the efficient creation of CBRAC and their use in wastewater treatment, resulting in a greener environment.
Collapse
Affiliation(s)
- Siti Nasuha Mohd Radhuwan
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Ali H Jawad
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
4
|
Raveena, Alka, Gandhi N, Kumari P. Efficacious Removal of Flonicamid Insecticide from Water by GO@functionalized Calix[4]pyrrole: Synergistic Effect in Adsorption. ChemistrySelect 2023. [DOI: 10.1002/slct.202203431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Raveena
- Bio-organic material research laboratory Department of Chemistry Deshbandhu College University of Delhi, Kalkaji New Delhi 110019 India
- Department of Chemistry University of Delhi New Delhi 110007 India
| | - Alka
- Bio-organic material research laboratory Department of Chemistry Deshbandhu College University of Delhi, Kalkaji New Delhi 110019 India
| | - Namita Gandhi
- Bio-organic material research laboratory Department of Chemistry Deshbandhu College University of Delhi, Kalkaji New Delhi 110019 India
| | - Pratibha Kumari
- Bio-organic material research laboratory Department of Chemistry Deshbandhu College University of Delhi, Kalkaji New Delhi 110019 India
| |
Collapse
|
5
|
Mancuso A, Blangetti N, Sacco O, Freyria FS, Bonelli B, Esposito S, Sannino D, Vaiano V. Photocatalytic Degradation of Crystal Violet Dye under Visible Light by Fe-Doped TiO 2 Prepared by Reverse-Micelle Sol-Gel Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020270. [PMID: 36678023 PMCID: PMC9861999 DOI: 10.3390/nano13020270] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 05/31/2023]
Abstract
A reverse-micelle sol-gel method was chosen for the preparation of Fe-doped TiO2 samples that were employed in the photodegradation of the crystal violet dye under visible light irradiation in a batch reactor. The dopant amount was varied to assess the optimal photocatalyst composition towards the target dye degradation. The photocatalysts were characterized through a multi-technique approach, envisaging XRPD and QPA as obtained by Rietveld refinement, FE-SEM analysis, DR UV-vis spectroscopy, N2 adsorption/desorption isotherms measurement at -196 °C, ζ-potential measurement, and XPS analysis. The physical-chemical characterization showed that the adopted synthesis method allows obtaining NPs with uniform shape and size and promotes the introduction of Fe into the titania matrix, finally affecting the relative amounts of the three occurring polymorphs of TiO2 (anatase, rutile and brookite). By increasing the Fe content, the band gap energy decreases from 3.13 eV (with undoped TiO2) to 2.65 eV (with both 2.5 and 3.5 wt.% nominal Fe contents). At higher Fe content, surface Fe oxo-hydroxide species occur, as shown by DR UV-vis and XP spectroscopies. All the Fe-doped TiO2 photocatalysts were active in the degradation and mineralization of the target dye, showing a TOC removal higher than the undoped sample. The photoactivity under visible light was ascribed both to the band-gap reduction (as confirmed by phenol photodegradation) and to dye sensitization of the photocatalyst surface (as confirmed by photocatalytic tests carried out using different visible-emission spectra LEDs). The main reactive species involved in the dye degradation were determined to be positive holes.
Collapse
Affiliation(s)
- Antonietta Mancuso
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Nicola Blangetti
- Department of Applied Science and Technology and INSTM Unit of Torino Politecnico, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Olga Sacco
- Department of Chemistry and Biology “A. Zambelli” and INSTM Research Unit, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Francesca Stefania Freyria
- Department of Applied Science and Technology and INSTM Unit of Torino Politecnico, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Barbara Bonelli
- Department of Applied Science and Technology and INSTM Unit of Torino Politecnico, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- Interdepartmental Centre PolitoBIOMed Lab., Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Serena Esposito
- Department of Applied Science and Technology and INSTM Unit of Torino Politecnico, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Diana Sannino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Vincenzo Vaiano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
6
|
Ansari MAH, Khan ME, Mohammad A, Baig MT, Chaudary A, Tauqeer M. Application of nanocomposites in wastewater treatment. NANOCOMPOSITES-ADVANCED MATERIALS FOR ENERGY AND ENVIRONMENTAL ASPECTS 2023:297-319. [DOI: 10.1016/b978-0-323-99704-1.00025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Marouch S, Benbellat N, Duran A, Yilmaz E. Nanoclay- and TiO 2 Nanoparticle-Modified Poly( N-vinyl pyrrolidone) Hydrogels: A Multifunctional Material for Application in Photocatalytic Degradation and Adsorption-Based Removal of Organic Contaminants. ACS OMEGA 2022; 7:35256-35268. [PMID: 36211033 PMCID: PMC9535731 DOI: 10.1021/acsomega.2c04595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
In recent times, access to clean water has become increasingly difficult and one of the most important problems for the sustainability of life due to environmental pollution. Based on this thought, in this study, a multifunctional hydrogel nanocomposite (nanoclay@TiO2@PNVP) containing linear poly(N-vinyl pyrrolidone) (PNVP), nanoclay, and TiO2 nanoparticles was synthesized and used as an adsorbent and photocatalyst for the adsorption-based and photocatalytic degradation-based removal of organic and pharmaceutical pollutants such as methylene blue (MB) and sildenafil citrate (SLD). The modification of the hydrogel with TiO2 nanoparticles and nanoclay aimed to increase the adsorption capacity of the PNVP hydrogel as well as to gain photocatalytic properties for the effective removal of organic contaminants. This hybrid material, which can be cleaned in two different ways, can be reused and recycled at least 10 times. Characterization studies were carried out using Fourier transform infrared spectroscopy, scanning electron microscopy, Raman spectroscopy, thermogravimetric analysis, differential thermogravimetry, and viscosimetry techniques. Optimization studies for the adsorption-based removal of organic contaminants were carried out on MB and SLD as model organic compounds. The optimum parameters for MB were found at pH 10 of the sample solution when 50 mg of the nanoclay@TiO2@PNVP hydrogel nanocomposite was used for 420 min of contact time. It was observed that 99% of the MB was photocatalytically degraded within 150 min at pH 10. Our material had multifunctional applicability properties, showing high adsorption and photocatalytic performances over 99% for at least 10 times of use. For the removal of organic and pharmaceutical contaminants from wastewater, the synthesized material can be used in two treatment processes separately or in combination in one step, providing an important advantage for its usability in environmental applications.
Collapse
Affiliation(s)
- Salsabil Marouch
- Laboratory
of Chemistry and Environmental Chemistry (LCCE), Department of Chemistry,
Faculty of Matter Sciences, Batna-1 University, 05000 Batna, Algeria
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
- Nanotechnology
Application and Research Center, ERNAM Erciyes
University, 38039, Kayseri, Turkey
| | - Noura Benbellat
- Laboratory
of Chemistry of Materials and Living: Activity & Reactivity (LCMVAR),
Department of Chemistry, Faculty of Matter Sciences, Batna-1 University, 05000 Batna, Algeria
| | - Ali Duran
- Department
of Nanotechnology Engineering, Faculty of Engineering, Abdullah Gul University, 38080 Kayseri, Turkey
| | - Erkan Yilmaz
- Laboratory
of Chemistry and Environmental Chemistry (LCCE), Department of Chemistry,
Faculty of Matter Sciences, Batna-1 University, 05000 Batna, Algeria
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
- Technology
Research and Application Center (TAUM), Erciyes University, 38039 Kayseri, Turkey
| |
Collapse
|
8
|
Loganathan M, Raj AS, Murugesan A, Kumar PS. Effective adsorption of crystal violet onto aromatic polyimides: Kinetics and isotherm studies. CHEMOSPHERE 2022; 304:135332. [PMID: 35709844 DOI: 10.1016/j.chemosphere.2022.135332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The motive of this work is to synthesis aromatic polyimides by a two-step poly condensation process and the prepared aromatic polyamides (APIs) is been used as an effective functionalized adsorbent for the removal of carcinogenic crystal violet (CV) from aqueous medium. The adsorption efficiency of the APIs was enhanced by incorporation different functional moieties (varying aromatic dianhydrides with -O-, -(CF3)2-, -(CH3)2-) in the polymer structure. The initial and final concentration of CV was measured using UV-Vis spectrometer. The adsorption process was optimized by varying the parameters such as the effect of solution pH, contact time, initial dye concentration, and adsorbent dosage. Kinetics and isotherms of the adsorption system were appraised using data obtained from effect of contact time and initial dye concentration with corresponding empirical modelling techniques respectively. The evaluated results of the adsorption kinetic studies confirmed that the adsorption of API onto CV is followed a pseudo-second-order kinetic model. The adsorption behaviour and their interactions between APIs and CV are well established. The experimental results of this research output could be confirmed that APIs is a very effective adsorbent for the removal of cationic dye from aqueous.
Collapse
Affiliation(s)
- M Loganathan
- Polymer Science and Engineering Lab, Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, India
| | - Arya S Raj
- Polymer Science and Engineering Lab, Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, India
| | - A Murugesan
- Polymer Science and Engineering Lab, Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, India
| |
Collapse
|
9
|
Algarni TS, Al-Mohaimeed AM, Al-Odayni AB, Abduh NAY. Activated Carbon/ZnFe 2O 4 Nanocomposite Adsorbent for Efficient Removal of Crystal Violet Cationic Dye from Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3224. [PMID: 36145011 PMCID: PMC9502794 DOI: 10.3390/nano12183224] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the potential advantage of ZnFe2O4-incorporated activated carbon (ZFAC), fabricated via a simple wet homogenization, on the removal of cationic dye crystal violet (CV) from its aqueous solutions. The as-prepared ZFAC nanocomposite was characterized using Fourier transform infrared (FTIR), X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscope (SEM), thermogravimetric analysis (TGA), and ultraviolet-visible (UV-Vis). Batch adsorption operating conditions such as the pH (3-11), CV concentration (25-200 ppm), ZFAC dose (10-50 mg), temperature (23-45 °C), and contact time were evaluated. The results indicate pH-dependent uptake (optimum at pH 7.2) increased with temperature and CV concentration increase and decreased as adsorbent dose increased. Modeling of experimental data revealed better fit to the Langmuir than Freundlich and Temkin isotherms, with maximum monolayer capacities (Qm) of 208.29, 234.03, and 246.19 mg/g at 23, 35, and 45 °C, respectively. Kinetic studies suggest pseudo-second order; however, the intra-particle diffusion model indicates a rate-limiting step controlled by film diffusion mechanism. Based on the thermodynamic parameters, the sorption is spontaneous (-ΔG°), endothermic (+ΔH°), and random process (+ΔS°), and their values support the physical adsorption mechanism. In addition to the ease of preparation, the results confirm the potential of ZFAC as a purifier for dye removal from polluted water.
Collapse
Affiliation(s)
- Tahani Saad Algarni
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amal M. Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdel-Basit Al-Odayni
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Naaser A. Y. Abduh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Miao JL, Ren JQ, Li HJ, Wu DG, Wu YC. Mesoporous crosslinked chitosan-activated clinoptilolite biocomposite for the removal of anionic and cationic dyes. Colloids Surf B Biointerfaces 2022; 216:112579. [PMID: 35598510 DOI: 10.1016/j.colsurfb.2022.112579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 01/12/2023]
Abstract
A mesoporous crosslinked chitosan-activated clinoptilolite biocomposite (CS-GA/ACP) was prepared with chitosan (CS) as the substrate and glutaraldehyde (GA) as the crosslinking agent. Structural analysis of the CS-GA/ACP composite beads was performed using FTIR, SEM, and BET techniques. The adsorption properties of the CS-GA/ACP for Congo red (CR) and methylene blue (MB) removal were examined using a batch method. The effects of CS loading, CS-GA/ACP dosages (0.005-0.25 g), pH values (3-11), initial concentrations (30-300 mg/L), contact time (5-120 min), ionic strength, and temperatures (25-65 ℃) on the adsorption of CR and MB on the CS-GA/ACP composite beads were investigated. The pseudo-second-order kinetics could better describe the adsorption process than the pseudo-first-order kinetics, and the Langmuir isotherms model agreed well with the experimental data. The maximum adsorption capacities of the CS-GA/ACP for CR and MB were 180.59 mg/g and 143.67 mg/g at 25 ℃, respectively. The proposed mechanism studies showed that the possible interaction between the adsorbent and dye molecules were Yoshida H-bonding, dipole-dipole H-bonding, electrostatic interaction and n-π interaction. The CS-GA/ACP can be recycled to remove dyes without significant loss of efficacy, and the adsorption of dyes on the CS-GA/ACP is spontaneous endothermic adsorption. Overall, the CS-GA/ACP showed an excellent performance for dyes removal in aqueous solution and could be a practical candidate for industrial applications.
Collapse
Affiliation(s)
- Jia-Lin Miao
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Jia-Qi Ren
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Da-Gang Wu
- Shandong Muxiang Biotechnology Co., Ltd, Qingdao 266100, PR China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China.
| |
Collapse
|
11
|
Abril D, Ferrer V, Mirabal-Gallardo Y, Cabrera-Barjas G, Segura C, Marican A, Pereira A, Durán-Lara EF, Valdés O. Comparative Study of Three Dyes' Adsorption onto Activated Carbon from Chenopodium quinoa Willd and Quillaja saponaria. MATERIALS 2022; 15:ma15144898. [PMID: 35888365 PMCID: PMC9321238 DOI: 10.3390/ma15144898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
The present study shows porous activated carbon obtained from Chenopodium quinoa Willd and Quillaja saponaria and their use as potential adsorbents to remove three types of dyes from aqueous solutions. The adsorption results were compared with commercial charcoal to check their efficiency. All porous carbon materials were activated using carbon dioxide and steam and fully characterized. Moreover, the steam-activated samples exhibited a high total pore volume with a BET surface area of around 800 m2 g−1. Batch adsorption experiments showed that commercial charcoal is the charcoal that offered the best adsorption efficiency for tartrazine and sunset yellow FCF. However, in the case of crystal violet, all activated carbons obtained from Chenopodium quinoa Willd and Quillaja saponaria showed the best captures, outperforming commercial charcoal. Molecular dockings of the dyes on the commercial charcoal surface were performed using AutoDock Vina. The kinetic results of the three isotherm’s models for the present data follow the order: Langmuir~Freundlich > Temkin.
Collapse
Affiliation(s)
- Diana Abril
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Victor Ferrer
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, Coronel 4190000, Chile; (V.F.); (G.C.-B.); (C.S.)
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackena 4860, Santiago 7820436, Chile
| | - Yaneris Mirabal-Gallardo
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería Civil, Universidad Autónoma de Chile, Sede Talca, Talca 3460000, Chile;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, Coronel 4190000, Chile; (V.F.); (G.C.-B.); (C.S.)
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackena 4860, Santiago 7820436, Chile
| | - Cristina Segura
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, Coronel 4190000, Chile; (V.F.); (G.C.-B.); (C.S.)
| | - Adolfo Marican
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; (A.M.); (A.P.)
| | - Alfredo Pereira
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; (A.M.); (A.P.)
| | - Esteban F. Durán-Lara
- Bio & NanoMaterials Laboratory, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile;
| | - Oscar Valdés
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
- Correspondence:
| |
Collapse
|
12
|
Adsorption of toxic crystal violet dye from aqueous solution by using waste sugarcane leaf-based activated carbon: isotherm, kinetic and thermodynamic study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02500-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Homagai PL, Poudel R, Poudel S, Bhattarai A. Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon 2022; 8:e09261. [PMID: 35464698 PMCID: PMC9019243 DOI: 10.1016/j.heliyon.2022.e09261] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/30/2022] [Accepted: 04/05/2022] [Indexed: 11/04/2022] Open
Abstract
An approach to removing crystal violet (CV) dye from aqueous solutions was investigated by introducing a xanthate group on charred rice husk. The newly prepared charred rice husk (CRH) and xanthated rice husk (XRH) were characterized by XRD, SEM, FTIR, and elemental analysis. A batch technique was used to adsorb CV dye in aqueous suspensions. Different adsorbent quantities, concentrations, pH, and contact times were investigated to find the effect of these parameters. The optimum pH for both CRH and XRH was found to be 10. The adsorption capacity of CV dye onto CRH and XRH was found to be 62.85 mg/g and 90.02 mg/g at pH10, respectively. Langmuir isotherms could be reasonably explained by the experimental data. Within 60 min, equilibrium was achieved. Similarly, the kinetic data are best suited to the pseudo-second-order model. In comparison to XRH with CRH, XRH was found more efficient and can be used as a feasible alternative for removing CV dye from aqueous solutions.
Collapse
|
14
|
A Facile Synthesis and Properties of Graphene Oxide-Titanium Dioxide-Iron Oxide as Fenton Catalyst. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/2598536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Textile industries discharge wastewater in huge amount that contains several toxic contaminants, especially organic dyes. Organic dyes present in wastewater have many adverse effects on environment as well as on living organisms including human beings. The generation of a nanocomposite to trap the toxic organic dyes from wastewater is highly recommended. Herein, we report the preparation of graphene-iron-titanium oxide (GFT) nanocomposite using simple, practical, and cost-effective protocol. The prepared tri-nanocomposite was successfully recognized by employing several analytical techniques. Morphology of the prepared nanocomposites was assessed by SEM coupled with EDS (energy dispersive spectroscopy). HRTEM was used to measure the size of the nanocomposites with shape and morphology. The UV-visible absorption spectra of the nanocomposites were recorded by a UV-visible spectrophotometer. Finally, the crystal structures of the nanocomposites were confirmed by XRD. Moreover, we proposed a plausible mechanism to demonstrate the catalytic activity of GFT oxide nanocomposite for the degradation auramine (AM) dye via a heterogeneous Fenton process.
Collapse
|
15
|
Jiang G, Liu L, Xiong J, Luo Y, Cai L, Qian Y, Wang H, Mu L, Feng X, Lu X, Zhu J. Advanced Material-oriented Biomass Precise Reconstruction: A Review on Porous Carbon with Inherited Natural Structure and Created Artificial Structure by Post-treatment. Macromol Biosci 2022; 22:e2100479. [PMID: 35286776 DOI: 10.1002/mabi.202100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Manufacturing of porous carbon with biomass resources has been intensively investigated in recent decades. The diversity of biomass species and great variety of processing methods enable the structural richness of porous carbon as well as their wide applications. In this review, we specifically focused on the structure of biomass-derived porous carbon either inherited from natural biomass or created by post-treatment. The intrinsic structure of plant biomass was briefly introduced and the utilization of the unique structures at different length-scales were discussed. In term of post-treatment, the structural features of activated carbon by traditional physical and chemical activation were summarized and compared in a wide spectrum of biomass species, statistical analysis were performed to evaluate the effectiveness of different activation methods in creating specific pore structures. The similar pore structure of biomass-derived carbon and coal-derived carbon suggested a promising replacement with more sustainable biomass resources in producing porous carbon. In summary, using biomass as porous carbon precursor endows the flexibility of using its naturally patterned micro-structure and the tunability of controlled pore-creation by post treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guancong Jiang
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Li Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Jingjing Xiong
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Yiming Luo
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Liangcheng Cai
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Yu Qian
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Hao Wang
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Liwen Mu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Xin Feng
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Xiaohua Lu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Jiahua Zhu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
16
|
Khan A, Muhammad S. Graphene-substrate fabricated oxides and zinc oxide catalysts for the degradation of the methylene blue in the industrial wastewater. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The release of unsafe color dyes into various industrial effluents can harm the environment and human health and therefore needs remediation. The current research assesses the environmental friendly photo-less catalytic performance of zinc oxide/reduced graphene oxide (ZnO/RGO) nanocomposites, prepared via green synthetic route, for the degradation, and decontamination of methylene blue (MB) dye from industrial aqueous effluents and compared with that of zinc oxide (ZnO), hydrogen peroxide (H2O2), and reduced graphene oxide (RGO). The materials were characterized for surface morphology, functional groups, and crystallinity by using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analysis, respectively, showing that ZnO nanoparticles (NPs) were well-formed on the RGO surface and were having uniform pore sizes and large surface area. The degradation pattern of MB from its 40, 60, 80, and 100 ppm solutions by employing the degradation materials were examined using UV–Visible spectral analysis. The pH before and after the degradation of the MB in all the sample solutions was noted and found to change slightly after the degradation of MB. The results demonstrate that the ZnO/RGO nanocomposites display a better catalytic degradation efficiency (99.57%) as compared to the other degradation materials with the order of efficiency as ZnO/RGO > RGO > H2O2 > ZnO which shows that the degradation efficiency of ZnO (∼14%) can be significantly improved while fabricating its nanocomposite with RGO (99.57%). These findings can be utilized on a large-scale decontamination of dyes from industrial wastes without the involvement of light i.e., photo-less degradation.
Collapse
Affiliation(s)
- Adil Khan
- Chemistry Division , Pakistan Institute of Nuclear Science and Technology (PINSTECH) , P. O. 45650, Nilore , Islamabad , Pakistan
| | - Sayyar Muhammad
- Department of Chemistry , Islamia College Peshawar , 25120 Peshawar , Khyber Pakhtunkhwa , Pakistan
| |
Collapse
|
17
|
Ali SA, Mubarak SA, Yaagoob IY, Arshad Z, Mazumder MAJ. A sorbent containing pH-responsive chelating residues of aspartic and maleic acids for mitigation of toxic metal ions, cationic, and anionic dyes. RSC Adv 2022; 12:5938-5952. [PMID: 35424571 PMCID: PMC8981974 DOI: 10.1039/d1ra09234k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
t-Butyl hydroperoxide-initiated cycloterpolymerization of diallylaminoaspartic acid hydrochloride [(CH2[double bond, length as m-dash]CHCH2)2NH+CH(CO2H)CH2CO2H Cl-] (I), maleic acid (HO2CH[double bond, length as m-dash]CHCO2H) (II) and cross-linker tetraallylhexane-1,6-diamine dihydrochloride [(CH2[double bond, length as m-dash]CHCH2)2NH+(CH2)6NH+ (CH2CH[double bond, length as m-dash]CH2)2 2Cl-] (III) afforded a new pH-responsive resin (IV), loaded with four CO2H and a chelating motif of NH+⋯CO2 - in each repeating unit. The removal of cationic methylene blue (MB) (3000 ppm) at pH 7.25 and Pb(ii) (200 ppm) at pH 6 by IV at 298, 313, and 328 K followed second-order kinetics with E a of 33.4 and 40.7 kJ mol-1, respectively. Both MB and Pb(ii) were removed fast, accounting for 97.7% removal of MB within 15 min at 313 K and 94% of Pb(ii) removal within 1 min. The super-adsorbent resin gave respective q max values of 2609 mg g-1 and 873 mg g-1 for MB and Pb(ii). IV was also found to trap anionic dyes; it removed 91% Eriochrome Black T (EBT) from its 50 ppm solutions at pH 2. The resin was found to be effective in reducing priority metal contaminants (like Cr, Hg, Pb) in industrial wastewater to sub-ppb levels. The synthesis of the recyclable resin can be easily scaled up from inexpensive starting materials. The resin has been found to be better than many recently reported sorbents.
Collapse
Affiliation(s)
- Shaikh A Ali
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Shuaib A Mubarak
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
| | - Ibrahim Y Yaagoob
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
| | - Zeeshan Arshad
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
| | - Mohammad A J Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
18
|
Khakbaz F, Mirzaei M, Mahani M. Enhanced adsorption of crystal violet using Bi 3+ – intercalated Cd-MOF: isotherm, kinetic and thermodynamic study. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2032890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Faeze Khakbaz
- Department of Chemistry, Shahid Bahonar University, Kerman, Iran
| | - Mohammad Mirzaei
- Department of Chemistry, Shahid Bahonar University, Kerman, Iran
| | - Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
19
|
Tamer Y, Berber H. Effective removal of crystal violet from aqueous solution by graphene oxide incorporated hydrogel beads as a novel bio-adsorbent: kinetic, isotherm and thermodynamic studies. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2033125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yasemin Tamer
- Department of Polymer Material Engineering, Yalova University, Yalova, Turkey
| | - Hale Berber
- Department of Metallurgical and Materials Engineering, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
20
|
S’Id EC, Degué M, Khalifa C, M’Bareck C. Removal of crystal violet from water by poly acrylonitrile-co-sodium methallyl sulfonate (AN69) and poly acrylic acid (PAA) synthetic membranes. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2021-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The current investigation is focused on the removal of crystal violet (CV) from water by adsorption process (bach method). To achieve this purpose, specific membranes were prepared from poly acrylonitrile-co-sodium methallyl sulfonate (AN69) and poly acrylic acid (PAA) blends. The adsorption of CV onto AN69/PAA membranes was studied under various conditions: membrane composition, pH, contact time, initial concentration and temperature. To understand the effect of membrane morphology on adsorption process, scanning electronic microscopy (SEM) was employed to determine the features of section and membrane’s surface. From isotherm results, it was found that: the maximum adsorption capacity Q
m
was 1250 mg g−1, the Langmuir separation factor R
L was lying between 0.33 and 0.76, the Freundlich intensity was higher than Unit (n = 1.25) and the adsorption process follows preferentially the Langmuir model (correlation constant R
2 = 0.99). The mechanism of adsorption is perfectly fitted by pseudo second order. The obtained results tend to confirm that the removal of dye molecules is due to the establishment of strong electrostatic interactions between cationic dye molecules and anionic membrane groups. The high adsorption capacity (1250 mg g−1) for the small dye molecules may open wide opportunities to apply these membranes in the removal of various hazardous pollutants commonly present in water.
Collapse
Affiliation(s)
- Ely Cheikh S’Id
- Membranes, Matériaux, Environnement et Milieux Aquatiques (2MEMA), FST University of Nouakchott Al-Aasriya , BP 5026 , Nouakchott 5026 , Mauritania
| | - Mohamed Degué
- Membranes, Matériaux, Environnement et Milieux Aquatiques (2MEMA), FST University of Nouakchott Al-Aasriya , BP 5026 , Nouakchott 5026 , Mauritania
| | - Chlouma Khalifa
- Membranes, Matériaux, Environnement et Milieux Aquatiques (2MEMA), FST University of Nouakchott Al-Aasriya , BP 5026 , Nouakchott 5026 , Mauritania
| | - Chamekh M’Bareck
- Membranes, Matériaux, Environnement et Milieux Aquatiques (2MEMA), FST University of Nouakchott Al-Aasriya , BP 5026 , Nouakchott 5026 , Mauritania
| |
Collapse
|
21
|
Rehman R, Majeed S. Biosorptive removal of crystal violet dye from aqueous solutions by Ficus religiosa leaves and Daucus carota pomace in ecofriendly way. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:1004-1013. [PMID: 34689668 DOI: 10.1080/15226514.2021.1991269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, Ficus religiosa leaves (FRLs) and Daucus carota pomace (DCP) were used effectively for the removal of carcinogenic and non-biodegradable Crystal Violet dye from the aqueous medium on the batch scale as low-cost and environment-friendly biosorbents. Certain experimental conditions such as adsorbent dose, contact time, pH, and temperature were studied for thermodynamic and isothermal data investigations and optimized conditions for F. religiosa leaves and D. carota pomace were: adsorbent dose; 0.8 and 1.8 g, contact time; 30 and 25 min, pH; 9 and 3 and temperature; 70 °C and 30 °C, respectively. Langmuir, Freundlich, Temkin, and D-R isotherms were studied, and the sorption process indicated chemisorption mode is predominant. The same is supported by kinetic investigation of equilibrium data. The maximum adsorption capacity (qmax) for F. religiosa leaves and D. carota pomace was obtained as 2.4 and 27 mg/g, respectively, which showed that D. carota pomace (DCP) is more effective adsorbent than F. religiosa leaves (FRLs) for removal of CV dye. Exothermic nature and intraparticle diffusion mode are more predominant during the removal of CV dye by these biomaterials, which can be recycled using ethanol.[Figure: see text]Novelty statement: Ficus religiosa and Daucus carota biowaste was explored here for removing an anionic dye. This study will be helpful for exploring the waste potential for phytoremediation of toxic substances using indigenous resources in an ecofriendly way.
Collapse
Affiliation(s)
- Rabia Rehman
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Sana Majeed
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
22
|
Gilani NS, Tilami SE, Azizi SN. One‐step green synthesis of nano‐sodalite zeolite and its performance for the adsorptive removal of crystal violet. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Neda Salek Gilani
- Analytical Division, Faculty of Chemistry University of Mazandaran Babolsar Iran
| | | | - Seyed Naser Azizi
- Analytical Division, Faculty of Chemistry University of Mazandaran Babolsar Iran
| |
Collapse
|
23
|
Sachin, Joishar D, Singh NP, Varathan E, Singh N. Sodium Docusate Surface-Modified Dispersible and Powder Zinc Peroxide Formulation: An Adsorbent for the Effective and Fast Removal of Crystal Violet Dye, an Emerging Wastewater Contaminant. ACS OMEGA 2021; 6:22570-22577. [PMID: 34514229 PMCID: PMC8427644 DOI: 10.1021/acsomega.1c02324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/11/2021] [Indexed: 08/15/2023]
Abstract
Crystal violet (CV) dye is one of the most toxic dyes majorly generated by textile industries. It may cause health issues if enters human beings. A lot of research has been reported for the removal of CV dye from wastewater; however, most of them are time-consuming and hardly remove more than 95% of the CV dye. In the last few years, we have tested several materials, and most of them have exhibited very low efficacy toward adsorption of CV including zinc peroxide (ZnO2). To enhance adsorption efficacy, dispersibility, and stability, the surfaces of several reported materials were modified using different wetting agents and nonionic surfactants. Interestingly, ZnO2, which was earlier very less effective after surface modification by sodium salt of dioctyl sulfosuccinate, efficiently adsorbed >99.5% of CV from contaminated water within 5 min of contact time at pH ∼10. The adsorption capacity obtained for the sodium docusate surface-modified zinc peroxide (ZnSD) adsorbent was found to be 123 mg/g, which is much better than the other reported for CV removal. Different physiochemical experiment parameters like pH, contact time, initial dye concentration, adsorbent dosages, and temperature were optimum to achieve maximum adsorption of the CV dye. The adsorption rate and adsorption mechanism studies show that the adsorption of CV follows pseudo-second-order kinematics and the Freundlich isotherm model. The adsorption results are consistent, and even treated water can be reutilized for various applications.
Collapse
Affiliation(s)
- Sachin
- Chemical
and Food BND section (BND Division), CSIR-National
Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepak Joishar
- Specialty
Organics Pvt. Ltd., Raisen, Madhya Pradesh 462026, India
| | - Netra Pal Singh
- Department
of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, India
| | - Ezhilselvi Varathan
- Chemical
and Food BND section (BND Division), CSIR-National
Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Nahar Singh
- Chemical
and Food BND section (BND Division), CSIR-National
Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| |
Collapse
|
24
|
Bakdash RS, Aljundi IH, Basheer C, Abdulazeez I, Al‐Saadi AA. Porous Fluorocarbon from Rice Husk for the Efficient Separation of Gases. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000124. [PMID: 34267928 PMCID: PMC8272015 DOI: 10.1002/gch2.202000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/13/2021] [Indexed: 06/13/2023]
Abstract
A porous fluorocarbon sorbent is synthesized from rice husk (RH) in a microwave reactor and then evaluated for the adsorption of different gases (CH4, CO2, and N2). The fluorocarbon is characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Raman spectroscopy, Thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Significant enhancement in the surface area of activated carbon material is obtained from 29 to 531 m2 g-1 after removing naturally present silica in RH. Results reveal that rice husk fluorocarbon (RHF) has a higher adsorption affinity for CO2 (1.8 mmol g-1) than that of the sulfonated rice husk (RHS) (1.4 mmol g-1) at 298 K while the corresponding separation factor of CO2/CH4 is 4 and 3; respectively. Higher separation factors of 12 and 10 are observed for the binary system of CO2/N2, respectively. Quantum chemical density functional theory (DFT) calculations agree with the experimental observations. They reveal that RHF exhibits strong columbic interactions with considerable interaction energies of -87.85, -76.75, and -55.65 kcal mol-1 with CO2, CH4, and N2 gases; respectively. Finally, the adsorption process results are highly reproducible, with a small decrease in the adsorption capacity of less than 5% after repeated trials.
Collapse
Affiliation(s)
- Rashed S. Bakdash
- Department of ChemistryKing Fahd University of Petroleum and MineralsDhahran31261Saudi Arabia
| | - Isam H. Aljundi
- Department of Chemical EngineeringKing Fahd University of Petroleum and MineralsDhahran31261Saudi Arabia
| | - Chanbasha Basheer
- Department of ChemistryKing Fahd University of Petroleum and MineralsDhahran31261Saudi Arabia
| | - Ismail Abdulazeez
- Department of ChemistryKing Fahd University of Petroleum and MineralsDhahran31261Saudi Arabia
| | - Abdulaziz A. Al‐Saadi
- Department of ChemistryKing Fahd University of Petroleum and MineralsDhahran31261Saudi Arabia
| |
Collapse
|
25
|
Heidari Z, Pelalak R, Malekshah RE, Pishnamazi M, Marjani A, Sarkar SM, Shirazian S. Molecular modeling investigation on mechanism of cationic dyes removal from aqueous solutions by mesoporous materials. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115485] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Carbonaceous Adsorbents Derived from Agricultural Sources for the Removal of Pramipexole Pharmaceutical Model Compound from Synthetic Aqueous Solutions. Processes (Basel) 2021. [DOI: 10.3390/pr9020253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to synthesize various samples of activated carbon (AC) from different agricultural sources as precursors, like orange peels, tea stalks, and kiwi peels, as well as sucrose. The synthesis of AC was achieved with chemical activation using H3PO4 and KOH. The produced AC samples were tested as adsorbents for the removal of a pharmaceutical model compound, pramipexole dihydrochloride (PRM), from synthetic aqueous synthetic solutions. The produced-from-sucrose AC presented the higher yield of synthesis (~58%). The physicochemical features of the materials were analyzed by FTIR spectroscopy, N2 physisorption, and SEM imaging. More specifically, the AC sample derived from sucrose (SG-AC) had the highest specific surface area (1977 m2/g) with the total pores volume, mesopores volume, and external surface area being 1.382 cm3/g, 0.819 cm3/g, and 751 m2/g, respectively. The effect of the initial pH and PRM concentration were studied, while the equilibrium results (isotherms) were fitted to Langmuir and Freundlich models. The maximum adsorption capacities were found to be 213, 190, 155, and 115 mg/g for AC samples produced from sucrose, kiwi peels, orange peels, and tea stalks, respectively.
Collapse
|
27
|
Synthesis and Characterization of rGO/Ag2O Nanocomposite and its Use for Catalytic Reduction of 4-Nitrophenol and Photocatalytic Activity. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01680-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Ko SJ, Yamaguchi T, Salles F, Oh JM. Systematic utilization of layered double hydroxide nanosheets for effective removal of methyl orange from an aqueous system by π-π stacking-induced nanoconfinement. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111455. [PMID: 33075656 DOI: 10.1016/j.jenvman.2020.111455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Systematic utilization of carbonated Mg-Al layered double hydroxide (LDH) nanosheets for methyl orange removal was investigated with respect to particle dimensions. LDHs with the smallest dimensions were carefully synthesized to have a small lateral size as well as high dispersibility. The other particles, with medium and large sizes, were prepared by hydrothermal treatment and urea hydrolysis to have larger sizes and higher crystallinity. According to kinetics and isotherm analyses, the smallest LDH showed efficient adsorption of methyl orange (1250 mg/g-LDH), which was remarkably higher than the adsorption by the other LDHs with larger lateral sizes. Unlike the larger lateral-sized LDHs, the small ones were shown to utilize all accessible adsorption sites on the nanosheets, generating nanoconfinement of methyl orange molecules. Transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD) patterns indicated that the LDHs with lateral dimensions of ~40 nm fully utilized interlayer nanospace. Monte Carlo simulation suggested that the intercalated methyl orange was stabilized not only through electrostatic interactions with the LDH layer but also by π-π stacking between the methyl orange molecules, which is thought to be the driving force for replacement of carbonate anions.
Collapse
Affiliation(s)
- Su-Joung Ko
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Fabrice Salles
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea.
| |
Collapse
|
29
|
Ahmad MA, Ahmed N‘A, Adesina Adegoke K, Bello OS. Trapping synthetic dye molecules using modified lemon grass adsorbent. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1844016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mohd Azmier Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Nur ‘Adilah Ahmed
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Kayode Adesina Adegoke
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Chemistry, University of Pretoria, Pretoria, South Africa
| | - Olugbenga Solomon Bello
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Physical Sciences, Industrial Chemistry Programme, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
30
|
Mubarak S, Ali SA, Yaagoob IY, Mazumder MAJ. Design and Synthesis of a Dual-Purpose Superadsorbent Containing a High Density of Chelating Motifs for the Fast Mitigation of Methylene Blue and Pb(II). ACS OMEGA 2020; 5:27833-27845. [PMID: 33163766 PMCID: PMC7643114 DOI: 10.1021/acsomega.0c02860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Maleic acid underwent alternate copolymerization with diallylaminomethylphosphonic acid·HCl [(CH2=CHCH2)2NH+CH2PO3H2 Cl-] and a cross-linker to give a new pH-responsive resin. Methylene blue (MB) removal from its 3000 ppm solution by the resin at pH 7 followed second-order kinetics with an E a of 34.8 kJ mol-1. MB removal was achieved very fast (10 min), attaining over 98.5% at 328 K. The q e obtained using MB concentrations in the range 100-8000 ppm fitted the Langmuir nonlinear isotherm model to give ΔG o, ΔH o, and ΔS o values of ≈ -21 kJ, 36.5 kJ mol-1, and 185 J mol-1 K-1, respectively. The resin is a superadsorbent with a q max value of 2445 mg g-1. The adsorbent also removed 97% Pb(II) within 5 min from its 10 000 ppb solution. The resin reduced the Pb(II) concentration from 200 to 3.8 ppb. The resin also demonstrated its ability to remove contaminants from industrial wastewater, reducing priority metal contaminants to ppb and sub-ppb levels. The resin can be recycled with stable efficiency. The outstanding performance places the resin in a top position in a list of recently reported sorbents.
Collapse
Affiliation(s)
- Shuaib
A. Mubarak
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Shaikh A. Ali
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ibrahim Y. Yaagoob
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Mohammad A. J. Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
31
|
Biosynthesis of NiO Nanoparticles Using Soursop (Annona muricata L.) Fruit Peel Green Waste and Their Photocatalytic Performance on Crystal Violet Dye. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01859-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Microwave assisted synthesis of karaya gum based montmorillonite nanocomposite: Characterisation, swelling and dye adsorption studies. Int J Biol Macromol 2020; 154:739-750. [DOI: 10.1016/j.ijbiomac.2020.03.107] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/05/2023]
|
33
|
Hou J, Liu Y, Wen S, Li W, Liao R, Wang L. Sorghum-Waste-Derived High-Surface Area KOH-Activated Porous Carbon for Highly Efficient Methylene Blue and Pb(II) Removal. ACS OMEGA 2020; 5:13548-13556. [PMID: 32566819 PMCID: PMC7301384 DOI: 10.1021/acsomega.9b04452] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/19/2020] [Indexed: 05/30/2023]
Abstract
With the development of the environment and human society, the removal of metal ions and dyes in wastewater treatment remains an urgent problem to solve. In this work, two biomass carbon adsorbents were synthesized by a KOH activation and carbonization route using sorghum stem and root as carbon precursors. In comparison with the samples without KOH activation, the pore structure of the KOH-activated carbon has been dramatically improved. The findings show that the specific surface areas of the adsorbents by sorghum stem (S1) and sorghum root (R1) were 948.6 and 168.1 m2 g-1, respectively. Meanwhile, the abundant OH- and COO- groups on the surface of these adsorbents endow them with negative polarity, thereby exhibiting excellent adsorption performance for removing methylene blue (MB) and Pb(II) from wastewater. The adsorption amount and removal rate of S1 were 98.1 mg g-1 and 98.08%, respectively, for MB, whereas those of R1 were 197.6 mg g-1 and 98.82% for the Pb(II) ion, respectively. Our findings offer an invaluable insight into designing and synthesizing a highly efficient sustainable adsorbent to remove MB and Pb(II) based on biomass agricultural waste.
Collapse
Affiliation(s)
- Junhua Hou
- School
of Physics and Information Engineering, Shanxi Normal University, No. 1 Gongyuan Road, Yaodu District, Linfen 041004, P. R. China
- Modern
College of Humanities and Sciences, Shanxi
Normal University, No.
657 Jiefang East Road, Yaodu District, Linfen 041000, P. R. China
| | - Yijian Liu
- Institute
of Nanochemistry and Nanobiology, School of Environmental and Chemical
Engineering, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, P. R. China
| | - Shikai Wen
- School
of Physics and Information Engineering, Shanxi Normal University, No. 1 Gongyuan Road, Yaodu District, Linfen 041004, P. R. China
| | - Weitao Li
- Institute
of Nanochemistry and Nanobiology, School of Environmental and Chemical
Engineering, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, P. R. China
| | - Riquan Liao
- Guangxi
Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, No. 12 Binhai Road, Qinnan District, Qinzhou 535000, P. R.
China
| | - Liang Wang
- Institute
of Nanochemistry and Nanobiology, School of Environmental and Chemical
Engineering, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, P. R. China
| |
Collapse
|
34
|
Franco DSP, Georgin J, Drumm FC, Netto MS, Allasia D, Oliveira MLS, Dotto GL. Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11184-11194. [PMID: 31960236 DOI: 10.1007/s11356-019-07490-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Dyes are widely used in many industrial sectors, many contain harmful substances to human health, and their release into the environment entails several environmental problems, generating a major worldwide concern as water resources are increasingly limited. The development of cheap and efficient biosorbents that remove these pollutants is of utmost importance. In this study, powdered seeds of the araticum fruit (Annona crassiflora) were used in the biosorption of crystal violet (CV) dye from aqueous solutions and simulated textile effluents. Through the characterization techniques, it can be observed that the material presented an amorphous structure, containing an irregular surface composed mainly by groups containing carbon, hydrogen, and oxygen. CV biosorption was favored at the natural pH of the solution (7.5) for a dosage of 0.7 g L-1 of araticum seed powder. The pseudo-second-order model was the most suitable to represent the biosorption kinetics in the removal of the CV. Biosorption capacity reached equilibrium in the first minutes at the lowest concentrations, and, at the highest, after 120 min. The equilibrium data were well represented by the Langmuir model, with a maximum biosorption capacity of 300.96 mg g-1 at 328 K. Biosorption had a spontaneous and endothermic nature. In the treatment of a simulated effluent, the biosorbent removed 87.8% of the color, proving to be efficient. Therefore, the araticum seeds powder (ASP) can be used as a low-cost material for the treatment of colored effluents containing the crystal violet (CV) dye.
Collapse
Affiliation(s)
- Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Jordana Georgin
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Fernanda C Drumm
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Matias Schadeck Netto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Daniel Allasia
- Sanitary and Environmental Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Marcos L S Oliveira
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, Barranquilla, 080002, Atlántico, Colombia.
- Faculdade Meridional IMED, 304, Passo Fundo, RS, 99070-220, Brazil.
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
35
|
The Removal of Crystal Violet from Textile Wastewater Using Palm Kernel Shell-Derived Biochar. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072251] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this study, we explored the adsorption potential of biochar derived from palm kernel shell (BC-PKS) as an affordable adsorbent for the removal of crystal violet from wastewater. Kinetics, equilibrium, and thermodynamics studies were carried out to evaluate the adsorption of crystal violet onto BC-PKS. The kinetics adsorption process followed the pseudo-second-order model, indicating that the rate of adsorption is principally controlled by chemisorption. The adsorption equilibrium data were better fitted by the Langmuir isotherm model with a determination coefficient of 0.954 and a maximum adsorption of 24.45 mg/g. Thermodynamics studies found the adsorption of crystal violet by BC-PKS to be endothermic with increasing randomness at the BC-PKS/crystal violet interface. The percentage removal and adsorption capacity increased with the pH of the solution, as the negative charges on the biochar surface at high pH enhance the electrostatic attraction between crystal violet molecules and BC-PKS. Increasing the BC-PKS dosage from 0.1 to 1.0 g increased percent removal and decreased the adsorption capacity of crystal violet onto BC-PKS. Therefore, biochar from agricultural by-products, i.e., palm kernel shell, can be cost-effective adsorbents for the removal of crystal violet from textile wastewater.
Collapse
|
36
|
Soltani R, Marjani A, Hosseini M, Shirazian S. Mesostructured Hollow Siliceous Spheres for Adsorption of Dyes. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900470] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Roozbeh Soltani
- Islamic Azad UniversityDepartment of ChemistryArak Branch Arak Iran
| | - Azam Marjani
- Islamic Azad UniversityDepartment of ChemistryArak Branch Arak Iran
| | - Mina Hosseini
- University of IsfahanDepartment of Chemistry Isfahan Iran
| | - Saeed Shirazian
- Ton Duc Thang UniversityDepartment for Management of Science and Technology Development Ho Chi Minh City Vietnam
- Ton Duc Thang UniversityFaculty of Applied Sciences Ho Chi Minh City Vietnam
| |
Collapse
|
37
|
The Potentiality of Rice Husk-Derived Activated Carbon: From Synthesis to Application. Processes (Basel) 2020. [DOI: 10.3390/pr8020203] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Activated carbon (AC) has been extensively utilized as an adsorbent over the past few decades. AC has widespread applications, including the removal of different contaminants from water and wastewater, and it is also being used in capacitors, battery electrodes, catalytic supports, and gas storage materials because of its specific characteristics e.g., high surface area with electrical properties. The production of AC from naturally occurring precursors (e.g., coal, biomass, coconut shell, sugarcane bagasse, and so on) is highly interesting in terms of the material applications in chemistry; however, recently much focus has been placed on the use of agricultural wastes (e.g., rice husk) to produce AC. Rice husk (RH) is an abundant as well as cheap material which can be converted into AC for various applications. Various pollutants such as textile dyes, organic contaminants, inorganic anions, pesticides, and heavy metals can be effectively removed by RH-derived AC. In addition, RH-derived AC has been applied in supercapacitors, electrodes for Li-ion batteries, catalytic support, and energy storage, among other uses. Cost-effective synthesis of AC can be an alternative for AC production. Therefore, this review mainly covers different synthetic routes and applications of AC produced from RH precursors. Different environmental, catalytic, and energy applications have been pinpointed. Furthermore, AC regeneration, desorption, and relevant environmental concerns have also been covered. Future scopes for further research and development activities are also discussed. Overall, it was found that RH-derived AC has great potential for different applications which can be further explored at real scales, i.e., for industrial applications in the future.
Collapse
|
38
|
Roghanizad A, Karimi Abdolmaleki M, Ghoreishi SM, Dinari M. One-pot synthesis of functionalized mesoporous fibrous silica nanospheres for dye adsorption: Isotherm, kinetic, and thermodynamic studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112367] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
Ho S. Removal of Dyes from Wastewater by Adsorption onto Activated Carbon: Mini Review. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/gep.2020.85008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Wei TB, Qi LH, Zhang QP, Zhang WH, Yao H, Zhang YM, Lin Q. Stimuli-responsive supramolecular polymer network based on bi-pillar[5]arene for efficient adsorption of multiple organic dye contaminants. NEW J CHEM 2020. [DOI: 10.1039/d0nj02524k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel supramolecular polymer network gel has been successfully prepared via bi-pillar[5]arene and a tripodal guest, exhibiting multi-stimuli-responsiveness and efficient adsorption of organic dyes.
Collapse
Affiliation(s)
- Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Li-Hua Qi
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Qin-Peng Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Wen-Huan Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Hong Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - You-Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| |
Collapse
|
41
|
Parisi F, Lazzara G, Merli M, Milioto S, Princivalle F, Sciascia L. Simultaneous Removal and Recovery of Metal Ions and Dyes from Wastewater through Montmorillonite Clay Mineral. NANOMATERIALS 2019; 9:nano9121699. [PMID: 31795123 PMCID: PMC6955944 DOI: 10.3390/nano9121699] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023]
Abstract
The main objective of this work was to evaluate the potential of Montmorillonite nanoclay (Mt), readily and inexpensively available, for the simultaneous adsorption (and removal) of two classes of pollutants: metal ions and dyes. The attention was focused on two "model" pollutants: Ce(III) and crystal violet (CV). The choice is due to the fact that they are widespread in wastewaters of various origins. These characteristics, together with their effect on human health, make them ideal for studies on water remediation. Moreover, when separated from wastewater, they can be recycled individually in industrial production with no or simple treatment. Clay/pollutant hybrids were prepared under different pH conditions and characterized through the construction of the adsorption isotherms and powder X-ray diffraction. The adsorption behavior of the two contaminants was revealed to be significantly different: the Langmuir model reproduces the adsorption isotherm of Ce(III) better, thus indicating that the clay offers a unique adsorption site to the metal ions, while the Freundlich model proved to be the most reliable for the uptake of CV which implies heterogeneity of adsorption sites. Moreover, metal ions do not adsorb at all under acidic conditions, whereas the dye is able to adsorb under all the investigated conditions. The possibility to modulate the adsorption features by simply changing the pH conditions was successfully employed to develop an efficient protocol for the removal and separation of the different components from aqueous solutions mimicking wastewaters.
Collapse
Affiliation(s)
- Filippo Parisi
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (G.L.); (S.M.)
- Correspondence:
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (G.L.); (S.M.)
| | - Marcello Merli
- Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Via Archirafi, 22, 90123 Palermo, Italy; (M.M.); (L.S.)
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (G.L.); (S.M.)
| | - Francesco Princivalle
- Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Weiss, 1, 34128 Trieste, Italy;
| | - Luciana Sciascia
- Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Via Archirafi, 22, 90123 Palermo, Italy; (M.M.); (L.S.)
| |
Collapse
|
42
|
Ohemeng-Boahen G, Sewu DD, Woo SH. Preparation and characterization of alginate-kelp biochar composite hydrogel bead for dye removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33030-33042. [PMID: 31512135 DOI: 10.1007/s11356-019-06421-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The alginate-kelp biochar composite hydrogel bead (Alg-KBC) was successfully developed via physical crosslinking with Ca2+. The composite material was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectrometry (ICP-OES), and elemental analyzer. The Alg-KBC showed high removal capacity for crystal violet (CV), from aqueous solution (33.8% more than that of the pristine alginate bead). The adsorption isotherm data were fitted to the nonlinear forms of the Langmuir, Freundlich, and Redlich-Peterson isotherm models. Also, the adsorption kinetics data were analyzed with the nonlinear forms of the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. Both chemisorption and physisorption with an indispensable role of external mass transfer and stagewise pore diffusion were essential in the adsorption process. Thus, by impregnating biochar powder in alginate, a bio-platform, a composite hydrogel bead which has higher affinity for cationic dye in aqueous medium and also eliminates the onerous task of separating biochar powder from the adsorbate solution, was obtained. Hence, the Alg-KBC can be considered for efficient dye removal in the wastewater treatment process.
Collapse
Affiliation(s)
- Godfred Ohemeng-Boahen
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, 34158, Republic of Korea
| | - Divine Damertey Sewu
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, 34158, Republic of Korea
| | - Seung Han Woo
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, 34158, Republic of Korea.
| |
Collapse
|
43
|
Pei Y, Jiang Z, Yuan L. Facile synthesis of MCM-41/MgO for highly efficient adsorption of organic dye. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Tang S, Xia D, Yao Y, Chen T, Sun J, Yin Y, Shen W, Peng Y. Dye adsorption by self-recoverable, adjustable amphiphilic graphene aerogel. J Colloid Interface Sci 2019; 554:682-691. [DOI: 10.1016/j.jcis.2019.07.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
45
|
Djelad A, Mokhtar A, Khelifa A, Bengueddach A, Sassi M. Alginate-whey an effective and green adsorbent for crystal violet removal: Kinetic, thermodynamic and mechanism studies. Int J Biol Macromol 2019; 139:944-954. [DOI: 10.1016/j.ijbiomac.2019.08.068] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022]
|
46
|
Nguyen DH, Tran HN, Chao HP, Lin CC. Effect of nitric acid oxidation on the surface of hydrochars to sorb methylene blue: An adsorption mechanism comparison. ADSORPT SCI TECHNOL 2019. [DOI: 10.1177/0263617419867519] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Duy H Nguyen
- Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan; Faculty of Environment Science, TNU-University of Agriculture and Forestry, Thai Nguyen 24000, Vietnam
| | - Hai Nguyen Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University, Vietnam
| | - Huan-Ping Chao
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Chu-Ching Lin
- Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
47
|
Abbas M, Harrache Z, Trari M. Removal of gentian violet in aqueous solution by activated carbon equilibrium, kinetics, and thermodynamic study. ADSORPT SCI TECHNOL 2019. [DOI: 10.1177/0263617419864504] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Moussa Abbas
- Laboratory of Soft Technologies, Valorization, Physicochemistry of Biological Materials and Biodiversity (LTDVPMBB), M'hamed Bougara University of Boumerdes (UMBB) Algeria
| | - Zahia Harrache
- Laboratory of Soft Technologies, Valorization, Physicochemistry of Biological Materials and Biodiversity (LTDVPMBB), M'hamed Bougara University of Boumerdes (UMBB) Algeria
| | - Mohamed Trari
- Laboratory for Storage and Recovery and Renewable Energy (LSVER), Houari Boumediene University of Science and Technology, USTHB, Algeria
| |
Collapse
|
48
|
Wakkel M, Khiari B, Zagrouba F. Basic red 2 and methyl violet adsorption by date pits: adsorbent characterization, optimization by RSM and CCD, equilibrium and kinetic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18942-18960. [PMID: 29790045 DOI: 10.1007/s11356-018-2192-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
The potential of raw date pits as a natural, widely available and low-cost agricultural waste has been studied in order to adsorb cationic dyes from an aqueous solution. Date pits were characterized by FTIR, SEM, BET, and XRD analysis. To optimize removal of two industrial dyes, basic red 2 (BR2) and methyl violet (MV), from aqueous solution using date pits, response surface methodology (RSM) is employed. Tests were carried out as per central composite design (CCD) with four input parameters namely contact time, temperature, initial concentration of adsorbate, and pH. Second-order polynomial model better fits experimental data for BR2 and MV and optimum values were then determined. In the optimum conditions, kinetic study was conducted and the pseudo-second-order model was found the best fitted model compared to pseudo-first-order model. Moreover, it was shown that intraparticle diffusion was not the sole controlling step and could be associated with other transfer resistance. On other hand, equilibrium isotherms were obtained for BR2 and MV and their maximum adsorption capacities were 92 and 136 mg g-1 respectively. Two-parameter isotherm models like Langmuir, Temkin, Freundlich, Dubinin-Radushkevich, and Halsay were investigated to fit equilibrium data. Three error functions of residual root mean square error, chi-square statistic, and average relative error were used to comfort us in the selected models, which were actually Dubinin-Radushkevich and Langmuir for BR2 and Frendlich, Temkin, and Halsay for MV.
Collapse
Affiliation(s)
- Manel Wakkel
- Research Laboratory of Environmental Science and Technologies, Borj Cédria, 2050, Hammam-Lif, Tunisia
| | - Besma Khiari
- Research Laboratory of Environmental Science and Technologies, Borj Cédria, 2050, Hammam-Lif, Tunisia.
| | - Féthi Zagrouba
- Research Laboratory of Environmental Science and Technologies, Borj Cédria, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
49
|
Jung H, Sewu DD, Ohemeng-Boahen G, Lee DS, Woo SH. Characterization and adsorption performance evaluation of waste char by-product from industrial gasification of solid refuse fuel from municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 91:33-41. [PMID: 31203940 DOI: 10.1016/j.wasman.2019.04.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/31/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the effect of steam and air flowrate combinations on the syngas efflux, physicochemical properties and adsorption performances (on congo red, CR and crystal violet, CV removal) of waste char by-product from the industrial gasification of solid refuse fuel from municipal solid waste. The BET surface area (11.4 m2/g), porosity (74.7%), fixed carbon content (25.8 wt%) and hydrophilicity (0.09) were enhanced with lower steam rate and higher air supply rate combination (MSWC-L) than for the higher steam rate and lower air supply rate combination (MSWC-H). Adsorption performances were higher for MSWC-L than MSWC-H on both CR (35.7-49.7 mg/g) and CV (235 to 356 mg/g) removal, suggesting that, higher air supply rate (214 Nm3/h; at 0.36 equivalence ratio) with lower steam rate (37 kg/h) were more effective gasification process conditions. Results showed that, syngas efflux was more sensitive to air supply rate than steam supply rate. Reactions in the combustion zone were not only limited to the pyrolysis gas vapours but to the char also. In conclusion, the waste chars from municipal solid waste gasification showed good potential as adsorbents in wastewater treatment.
Collapse
Affiliation(s)
- Hwansoo Jung
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea; BioGET Inc., Corporate Headquaters, Research Centre, NH05, Pai Chai University Daedeck Vally Campus, 11-3 Techno 1-ro, Yuseong-gu, Daejeon 34015, Republic of Korea
| | - Divine Damertey Sewu
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea
| | - Godfred Ohemeng-Boahen
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Seung Han Woo
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea.
| |
Collapse
|
50
|
Ali SA, Yaagoob IY, Mazumder MAJ, Al-Muallem HA. Fast removal of methylene blue and Hg(II) from aqueous solution using a novel super-adsorbent containing residues of glycine and maleic acid. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:642-654. [PMID: 30826557 DOI: 10.1016/j.jhazmat.2019.02.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 05/25/2023]
Abstract
The alternate cyclo-copolymerization of diallylammonioethanoate [(CH2=CHCH2)2NCH2CO2-] and maleic acid in the presence of a cross-linker afforded a novel pH-responsive resin (90% yield). The resin has turned out to be a super-adsorbent for methylene blue (MB) removal with a qMax of 2101 mg g-1. The adsorption of the dye followed pseudo second-order kinetics with an energy of activation (Ea) of 31.5 kJ mol-1. The process showed an extraordinarily fast adsorption rate owing to faster film diffusion; the resin (250 mg) was able to trap 78 and 99.4% MB from its 3000 mg L-1 solution (100 mL) within 3 and 30 min, respectively. Equilibrium constants from Langmuir nonlinear isotherm model in the range 288-328 K gave ΔGo ΔHo, and ΔSo values of ≈ -25 kJ, -13 kJ and 39.5 J mol-1 K-1, respectively. Immobilization mechanism was discussed using FTIR, SEM, and Elovich kinetic model. The presence of the chelating glycine residues was exploited for the removal of Hg(II) ions; the qHg was determined to be 263 mg g-1. The resin also removed MB and Hg(II) simultaneously from industrial wastewater with remarkable efficacy. The very impressive performance along with efficient recycling conferred the resin a top position among many sorbents.
Collapse
Affiliation(s)
- Shaikh A Ali
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Ibrahim Y Yaagoob
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Mohammad A J Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Hasan A Al-Muallem
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|