1
|
Wang Y, Wang Y, Liu M, Jia R, Zhang Y, Sun G, Zhang Z, Liu M, Jiang Y. Micro-/nano-plastics as vectors of heavy metals and stress response of ciliates using transcriptomic and metabolomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124667. [PMID: 39103036 DOI: 10.1016/j.envpol.2024.124667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The escalating presence of microplastics and heavy metals in marine environments significantly jeopardizes ecological stability and human health. Despite this, research on the combined effects of microplastics/nanoplastics (MPs/NPs) and heavy metals on marine organisms remains limited. This study evaluated the impact of two sizes of polystyrene beads (approximately 2 μm and 200 nm) combined with cadmium (Cd) on the ciliate species Euplotes vannus. Results demonstrated that co-exposure of MPs/NPs and Cd markedly elevated reactive oxygen species (ROS) levels in ciliates while impairing antioxidant enzyme activities, thus enhancing oxidative damage and significantly reducing carbon biomass in ciliates. Transcriptomic profiling indicated that co-exposure of MPs/NPs and Cd potentially caused severe DNA damage and protein oxidation, as evidenced by numerous differentially expressed genes (DEGs) associated with mismatch repair, DNA replication, and proteasome function. Integrated transcriptomic and metabolomic analysis revealed that DEGs and differentially accumulated metabolites (DAMs) were significantly enriched in the TCA cycle, glycolysis, tryptophan metabolism, and glutathione metabolism. This suggests that co-exposure of MPs/NPs and Cd may reduce ciliate abundance and carbon biomass by inhibiting energy metabolism and antioxidant pathways. Additionally, compared to MPs, the co-exposure of NPs and Cd exhibited more severe negative effects due to the larger specific surface area of NPs, which can carry more Cd. These findings provide novel insights into the toxic effects of MPs/NPs and heavy metals on protozoan ciliates, offering foundational data for assessing the ecological risks of heavy metals exacerbated by MPs/NPs.
Collapse
Affiliation(s)
- Yunlong Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yaxin Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Minhao Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yan Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Gaojingwen Sun
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhaoji Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Mingjian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Evolution & Marine Biodiversity of Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Kongsak C, Chiangraeng N, Rithchumpon P, Nimmanpipug P, Meepowpan P, Tuntulani T, Thavornyutikarn P. Turn-on fluorogenic sensors based on an anthraquinone signaling unit for the detection of Zn(II) and Cd(II) ions. Org Biomol Chem 2023; 21:7367-7381. [PMID: 37655509 DOI: 10.1039/d3ob01223a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Turn-on fluorescent chemosensors based on an anthraquinone moiety, N,N'-(9,10-dioxo-9,10-dihydroanthracene-1,8-diyl)bis(2-(bis(pyridin-2-ylmethyl)amino)acetamide) (1) and N,N'-(9,10-dioxo-9,10-dihydroanthracene-2,6-diyl)bis(2-(bis(pyridin-2-ylmethyl)amino)acetamide) (2), have been successfully synthesized with the overall yields of 61% and 90%, respectively. The structures of both chemosensors 1 and 2 were elucidated using several spectroscopic techniques such as 1H NMR, 13C NMR, 2D-NMR, FTIR and HRMS. The target chemosensor 1 is a promising tool for the detection of trace levels of d10 metal ions, such as Zn(II) and Cd(II) ions, by exhibiting a significant fluorescence enhancement via a turn-on photoinduced electron transfer (PET) mechanism with a rapid and highly reproducible signal, and low detection limit values of 0.408 μM and 0.246 μM, for Zn(II) and Cd(II), respectively.
Collapse
Affiliation(s)
- Chawanakorn Kongsak
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand.
- Graduate School, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand
| | - Natthiti Chiangraeng
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand.
| | - Puracheth Rithchumpon
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand.
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand.
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand.
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan Bangkok 10330, Thailand
| | - Praput Thavornyutikarn
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Rd, Chiang Mai 50200, Thailand.
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Chu X, Huang Y, Li W, Zhao S, Li H, Lu A. Multicolor Emissive Phosphorescent Iridium(III) Complexes Containing L-Alanine Ligands: Photophysical and Electrochemical Properties, DFT Calculations, and Selective Recognition of Cu(II) Ions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238506. [PMID: 36500597 PMCID: PMC9741083 DOI: 10.3390/molecules27238506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Three novel Ir(III) complexes, (ppy)2Ir(L-alanine) (Ir1) (ppy = 2-phenylpyridine), (F4ppy)2Ir(L-alanine) (Ir2) (F4ppy = 2-(4-fluorophenyl)pyridine), and (F2,4,5ppy)2Ir(L-alanine) (Ir3) (F2,4,5ppy = 2-(2,4,5-trifluorophenyl)pyridine), based on simple L-alanine as ancillary ligands were synthesized and investigated. Due to the introduction of fluorine substituents on the cyclometalated ligands, complexes Ir1-Ir3 exhibited yellow to sky-blue emissions (λem = 464-509 nm) in acetonitrile solution. The photoluminescence quantum yields (PLQYs) of Ir1-Ir3 ranged from 0.48-0.69, of which Ir3 with sky-blue luminescence had the highest PLQY of 0.69. The electrochemical study and density functional theory (DFT) calculations show that the highest occupied molecular orbital (HOMOs) energy of Ir1-Ir3 are stabilized by the introduction of fluorine substituents on the cyclometalated ligands, while L-alanine ancillary ligand has little contribution to HOMOs and lowest unoccupied molecular orbitals (LUMOs). Moreover, Ir1-Ir3 presented an excellent response to Cu2+ with a high selectivity, strong anti-interference ability, and short response time. Such a detection was based on significant phosphorescence quenching of their emissions, showing the potential application in chemosensors for Cu2+.
Collapse
|
4
|
Li WH, Zhao SS, Chu X, Qin ZQ, Zhang JX, Li HY. Two phosphorescent iridium(III) complexes containing simple L-alanine ligands as efficient sensors for Cu2+ ions. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Daly R, Narayan T, Shao H, O’Riordan A, Lovera P. Platinum-Based Interdigitated Micro-Electrode Arrays for Reagent-Free Detection of Copper. SENSORS 2021; 21:s21103544. [PMID: 34069670 PMCID: PMC8161293 DOI: 10.3390/s21103544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
Water is a precious resource that is under threat from a number of pressures, including, for example, release of toxic compounds, that can have damaging effect on ecology and human health. The current methods of water quality monitoring are based on sample collection and analysis at dedicated laboratories. Recently, electrochemical-based methods have attracted a lot of attention for environmental sensing owing to their versatility, sensitivity and their ease of integration with cost effective, smart and portable readout systems. In the present work, we report on the fabrication and characterization of platinum-based interdigitated microband electrodes arrays, and their application for trace detection of copper. Using square wave voltammetry after acidification with mineral acids, a limit of detection of 0.8 μg/L was achieved. Copper detection was also undertaken on river water samples and compared with standard analytical techniques. The possibility of controlling the pH at the surface of the sensors—thereby avoiding the necessity to add mineral acids—was investigated. By applying potentials to drive the water splitting reaction at one comb of the sensor’s electrode (the protonator), it was possible to lower the pH in the vicinity of the sensing electrode. Detection of standard copper solutions down to 5 μg/L (ppb) using this technique is reported. This reagent free method of detection opens the way for autonomous, in situ monitoring of pollutants in water bodies.
Collapse
|
6
|
Yang Y, Ye S, Zhang C, Zeng G, Tan X, Song B, Zhang P, Yang H, Li M, Chen Q. Application of biochar for the remediation of polluted sediments. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124052. [PMID: 33039828 DOI: 10.1016/j.jhazmat.2020.124052] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/12/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Polluted sediments pose potential threats to environmental and human health and challenges to water management. Biochar is a carbon-rich material produced through pyrolysis of biomass waste, which performs well in soil amendment, climate improvement, and water treatment. Unlike soil and aqueous solutions, sediments are both the sink and source of water pollutants. Regarding in-situ sediment remediation, biochar also shows unique advantages in removing or immobilizing inorganic and organic pollutants (OPs). This paper provides a comprehensive review of the current methods of in-situ biochar amendments specific to polluted sediments. Physicochemical properties (pore structure, surface functional groups, pH and surface charge, mineral components) were influenced by the pyrolysis conditions, feedstock types, and modification of biochar. Furthermore, the remediation mechanisms and efficiency of pollutants (heavy metals [HMs] and OPs) vary with the biochar properties. Biochar influences microbial compositions and benthic organisms in sediments. Depending on the location or flow rate of polluted sediments, potential utilization methods of biochar alone or coupled with other materials are discussed. Finally, future practical challenges of biochar as a sediment amendment are addressed. This review provides an overview and outlook for sediment remediation using biochar, which will be valuable for further scientific research and engineering applications.
Collapse
Affiliation(s)
- Yuanyuan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Peng Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Meiling Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiang Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
7
|
Ciarrocchi C, Tumino A, Sacchi D, Orbelli Biroli A, Licchelli M. Detection of Copper(II) in Water by Methylene Blue Derivatives. Chemphyschem 2020; 21:2432-2440. [DOI: 10.1002/cphc.202000676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Carlo Ciarrocchi
- Department of Chemistry University of Pavia V. Taramelli 12 27100 Pavia Italy
| | - Adriana Tumino
- Department of Chemistry University of Pavia V. Taramelli 12 27100 Pavia Italy
| | - Donatella Sacchi
- Department of Chemistry University of Pavia V. Taramelli 12 27100 Pavia Italy
| | | | - Maurizio Licchelli
- Department of Chemistry University of Pavia V. Taramelli 12 27100 Pavia Italy
| |
Collapse
|
8
|
Fernández A, Deive FJ, Rodríguez A, Álvarez MS. Towards the use of eco-friendly solvents as adjuvants in remediation processes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Shao H, Wen X, Ding Y, Hong X, Zhao H. Colorimetric determination of copper(II) by using branched-polyethylenimine droplet evaporation on a superhydrophilic-superhydrophobic micropatterned surface. Mikrochim Acta 2019; 186:701. [PMID: 31620903 DOI: 10.1007/s00604-019-3805-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/08/2019] [Indexed: 12/31/2022]
Abstract
A colorimetric method is described for the determination of Cu(II). It is based on branched polyethylenimine (BPEI) droplet evaporation on a superhydrophilic-superhydrophobic polystyrene micropatterned surface. Exposure to Cu(II) leads to a color change from colorless to light blue and dark blue. The micropatterned surface was fabricated via combining electrospinning with oxygen plasma and served as a detection substrate. Analysis requires only a single drop of blood. The method has a linear response in the 5.0 μM to 2.5 mM Cu(II) concentration range which is within the physiological range (15.7 ∼ 23.6 μM). Compared to an assay in solution, the detection limit is decreased from 386 nM to 89 nM. Excellent selectivity over other metal ions and anions was achieved. Graphical abstract A rapid and sensitive colorimetric detection platform for Cu(II) was fabricated by using branched-polyethylenimine droplet evaporation on a superhydrophilic-superhydrophobic micropatterned surface. Only a single drop of blood was needed for the analysis. The sensitivity was improved about 4.3 times.
Collapse
Affiliation(s)
- Hong Shao
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, People's Republic of China
| | - Xiaokun Wen
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, People's Republic of China
| | - Yadan Ding
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, People's Republic of China
| | - Xia Hong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, People's Republic of China.
| | - Huiying Zhao
- Department of Basic Medicine, Gerontology Department of First Bethune Hospital, Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
10
|
Xuan J, Tian J. Heating promoted fluorescent recognition of Cu2+ with high selectivity and sensitivity based on spiropyran derivative. Anal Chim Acta 2019; 1061:161-168. [DOI: 10.1016/j.aca.2019.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 01/31/2023]
|
11
|
Ramdass A, Sathish V, Babu E, Velayudham M, Thanasekaran P, Rajagopal S. Recent developments on optical and electrochemical sensing of copper(II) ion based on transition metal complexes. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Zhang S, Tian K, Jiang SF, Jiang H. Preventing the Release of Cu2+ and 4-CP from Contaminated Sediments by Employing a Biochar Capping Treatment. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shun Zhang
- CAS Key Laboratory of Urban Pollutant Conversion,
Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ke Tian
- CAS Key Laboratory of Urban Pollutant Conversion,
Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shun-Feng Jiang
- CAS Key Laboratory of Urban Pollutant Conversion,
Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion,
Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Onghena B, Opsomer T, Binnemans K. Separation of cobalt and nickel using a thermomorphic ionic-liquid-based aqueous biphasic system. Chem Commun (Camb) 2015; 51:15932-5. [PMID: 26377483 DOI: 10.1039/c5cc06595j] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A [P44414][Cl]-NaCl-H2O ionic liquid-based aqueous biphasic system shows promising results for the separation of cobalt(II) and nickel(II) by homogeneous liquid-liquid extraction. The extracting phase consists of a hydrophilic ionic liquid that is salted-out by sodium chloride, indicating that there is no need for using hydrophobic ionic liquids.
Collapse
Affiliation(s)
- Bieke Onghena
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F PO box 2404, Leuven, 3001 Heverlee, Belgium.
| | | | | |
Collapse
|
14
|
Tabaklı B, Topçu AA, Döker S, Uzun L. Particle-Assisted Ion-Imprinted Cryogels for Selective CdII Ion Removal. Ind Eng Chem Res 2015. [DOI: 10.1021/ie504312e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bekir Tabaklı
- Department
of Chemistry, Hacettepe University, Ankara, Turkey
| | - Aykut Arif Topçu
- Department
of Chemistry, Hacettepe University, Ankara, Turkey
- Department
of Biology, Kırıkkale University, Kırıkkale, Turkey
| | - Serhat Döker
- Department
of Chemistry, Çankırı Karatekin University, Çankırı, Turkey
| | - Lokman Uzun
- Department
of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
15
|
Álvarez MS, Rivas M, Deive FJ, Sanromán MA, Rodríguez A. Ionic liquids and non-ionic surfactants: a new marriage for aqueous segregation. RSC Adv 2014. [DOI: 10.1039/c4ra04996a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|