1
|
Håkansson A, Nilsson L. Emulsifier adsorption kinetics influences drop deformation and breakup in turbulent emulsification. SOFT MATTER 2023; 19:9059-9073. [PMID: 37982600 DOI: 10.1039/d3sm01213a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Turbulent drop breakup is of large importance for applications such as food and pharmaceutical processing, as well as of substantial fundamental scientific interest. Emulsification typically takes place in the presence of surface-active emulsifiers (natural occurring and/or added). Under equilibrium conditions, these lower the interfacial tension, enabling deformation and breakup. However, turbulent deformation is fast in relation to emulsifier kinetics. Little is known about the details of how the emulsifier influences drop deformation under turbulent conditions. During the last years, significant insight in the mechanism of turbulent drop breakup has been reached using numerical experiments. However, these studies typically use a highly simplistic description of how the interface responds to turbulent stress. This study investigates how the limited exchange rate of emulsifier between the bulk and the interface influences the deformation process in turbulent drop breakup for application-relevant emulsifiers and concentrations, in the context of state-of-the-art single drop breakup simulations. In conclusion, if the Weber number is high or the emulsifier is supplied at a concentration giving an adsorption time less than 1/10th of the drop breakup time, deformation proceeds as if the emulsifier adsorbed infinitely fast. Otherwise, the limited emulsifier kinetics delays breakup and can alter the breakup mechanism.
Collapse
Affiliation(s)
- Andreas Håkansson
- Department of Food Technology, Engineering and Nutrition, Lund University, Sweden.
| | - Lars Nilsson
- Department of Food Technology, Engineering and Nutrition, Lund University, Sweden.
| |
Collapse
|
2
|
Li X, Qi B, Zhang S, Li Y. Effects of homogeneous and ultrasonic treatment on casein/phosphatidylcholine complex-emulsions: Stability and bioactivity insights. ULTRASONICS SONOCHEMISTRY 2023; 97:106457. [PMID: 37267823 DOI: 10.1016/j.ultsonch.2023.106457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Casein (CAS), a typical protein emulsifier, has functional properties limited by its chemical structure in practical production applications. This study aimed to combine phosphatidylcholine (PC) and casein to form a stable complex (CAS/PC) and improve its functional properties through physical modification (homogeneous and ultrasonic treatment). To date, few studies have explored the effects of physical modification on the stability and biological activity of CAS/PC. Interface behavior analysis showed that compared to homogeneous treatment, PC addition and ultrasonic treatment could decrease the mean particle size (130.20 ± 3.96 nm) and increase the zeta potential (-40.13 ± 1.12 mV), indicating the emulsion is more stable. The chemical structural analysis of CAS showed that PC addition and ultrasonic treatment promoted changes in its sulfhydryl content and surface hydrophobicity, exposing more free sulfhydryl groups and hydrophobic binding sites, thereby enhancing its solubility and improving the stability of the emulsion. Additionally, storage stability analysis revealed that the incorporation of PC with ultrasonic treatment could improve the root mean square deviation value and radius of gyration value of CAS. These modifications resulted in an increase the binding free energy between CAS and PC (-238.786 kJ/mol) at 50 °C, leading to an improvement in the thermal stability of the system. Furthermore, digestive behavior analysis indicated that PC addition and ultrasonic treatment could increase the total FFA release from 667.44 ± 22.33 μmol to 1250.33 ± 21.56 μmol. In conclusion, the study underscores the effectiveness of PC addition and ultrasonic treatment in enhancing the stability and bioactivity of CAS, offering novel ideas for designing stable and healthy emulsifiers.
Collapse
Affiliation(s)
- Xue Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Håkansson A, Crialesi-Esposito M, Nilsson L, Brandt L. A criterion for when an emulsion drop undergoing turbulent deformation has reached a critically deformed state. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Proposed Methods for Testing and Comparing the Emulsifying Properties of Proteins from Animal, Plant, and Alternative Sources. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6020019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The food industry is trying to reformulate many of its products to replace functional ingredients that are chemically synthesized or isolated from animal sources (such as meat, fish, eggs, or milk) with ingredients derived from plant or microbial sources. This effort is largely a result of the demand for foods that are better for the environment, human health, and animal welfare. Many new kinds of plant- or microbial-derived proteins are being isolated for potential utilization as functional ingredients by the food industry. A major challenge in this area is the lack of standardized methods to measure and compare the functional performance of proteins under conditions they might be used in food applications. This information is required to select the most appropriate protein for each application. In this article, we discuss the physicochemical principles of emulsifier functionality and then present a series of analytical tests that can be used to quantify the ability of proteins to form and stabilize emulsions. These tests include methods for characterizing the effectiveness of the proteins to promote the formation and stability of the small droplets generated during homogenization, as well as their ability to stabilize the droplets against aggregation under different conditions (e.g., pH, ionic composition, temperature, and shearing). This information should be useful to the food industry when it is trying to identify alternative proteins to replace existing emulsifiers in specific food applications.
Collapse
|
5
|
Towards a Standard Method for Estimating Fragmentation Rates in Emulsification Experiments. Processes (Basel) 2021. [DOI: 10.3390/pr9122242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The fragmentation rate function connects the fundamental drop breakup process with the resulting drop size distribution and is central to understanding or modeling emulsification processes. There is a large interest in being able to reliably measure it from an emulsification experiment, both for generating data for validating theoretical fragmentation rate function suggestions and as a tool for studying emulsification processes. Consequently, several methods have been suggested for measuring fragmentation rates based on emulsion experiments. Typically, each study suggests a new method that is rarely used again. The lack of an agreement on a standard method has become a substantial challenge. This contribution critically and systematically analyses four influential suggestions of how to measure fragmentation rate in terms of validity, reliability, and sensitivity to method assumptions. The back-calculation method is identified as the most promising—high reliability and low sensitivity to assumption—whereas performing a non-linear regression on a parameterized model (as commonly suggested) is unsuitable due to its high sensitivity. The simplistic zero-order method is identified as an interesting supplemental tool that could be used for qualitative comparisons but not for quantification.
Collapse
|
6
|
Estimating Breakup Frequencies in Industrial Emulsification Devices: The Challenge of Inferring Local Frequencies from Global Methods. Processes (Basel) 2021. [DOI: 10.3390/pr9040645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Experimental methods to study the breakup frequency in industrial devices are increasingly important. Since industrial production-scale devices are often inaccessible to single-drop experiments, breakup frequencies for these devices can only be studied with “global methods”; i.e., breakup frequency estimated from analyzing emulsification-experiment data. However, how much can be said about the local breakup frequencies (e.g., needed in modelling) from these global estimates? This question is discussed based on insights from a numerical validation procedure where set local frequencies are compared to global estimates. It is concluded that the global methods provide a valid estimate of local frequencies as long as the dissipation rate of turbulent kinetic energy is fairly homogenous throughout the device (although a residence-time-correction, suggested in this contribution, is needed as long as the flow is not uniform in the device). For the more realistic case of an inhomogeneous breakup frequency, the global estimate underestimates the local frequency (at the volume-averaged dissipation rate of turbulent kinetic energy). However, the relative error between local frequencies and global estimates is approximately constant when comparing between conditions. This suggest that the global methods are still valuable for studying how local breakup frequencies scale across operating conditions, geometries and fluid properties.
Collapse
|
7
|
On the validity of different methods to estimate breakup frequency from single drop experiments. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Experimental Methods for Measuring the Breakup Frequency in Turbulent Emulsification: A Critical Review. CHEMENGINEERING 2020. [DOI: 10.3390/chemengineering4030052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growing interest in using population balance modeling to describe emulsification processes has spurred an interest in experimentally measuring the breakup frequency. This contribution classifies, compares, and critically reviews the different methods that have been suggested for measuring the breakup frequency, applicable to emulsification devices. Two major approaches can be seen in previous studies. The first is ‘single drop breakup experiment’-based studies, which estimate the breakup frequency by observing the fate of individual drops. The second approach involves ‘emulsification experiment’-based studies, which combine measured drop-size distributions with assumptions to allow for estimations of the breakup frequency. This second approach can be further subdivided in three types: Parametric determination, inverse self-similarity-based methods, and direct back-calculation methods. Each of these methods are reviewed in terms of their implementation, reliability, and validity. Suggestions of methodological considerations for future studies are given for each class, together with more general suggestions for further investigations. The overall objective is to provide emulsification researchers with background information when choosing which method to use for measuring the breakup frequency and with support when setting up experiments and data evaluation procedures.
Collapse
|
9
|
Ismail I, Kazemzadeh Y, Sharifi M, Riazi M, Malayeri MR, Cortés F. Formation and stability of W/O emulsions in presence of asphaltene at reservoir thermodynamic conditions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112125] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Guan X, Yang N, Nigam KD. Prediction of Droplet Size Distribution for High Pressure Homogenizers with Heterogeneous Turbulent Dissipation Rate. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b04615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoping Guan
- State Key Laboratory of Multi-phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100190, P.R. China
| | - Ning Yang
- State Key Laboratory of Multi-phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100190, P.R. China
| | | |
Collapse
|
11
|
|
12
|
|
13
|
Shariffa Y, Tan T, Uthumporn U, Abas F, Mirhosseini H, Nehdi I, Wang YH, Tan C. Producing a lycopene nanodispersion: Formulation development and the effects of high pressure homogenization. Food Res Int 2017; 101:165-172. [DOI: 10.1016/j.foodres.2017.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/18/2017] [Accepted: 09/04/2017] [Indexed: 11/24/2022]
|
14
|
Population balance model development and experimental validation for the heteroaggregation of oppositely charged micro- and nano-particles. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2016.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Natural emulsifiers - Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Adv Colloid Interface Sci 2016; 234:3-26. [PMID: 27181392 DOI: 10.1016/j.cis.2016.03.002] [Citation(s) in RCA: 530] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
There is increasing consumer pressure for commercial products that are more natural, sustainable, and environmentally friendly, including foods, cosmetics, detergents, and personal care products. Industry has responded by trying to identify natural alternatives to synthetic functional ingredients within these products. The focus of this review article is on the replacement of synthetic surfactants with natural emulsifiers, such as amphiphilic proteins, polysaccharides, biosurfactants, phospholipids, and bioparticles. In particular, the physicochemical basis of emulsion formation and stabilization by natural emulsifiers is discussed, and the benefits and limitations of different natural emulsifiers are compared. Surface-active polysaccharides typically have to be used at relatively high levels to produce small droplets, but the droplets formed are highly resistant to environmental changes. Conversely, surface-active proteins are typically utilized at low levels, but the droplets formed are highly sensitive to changes in pH, ionic strength, and temperature. Certain phospholipids are capable of producing small oil droplets during homogenization, but again the droplets formed are highly sensitive to changes in environmental conditions. Biosurfactants (saponins) can be utilized at low levels to form fine oil droplets that remain stable over a range of environmental conditions. Some nature-derived nanoparticles (e.g., cellulose, chitosan, and starch) are effective at stabilizing emulsions containing relatively large oil droplets. Future research is encouraged to identify, isolate, purify, and characterize new types of natural emulsifier, and to test their efficacy in food, cosmetic, detergent, personal care, and other products.
Collapse
|
16
|
Dubbelboer A, Janssen JJ, Hoogland H, Zondervan E, Meuldijk J. Pilot-scale production process for high internal phase emulsions: Experimentation and modeling. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Sadeghpour Galooyak S, Dabir B, Zolfaghari M. An innovative numerical approach for simulation of emulsion formation in a Microfluidizer. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Droplet breakage and coalescence models for the flow of water-in-oil emulsions through a valve-like element. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Dubbelboer A, Janssen J, Hoogland H, Mudaliar A, Maindarkar S, Zondervan E, Meuldijk J. Population balances combined with Computational Fluid Dynamics: A modeling approach for dispersive mixing in a high pressure homogenizer. Chem Eng Sci 2014. [DOI: 10.1016/j.ces.2014.06.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
A high-pressure homogenization emulsification model—Improved emulsifier transport and hydrodynamic coupling. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2013.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Joseph S, Bunjes H. Preparation of Nanoemulsions and Solid Lipid Nanoparticles by Premix Membrane Emulsification. J Pharm Sci 2012; 101:2479-89. [DOI: 10.1002/jps.23163] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/04/2012] [Indexed: 11/06/2022]
|
22
|
Håkansson A, Innings F, Revstedt J, Trägårdh C, Bergenståhl B. Estimation of turbulent fragmenting forces in a high-pressure homogenizer from computational fluid dynamics. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2012.03.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|