1
|
Shibukawa M, Onoyama Y, Handa-Tasaki Y, Saito S. Multistep pH-peak-focusing liquid chromatography with a hydrophilic polymer gel column for separation of rare earth elements. J Chromatogr A 2024; 1721:464829. [PMID: 38522404 DOI: 10.1016/j.chroma.2024.464829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Multistep pH-peak-focusing liquid chromatography with a column packed with a hydrophilic polymer gel (a cross-linked hydroxylated methacrylic polymer gel) was developed for separation of rare earth metal ions. Metal ions in a sample solution introduced to the column are chromatographically extracted into the stationary gel phase at the top of the column equilibrated with a basic solution used as the first mobile phase containing acetylacetone and 1,10-phenanthroline by synergistic extraction effect. After the sample solution is introduced, the mobile phases are delivered into the column by stepwise gradient elution in order of decreasing pH. Each metal ion is concentrated at a pH border formed between the zones of different pH in the column and moves toward the outlet of the column with the pH border. Mutual separation of La(III), Ce(III), Nd(III), Eu(III), Y(III), Tb(III), and Yb(III) was achieved by the present method for an 1-mL sample injection with the column of which the inner volume is 11.8 mL. The multistep pH-peak-focusing liquid chromatography with a hydrophilic polymer gel column developed in this study has great potential as a useful method for the separation of rare earth metal ions on a preparatory scale.
Collapse
Affiliation(s)
- Masami Shibukawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | - Yosuke Onoyama
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yuiko Handa-Tasaki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Shingo Saito
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
2
|
Koźmiński P, Gumiela M, Walczak R, Wawrowicz K, Bilewicz A. A semi-automated module for the separation and purification of 99mTc from simulated molybdenum target. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07710-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AbstractA semi-automated purification module for the cyclic separation of 99mTc was designed for production of [99mTc]TcO4– from γ irradiated 100Mo target. The separation process was carried out by using a 3-column purification system and the final product, [99mTc]TcO4–, was obtained in a total volume of 7 mL. To confirm proper separation achieved for 99mTc, a radio-labeling procedure using DTPA chelator was performed. The radiochemical purity was higher than 95%, which meets the strict radiopharmaceutical requirements. The yielded 99mTc can be separated with high efficiency from Mo in a quick and repeated way. Loss of 99mTc radioactivity during such a three-column separation process was not larger than 10%.
Collapse
|
3
|
Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R. Ex-Situ Remediation Technologies for Environmental Pollutants: A Critical Perspective. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 236:117-192. [PMID: 26423074 DOI: 10.1007/978-3-319-20013-2_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pollution and the global health impacts from toxic environmental pollutants are presently of great concern. At present, more than 100 million people are at risk from exposure to a plethora of toxic organic and inorganic pollutants. This review is an exploration of the ex-situ technologies for cleaning-up the contaminated soil, groundwater and air emissions, highlighting their principles, advantages, deficiencies and the knowledge gaps. Challenges and strategies for removing different types of contaminants, mainly heavy metals and priority organic pollutants, are also described.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- CERAR-Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA, 5095, Australia
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
| | - Thavamani Palanisami
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia.
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur, 515055, India
| | - Ravi Naidu
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
4
|
|