• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4644887)   Today's Articles (10944)   Subscriber (50665)
For: Pinheiro CIC, Fernandes JL, Domingues L, Chambel AJS, Graça I, Oliveira NMC, Cerqueira HS, Ribeiro FR. Fluid Catalytic Cracking (FCC) Process Modeling, Simulation, and Control. Ind Eng Chem Res 2011. [DOI: 10.1021/ie200743c] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Number Cited by Other Article(s)
1
Jiang H, Zhang S, Yang W, Peng X, Zhong W. Integration of Encoding and Temporal Forecasting: Toward End-to-End NOx Prediction for Industrial Chemical Process. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:2984-2996. [PMID: 37247309 DOI: 10.1109/tnnls.2023.3276593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
2
Pirouzfar V, Mohamadkhani F, Van Nguyen N, Su CH. The technical and economic analysis of processing and conversion of heavy oil cuts to valuable refinery products. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2023. [DOI: 10.1515/ijcre-2022-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
3
Santander O, Kuppuraj V, Harrison CA, Baldea M. Integrated Production Planning and Model Predictive Control of a Fluidized Bed Catalytic Cracking-Fractionator Unit. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
4
A novel methodology to construct compartment models for a circulating fluidized bed riser. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
5
Zhang Y, Xu J, Chang Q, Zhao P, Wang J, Ge W. Numerical simulation of fluidization: Driven by challenges. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
6
Santander O, Kuppuraj V, Harrison CA, Baldea M. Integrated deep learning - production planning - economic model predictive control framework for large-scale processes. A fluid catalytic cracker - fractionator case study. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
7
Wang N, Peng C, Cheng Z, Zhou Z. Molecular reconstruction of vacuum gas oils using a general molecule library through entropy maximization. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
8
Zhang M, Cao D, Lan X, Shi X, Gao J. An Ensemble-Learning Approach To Predict the Coke Yield of Commercial FCC Unit. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
9
Santander O, Kuppuraj V, Harrison CA, Baldea M. An open source fluid catalytic cracker - fractionator model to support the development and benchmarking of process control, machine learning and operation strategies. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
10
Wang X, Su C, Wang N, Shi H. Gray wolf optimizer with bubble-net predation for modeling fluidized catalytic cracking unit main fractionator. Sci Rep 2022;12:7548. [PMID: 35534491 PMCID: PMC9085762 DOI: 10.1038/s41598-022-10496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/05/2022] [Indexed: 11/09/2022]  Open
11
HUANG M, ZHENG Y, LI S. Distributed Economic Model Predictive Control with Pseudo-steady State Modifier Adaptation for An Industrial Fluid Catalytic Cracking Unit. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
12
Revisiting a large-scale FCC riser reactor with a particle-scale model. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
13
A Review of Modelling of the FCC Unit–Part I: The Riser. ENERGIES 2022. [DOI: 10.3390/en15010308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
14
Satriadi H, Pratiwi IY, Khuriyah M, Prameswari J. Geothermal solid waste derived Ni/Zeolite catalyst for waste cooking oil processing. CHEMOSPHERE 2022;286:131618. [PMID: 34346337 DOI: 10.1016/j.chemosphere.2021.131618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
15
Chen W, You K, Wei Y, Zhao F, Chen Z, Wu J, Ai Q, Luo H. Highly Dispersed Low-Polymeric VOx/Silica Gel Catalyst for Efficient Catalytic Dehydrogenation of Propane to Propylene. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
16
A Model of Catalytic Cracking: Product Distribution and Catalyst Deactivation Depending on Saturates, Aromatics and Resins Content in Feed. Catalysts 2021. [DOI: 10.3390/catal11060701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
17
Coupling DPM with DNS for dynamic interphase force evaluation. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
18
He G, Zhou C, Luo T, Zhou L, Dai Y, Dang Y, Ji X. Online Optimization of Fluid Catalytic Cracking Process via a Hybrid Model Based on Simplified Structure-Oriented Lumping and Case-Based Reasoning. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
19
Chen C, Zhou L, Ji X, He G, Dai Y, Dang Y. Adaptive Modeling Strategy Integrating Feature Selection and Random Forest for Fluid Catalytic Cracking Processes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
20
F. Cuadros Bohorquez J, Plazas Tovar L, Wolf Maciel MR, C. Melo D, Maciel Filho R. Surrogate-model-based, particle swarm optimization, and genetic algorithm techniques applied to the multiobjective operational problem of the fluid catalytic cracking process. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2019.1613230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
21
Continuum theory for dense gas-solid flow: A state-of-the-art review. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115428] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
22
Rossbach V, Padoin N, Meier HF, Soares C. Influence of acoustic waves on the solids dispersion in a gas-solid CFB riser: Numerical analysis. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.09.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
23
Sun S, Yan H, Meng F. Optimization of a Fluid Catalytic Cracking Kinetic Model by Improved Particle Swarm Optimization. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
24
Huang M, Zheng Y, Li S, Xu S. Enhancing Transient Event Trigger Real-Time Optimization for Fluid Catalytic Cracking Unit Operation with Varying Feedstock. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
25
Zhang Z, Wu Z, Rincon D, Christofides PD. Operational safety via model predictive control: The Torrance refinery accident revisited. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
26
Catalyst/Feedstock Ratio Effect on FCC Using Different Catalysts Samples. Catalysts 2019. [DOI: 10.3390/catal9060542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
27
Comparison of the Steady-State Performances of $$2 \times 2$$ 2 × 2 Regulatory Control Structures for Fluid Catalytic Cracking Unit. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-03782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
28
Nagiev AG, Nagiev GA, Gulieva NA. On the Structure of the Space of States for a Thermal Model of Fluidized-Bed Reactor–Regenerator Units and Control Visualization Principles. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2019. [DOI: 10.1134/s0040579519010111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
29
Shirzad M, Karimi M, Silva JA, Rodrigues AE. Moving Bed Reactors: Challenges and Progress of Experimental and Theoretical Studies in a Century of Research. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
30
Economic operation of a fluid catalytic cracking process using self-optimizing control and reconfiguration. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
31
Gas-solid flow in a ring-baffled CFB riser: Numerical and experimental analysis. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.12.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
32
Long J, Li T, Yang M, Hu G, Zhong W. Hybrid Strategy Integrating Variable Selection and a Neural Network for Fluid Catalytic Cracking Modeling. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04821] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
33
Bai P, Etim UJ, Yan Z, Mintova S, Zhang Z, Zhong Z, Gao X. Fluid catalytic cracking technology: current status and recent discoveries on catalyst contamination. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2018. [DOI: 10.1080/01614940.2018.1549011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
34
Numerical investigation of influence of treatment of the coke component on hydrodynamic and catalytic cracking reactions in an industrial riser. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
35
Olafadehan OA, Sunmola OP, Jaiyeola A, Efeovbokhan V, Abatan OG. Modelling and simulation of an industrial RFCCU-riser reactor for catalytic cracking of vacuum residue. APPLIED PETROCHEMICAL RESEARCH 2018. [DOI: 10.1007/s13203-018-0212-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]  Open
36
A new generic reaction for modeling fluid catalytic cracking risers. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
37
Cho H, Kim J, Park C, Lee K, Kim M, Moon I. Uneven distribution of particle flow in RFCC reactor riser. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
38
Hinojosa AI, Capron B, Odloak D. REALIGNED MODEL PREDICTIVE CONTROL OF A PROPYLENE DISTILLATION COLUMN. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1590/0104-6632.20160331s20140102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
39
Shi S, Tan W, Sun J. Progress in kinetic predictions for complex reaction of hydrocarbons: from mechanism studies to industrial applications. REV CHEM ENG 2016. [DOI: 10.1515/revce-2015-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
40
Shi J, Wang Y, Yang W, Tang Y, Xie Z. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chem Soc Rev 2015;44:8877-903. [PMID: 26567526 DOI: 10.1039/c5cs00626k] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
41
Du Y, Zhao H, Ma A, Yang C. Equivalent Reactor Network Model for the Modeling of Fluid Catalytic Cracking Riser Reactor. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b02109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
42
Ten-lump kinetic model for the two-stage riser catalytic cracking for maximizing propylene yield (TMP) process. APPLIED PETROCHEMICAL RESEARCH 2015. [DOI: 10.1007/s13203-015-0114-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]  Open
43
Steady-state multiplicity analysis of two-stage-riser catalytic pyrolysis processes. Comput Chem Eng 2015. [DOI: 10.1016/j.compchemeng.2014.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
44
Du YP, Yang Q, Zhao H, Yang CH. An integrated methodology for the modeling of Fluid Catalytic Cracking (FCC) riser reactor. APPLIED PETROCHEMICAL RESEARCH 2014. [DOI: 10.1007/s13203-014-0084-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]  Open
45
Hinojosa AI, Odloak D. Study of the implementation of a robust MPC in a propylene/propane splitter using rigorous dynamic simulation. CAN J CHEM ENG 2014. [DOI: 10.1002/cjce.21980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
46
WANG R, LUO X, XU F. Effect of CO Combustion Promoters on Combustion Air Partition in FCC under Nearly Complete Combustion. Chin J Chem Eng 2014. [DOI: 10.1016/s1004-9541(14)60078-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
47
Martins MA, Zanin AC, Odloak D. Robust model predictive control of an industrial partial combustion fluidized-bed catalytic cracking converter. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2013.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
48
Zhang Y, Yao M, Sun G, Gao S, Xu G. Characteristics and Kinetics of Coked Catalyst Regeneration via Steam Gasification in a Micro Fluidized Bed. Ind Eng Chem Res 2014. [DOI: 10.1021/ie4043328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
49
Simultaneous estimation of kinetics and catalysts activity during cracking of 1,3,5-tri-isopropyl benzene on FCC catalyst. Catal Today 2014. [DOI: 10.1016/j.cattod.2013.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
50
Wang R, Luo X, Xu F. Economic and Control Performance of a Fluid Catalytic Cracking Unit: Interactions between Combustion Air and CO Promoters. Ind Eng Chem Res 2013. [DOI: 10.1021/ie401777n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA