• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4600961)   Today's Articles (6108)   Subscriber (49361)
For: Couwenberg PM, Chen Q, Marin GB. Kinetics of a Gas-Phase Chain Reaction Catalyzed by a Solid:  The Oxidative Coupling of Methane over Li/MgO-Based Catalysts. Ind Eng Chem Res 1996. [DOI: 10.1021/ie9504617] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Number Cited by Other Article(s)
1
Meng XW, Ding T, Liu B, Gong XS, Liu B, Zheng LN. Highly selective C2H2 and CO2 capture based on two new ZnII-MOFs and fluorescence sensing of two doped MOFs with EuIII. CrystEngComm 2023. [DOI: 10.1039/d3ce00068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
2
Baharudin L, Rahmat N, Othman NH, Shah N, Syed-Hassan SSA. Formation, control, and elimination of carbon on Ni-based catalyst during CO2 and CH4 conversion via dry reforming process: A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
3
Tharakaraman SS, Nunez Manzano M, Kulkarni SR, Yazdani P, De Vos Y, Verspeelt T, Heynderickx G, Van Geem KM, Marin GB, Saeys M. Development of an Active and Mechanically Stable Catalyst for the Oxidative Coupling of Methane in a Gas–Solid Vortex Reactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
4
Barteau MA. Is it time to stop searching for better catalysts for Oxidative Coupling of Methane? J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
5
Wang H, Shao C, Gascon J, Takanabe K, Sarathy SM. Noncatalytic Oxidative Coupling of Methane (OCM): Gas-Phase Reactions in a Jet Stirred Reactor (JSR). ACS OMEGA 2021;6:33757-33768. [PMID: 34926924 PMCID: PMC8674986 DOI: 10.1021/acsomega.1c05020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
6
Oxidative Coupling of Methane for Ethylene Production: Reviewing Kinetic Modelling Approaches, Thermodynamics and Catalysts. Processes (Basel) 2021. [DOI: 10.3390/pr9122196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
7
Ding T, Wang H, Li HM, Zheng LN, Xue N, Liu B. Structural Tuning and Pore Modulation of Three Cu(II)-Organic Frameworks: Enhancement of Stability and Functionality. Inorg Chem 2020;59:10953-10961. [PMID: 32686410 DOI: 10.1021/acs.inorgchem.0c01427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
8
Vandewalle LA, Lengyel I, West DH, Van Geem KM, Marin GB. Catalyst ignition and extinction: A microkinetics-based bifurcation study of adiabatic reactors for oxidative coupling of methane. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.08.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
9
The role of mass and heat transfer in the design of novel reactors for oxidative coupling of methane. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.09.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
10
Venegas JM, Hermans I. The Influence of Reactor Parameters on the Boron Nitride-Catalyzed Oxidative Dehydrogenation of Propane. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00301] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
11
Alexiadis VI, Serres T, Marin GB, Mirodatos C, Thybaut JW, Schuurman Y. Analysis of volume‐to‐surface ratio effects on methane oxidative coupling using microkinetic modeling. AIChE J 2018. [DOI: 10.1002/aic.16152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
12
Obradović A, Thybaut JW, Marin GB. Oxidative Coupling of Methane: Opportunities for Microkinetic Model-Assisted Process Implementations. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201600216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
13
Schwach P, Frandsen W, Willinger MG, Schlögl R, Trunschke A. Structure sensitivity of the oxidative activation of methane over MgO model catalysts: I. Kinetic study. J Catal 2015. [DOI: 10.1016/j.jcat.2015.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
14
Godini H, Fleischer V, Görke O, Jaso S, Schomäcker R, Wozny G. Thermal Reaction Analysis of Oxidative Coupling of Methane. CHEM-ING-TECH 2014. [DOI: 10.1002/cite.201400080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
15
Eppinger T, Wehinger G, Kraume M. Parameter optimization for the oxidative coupling of methane in a fixed bed reactor by combination of response surface methodology and computational fluid dynamics. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2013.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
16
Liang Y, Li Z, Nourdine M, Shahid S, Takanabe K. Methane Coupling Reaction in an Oxy-Steam Stream through an OH Radical Pathway by using Supported Alkali Metal Catalysts. ChemCatChem 2014. [DOI: 10.1002/cctc.201400018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
17
Kechagiopoulos PN, Thybaut JW, Marin GB. Oxidative Coupling of Methane: A Microkinetic Model Accounting for Intraparticle Surface-Intermediates Concentration Profiles. Ind Eng Chem Res 2013. [DOI: 10.1021/ie403160s] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
18
Activity enhancement of Li/MgO catalysts by lithium chloride as a lithium precursor for the oxidative coupling of methane. REACTION KINETICS MECHANISMS AND CATALYSIS 2013. [DOI: 10.1007/s11144-013-0600-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
19
Arndt S, Laugel G, Levchenko S, Horn R, Baerns M, Scheffler M, Schlögl R, Schomäcker R. A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2011. [DOI: 10.1080/01614940.2011.613330] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
20
Freund HJ, Meijer G, Scheffler M, Schlögl R, Wolf M. CO Oxidation as a Prototypical Reaction for Heterogeneous Processes. Angew Chem Int Ed Engl 2011;50:10064-94. [DOI: 10.1002/anie.201101378] [Citation(s) in RCA: 540] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Indexed: 11/10/2022]
21
Freund HJ, Meijer G, Scheffler M, Schlögl R, Wolf M. Die CO-Oxidation als Modellreaktion für heterogene Prozesse. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101378] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
22
Catalyst design based on microkinetic models: Oxidative coupling of methane. Catal Today 2011. [DOI: 10.1016/j.cattod.2010.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
23
Analysis of attainable reactor performance for the oxidative methane coupling process. Chem Eng Sci 2010. [DOI: 10.1016/j.ces.2010.08.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
24
Zavyalova U, Geske M, Horn R, Weinberg G, Frandsen W, Schuster M, Schlögl R. Morphology and Microstructure of Li/MgO Catalysts for the Oxidative Coupling of Methane. ChemCatChem 2010. [DOI: 10.1002/cctc.201000098] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
25
Dedov AG, Makhlin VA, Podlesnaya MV, Zyskin AG, Loktev AS, Tyunjaev AA, Nipan GD, Koltsova TN, Ketsko VA, Kartasheva MN, Moiseev II. Kinetics, mathematical modeling, and optimization of the oxidative coupling of methane over a LiMnW/SiO2 catalyst. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2010. [DOI: 10.1134/s004057951001001x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
26
Ağıral A, Trionfetti C, Lefferts L, Seshan K, (Han) Gardeniers JGE. Propane Conversion at Ambient Temperatures C-C and C-H Bond Activation Using Cold Plasma in a Microreactor. Chem Eng Technol 2008. [DOI: 10.1002/ceat.200800175] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
27
Xin Y, Song Z, Tan Y, Wang D. The directed relation graph method for mechanism reduction in the oxidative coupling of methane. Catal Today 2008. [DOI: 10.1016/j.cattod.2007.10.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
28
Simon Y, Baronnet F, Marquaire PM. Kinetic Modeling of the Oxidative Coupling of Methane. Ind Eng Chem Res 2007. [DOI: 10.1021/ie060151w] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
29
Simon Y, Baronnet F, Côme G, Marquaire P. Detailed mechanism of the oxidative coupling of methane. STUDIES IN SURFACE SCIENCE AND CATALYSIS 2004. [DOI: 10.1016/s0167-2991(04)80113-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
30
Quah EBH, Li CZ. Pyrolysis of liquefied petroleum gas assisted by radicals desorbed from mesh catalyst surface. INT J CHEM KINET 2003. [DOI: 10.1002/kin.10163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
31
Interinfluence between Reactions on the Catalyst Surface and Reactions in the Gas Phase during the Catalytic Oxidation of Methane with Air. J Catal 2001. [DOI: 10.1006/jcat.2000.3080] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA