1
|
Sheoran K, Kaur H, Siwal SS, Saini AK, Vo DVN, Thakur VK. Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: Synthesis and application. CHEMOSPHERE 2022; 299:134364. [PMID: 35318024 DOI: 10.1016/j.chemosphere.2022.134364] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Carbon-based nanomaterials (CBNMs) have attracted significant alert due to the affluent science underpinning their implementations associated with a novel mixture of high aspect proportions, greater thermal and electrical performance, outstanding optical features, and high exterior area. CBNMs not only bear assurance in a broad range of implementations in medication, nano and microelectronics, and ecological remedies but may also be utilized in practical laboratory determinations. More specifically, CBNMs perform as an outstanding adsorbent in terminating heavy metal ions (HMI) from wastewater. There is presently a deficiency of powerful threat inspection instruments owing to their complex detection and related deficit in the health risk database. Therefore, our present review concentrates on spreading CBNMs to release pollutants from wastewater. The article wraps the effect of these contaminants and photocatalytic strategies towards treating these mixtures in wastewater, along with their restrictions and challenges, convincing resolutions, and possibilities of these approaches.
Collapse
Affiliation(s)
- Karamveer Sheoran
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Adesh Kumar Saini
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC (Scotland's Rural College), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India.
| |
Collapse
|
2
|
Pokhrel T, B K B, Giri R, Adhikari A, Ahmed N. C-H Bond Functionalization under Electrochemical Flow Conditions. CHEM REC 2022; 22:e202100338. [PMID: 35315954 DOI: 10.1002/tcr.202100338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023]
Abstract
Electrochemical C-H functionalization is a rapidly growing area of interest in organic synthesis. To achieve maximum atom economy, the flow electrolysis process is more sustainable. This allows shorter reaction times, safer working environments, and better selectivities. Using this technology, the problem of overoxidation can be reduced and less emergence of side products or no side products are possible. Flow electro-reactors provide high surface-to-volume ratios and contain electrodes that are closely spaced where the diffusion layers overlap to give the desired product, electrochemical processes can now be managed without the need for a deliberately added supporting electrolyte. Considering the importance of flow electrochemical C-H functionalization, a comprehensive review is presented. Herein, we summarize flow electrolysis for the construction of C-C and C-X (X=O, N, S, and I) bonds formation. Also, benzylic oxidation and access to biologically active molecules are discussed.
Collapse
Affiliation(s)
- Tamlal Pokhrel
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Bijaya B K
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Ramesh Giri
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
3
|
Chen M, Zhao F, Fan W, Li J, Guo X. Proof-of-concept Study of a New Microflow Electrochemical Cell Design for Gas-Evolving Reactions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fang Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenting Fan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
|
5
|
Cardoso DSP, Šljukić B, Santos DMF, Sequeira CAC. Organic Electrosynthesis: From Laboratorial Practice to Industrial Applications. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00004] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- David S. P. Cardoso
- Materials Electrochemistry
Group, Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Biljana Šljukić
- Materials Electrochemistry
Group, Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Diogo M. F. Santos
- Materials Electrochemistry
Group, Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - César A. C. Sequeira
- Materials Electrochemistry
Group, Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
6
|
Kodým R, Drakselová M, Pánek P, Němeček M, Šnita D, Bouzek K. Novel approach to mathematical modeling of the complex electrochemical systems with multiple phase interfaces. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Kodým R, Pánek P, Šnita D, Tvrzník D, Bouzek K. Macrohomogeneous approach to a two-dimensional mathematical model of an industrial-scale electrodialysis unit. J APPL ELECTROCHEM 2012. [DOI: 10.1007/s10800-012-0457-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|