1
|
Zhao Y, Kumar A, Yang Y. Unveiling practical considerations for reliable and standardized SERS measurements: lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chem Soc Rev 2024; 53:1004-1057. [PMID: 38116610 DOI: 10.1039/d3cs00540b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Recently, there has been an exponential growth in the number of publications focusing on surface-enhanced Raman scattering (SERS), primarily driven by advancements in nanotechnology and the increasing demand for chemical and biological detection. While many of these publications have focused on the development of new substrates and detection-based applications, there is a noticeable lack of attention given to various practical issues related to SERS measurements and detection. This review aims to fill this gap by utilizing silver nanorod (AgNR) SERS substrates fabricated through the oblique angle deposition method as an illustrative example. The review highlights and addresses a range of practical issues associated with SERS measurements and detection. These include the optimization of SERS substrates in terms of morphology and structural design, considerations for measurement configurations such as polarization and the incident angle of the excitation laser, and exploration of enhancement mechanisms encompassing both intrinsic properties induced by the structure and materials, as well as extrinsic factors arising from wetting/dewetting phenomena and analyte size. The manufacturing and storage aspects of SERS substrates, including scalable fabrication techniques, contamination control, cleaning procedures, and appropriate storage methods, are also discussed. Furthermore, the review delves into device design considerations, such as well arrays, flow cells, and fiber probes, and explores various sample preparation methods such as drop-cast and immersion. Measurement issues, including the effect of excitation laser wavelength and power, as well as the influence of buffer, are thoroughly examined. Additionally, the review discusses spectral analysis techniques, encompassing baseline removal, chemometric analysis, and machine learning approaches. The wide range of AgNR-based applications of SERS, across various fields, is also explored. Throughout the comprehensive review, key lessons learned from collective findings are outlined and analyzed, particularly in the context of detailed SERS measurements and standardization. The review also provides insights into future challenges and perspectives in the field of SERS. It is our hope that this comprehensive review will serve as a valuable reference for researchers seeking to embark on in-depth studies and applications involving their own SERS substrates.
Collapse
Affiliation(s)
- Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Amit Kumar
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Awasthi V, Malik P, Goel R, Srivastava P, Dubey SK. Nanogap-Rich Surface-Enhanced Raman Spectroscopy-Active Substrate Based on Double-Step Deposition and Annealing of the Au Film over the Back Side of Polished Si. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10250-10260. [PMID: 36757206 DOI: 10.1021/acsami.2c21378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and rapid detection technique that is used for detection of various analytes in trace quantities. We present a sensitive, large-area, and nanogap-rich SERS-active substrate by altering a thin gold (Au) film on the unpolished side of a single-side polished silicon wafer by repeated thermal deposition and annealing in an argon environment. The repeated thermal deposition and annealing process was compared on both sides of a one-side-polished silicon wafer; however, the rear side (etched/unpolished side) demonstrated a more enhanced Raman signal owing to the larger effective area. The proposed substrate can be fabricated easily, having a high density of hotspots distributed uniformly all over the substrate. This ensures easy, rapid, and sensitive detection of analytes with a high degree of reproducibility, repeatability, and acceptable uniformity. The optimized substrate shows a high degree of stability with time when exposed to the ambient environment for a longer duration of 148 days. The reported substrate can detect up to 10-11 M concentrations of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT), with limits of detection (LODs) of 1.22 and 1.26 ng/L, respectively. This work not only presents the efficient and sensitive SERS-active substrate but also shows the advantages of using the rear side of a one-side-polished silicon substrate as a SERS-active chip.
Collapse
Affiliation(s)
- Vimarsh Awasthi
- SeNSE Centre, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Pariksha Malik
- Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Richa Goel
- SeNSE Centre, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Pankaj Srivastava
- Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, Delhi 110016, India
| | | |
Collapse
|
3
|
Strobbia P, Sadler T, Odion RA, Vo-Dinh T. SERS in Plain Sight: A Polarization Modulation Method for Signal Extraction. Anal Chem 2019; 91:3319-3326. [PMID: 30676724 DOI: 10.1021/acs.analchem.8b04360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical spectroscopy offering advantages ranging from "vibrational fingerprints" to multiplexed detection. However, the use of this technique in real-world applications has been limited due to difficulties in detecting inherently weak Raman signals often embedded in strong interfering background signals. A variety of plasmonics-active platforms have been developed to increase Raman signals but are not sufficient to extract weak SERS signals from intense interfering background signals. Herein, we describe a practical method, referred to as polarization modulation-SERS (PM-SERS), which utilizes the polarization dependence of anisotropic SERS-active nanostructures to modulate the plasmonic effect to extract SERS signals and remove background. The modulation is obtained by switching the polarization of the excitation source at a specific frequency involving addition of only few optical components such as liquid crystal polarizers to a typical Raman setup. In this work, we characterized the polarization-dependent response of the SERS substrates fabricated using the oblique angle evaporation (OAV) technique and their response under laser excitation using a polarization modulated source. We demonstrated that the PM-SERS method can extract the analyte weak SERS signals from the strong interfering background signal in different situations, involving a fluorescent sample and a strong background light, and we show the possibility of using PM-SERS at a quasi-real time rate (0.5 Hz). We believe that the PM-SERS method will help expand the translation of applications that utilize SERS-substrates to real-world settings.
Collapse
Affiliation(s)
- Pietro Strobbia
- Fitzpatrick Institute for Photonics , Duke University , Durham , North Carolina 27708 , United States.,Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Tyjair Sadler
- Fitzpatrick Institute for Photonics , Duke University , Durham , North Carolina 27708 , United States.,Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Ren A Odion
- Fitzpatrick Institute for Photonics , Duke University , Durham , North Carolina 27708 , United States.,Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics , Duke University , Durham , North Carolina 27708 , United States.,Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States.,Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
4
|
Moneo A, González-Orive A, Bock S, Fenero M, Herrer IL, Milan DC, Lorenzoni M, Nichols RJ, Cea P, Perez-Murano F, Low PJ, Martin S. Towards molecular electronic devices based on 'all-carbon' wires. NANOSCALE 2018; 10:14128-14138. [PMID: 29999063 DOI: 10.1039/c8nr02347f] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nascent molecular electronic devices based on linear 'all-carbon' wires attached to gold electrodes through robust and reliable C-Au contacts are prepared via efficient in situ sequential cleavage of trimethylsilyl end groups from an oligoyne, Me3Si-(C[triple bond, length as m-dash]C)4-SiMe3 (1). In the first stage of the fabrication process, removal of one trimethylsilyl (TMS) group in the presence of a gold substrate, which ultimately serves as the bottom electrode, using a stoichiometric fluoride-driven process gives a highly-ordered monolayer, Au|C[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CSiMe3 (Au|C8SiMe3). In the second stage, treatment of Au|C8SiMe3 with excess fluoride results in removal of the remaining TMS protecting group to give a modified monolayer Au|C[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CH (Au|C8H). The reactive terminal C[triple bond, length as m-dash]C-H moiety in Au|C8H can be modified by 'click' reactions with (azidomethyl)ferrocene (N3CH2Fc) to introduce a redox probe, to give Au|C6C2N3HCH2Fc. Alternatively, incubation of the modified gold substrate supported monolayer Au|C8H in a solution of gold nanoparticles (GNPs), results in covalent attachment of GNPs on top of the film via a second alkynyl carbon-Au σ-bond, to give structures Au|C8|GNP in which the monolayer of linear, 'all-carbon' C8 chains is sandwiched between two macroscopic gold contacts. The covalent carbon-surface bond as well as the covalent attachment of the metal particles to the monolayer by cleavage of the alkyne C-H bond is confirmed by surface-enhanced Raman scattering (SERS). The integrity of the carbon chain in both Au|C6C2N3HCH2Fc systems and after formation of the gold top-contact electrode in Au|C8|GNP is demonstrated through electrochemical methods. The electrical properties of these nascent metal-monolayer-metal devices Au|C8|GNP featuring 'all-carbon' molecular wires were characterised by sigmoidal I-V curves, indicative of well-behaved junctions free of short circuits.
Collapse
Affiliation(s)
- Andrea Moneo
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Spain.
| | - Alejandro González-Orive
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Spain. and Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopías Avanzadas (LMA), edificio i+d Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain
| | - Sören Bock
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Marta Fenero
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Spain. and Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopías Avanzadas (LMA), edificio i+d Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain
| | - I Lucía Herrer
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Spain. and Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopías Avanzadas (LMA), edificio i+d Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain
| | - David C Milan
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Matteo Lorenzoni
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Spain. and Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopías Avanzadas (LMA), edificio i+d Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain
| | - Francesc Perez-Murano
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Santiago Martin
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Spain. and Instituto de Ciencias de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
5
|
Liu Y, Yuan H, Fales AM, Register JK, Vo-Dinh T. Multifunctional gold nanostars for molecular imaging and cancer therapy. Front Chem 2015; 3:51. [PMID: 26322306 PMCID: PMC4533003 DOI: 10.3389/fchem.2015.00051] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/30/2015] [Indexed: 12/23/2022] Open
Abstract
Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL), and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy (PDT). This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.
Collapse
Affiliation(s)
- Yang Liu
- Fitzpatrick Institute for Photonics, Duke University Durham, NC, USA ; Department of Biomedical Engineering, Duke University Durham, NC, USA ; Department of Chemistry, Duke University Durham, NC, USA
| | - Hsiangkuo Yuan
- Fitzpatrick Institute for Photonics, Duke University Durham, NC, USA ; Department of Biomedical Engineering, Duke University Durham, NC, USA
| | - Andrew M Fales
- Fitzpatrick Institute for Photonics, Duke University Durham, NC, USA ; Department of Biomedical Engineering, Duke University Durham, NC, USA
| | - Janna K Register
- Fitzpatrick Institute for Photonics, Duke University Durham, NC, USA ; Department of Biomedical Engineering, Duke University Durham, NC, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University Durham, NC, USA ; Department of Biomedical Engineering, Duke University Durham, NC, USA ; Department of Chemistry, Duke University Durham, NC, USA
| |
Collapse
|
6
|
Liu Y, Yuan H, Kersey FR, Register JK, Parrott MC, Vo-Dinh T. Plasmonic gold nanostars for multi-modality sensing and diagnostics. SENSORS (BASEL, SWITZERLAND) 2015; 15:3706-20. [PMID: 25664431 PMCID: PMC4367381 DOI: 10.3390/s150203706] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/30/2015] [Indexed: 12/14/2022]
Abstract
Gold nanostars (AuNSs) are unique systems that can provide a novel multifunctional nanoplatform for molecular sensing and diagnostics. The plasmonic absorption band of AuNSs can be tuned to the near infrared spectral range, often referred to as the "tissue optical window", where light exhibits minimal absorption and deep penetration in tissue. AuNSs have been applied for detecting disease biomarkers and for biomedical imaging using multi-modality methods including surface-enhanced Raman scattering (SERS), two-photon photoluminescence (TPL), magnetic resonance imaging (MRI), positron emission tomography (PET), and X-ray computer tomography (CT) imaging. In this paper, we provide an overview of the recent development of plasmonic AuNSs in our laboratory for biomedical applications and highlight their potential for future translational medicine as a multifunctional nanoplatform.
Collapse
Affiliation(s)
- Yang Liu
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| | - Hsiangkuo Yuan
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Farrell R Kersey
- Department of Radiology & Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC 27510, USA.
| | - Janna K Register
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Matthew C Parrott
- Department of Radiology & Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC 27510, USA.
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
7
|
Vo-Dinh T, Liu Y, Fales AM, Ngo H, Wang HN, Register JK, Yuan H, Norton SJ, Griffin GD. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:17-33. [PMID: 25316579 DOI: 10.1002/wnan.1283] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/26/2014] [Accepted: 07/12/2014] [Indexed: 01/30/2023]
Abstract
This article provides an overview of recent developments and applications of surface-enhanced Raman scattering (SERS) nanosensors and nanoreporters in our laboratory for use in biochemical monitoring, medical diagnostics, and therapy. The design and fabrication of different types of plasmonics-active nanostructures are discussed. The SERS nanosensors can be used in various applications including pH sensing, protein detection, and gene diagnostics. For DNA detection the 'Molecular Sentinel' nanoprobe can be used as a homogenous bioassay in solution or on a chip platform. Gold nanostars provide an excellent multi-modality theranostic platform, combining Raman and SERS with two-photon luminescence (TPL) imaging as well as photodynamic therapy (PDT), and photothermal therapy (PTT). Plasmonics-enhanced and optically modulated delivery of nanostars into brain tumor in live animals was demonstrated; photothermal treatment of tumor vasculature may induce inflammasome activation, thus increasing the permeability of the blood brain-tumor barrier. The imaging method using TPL of gold nanostars provides an unprecedented spatial selectivity for enhanced targeted nanostar delivery to cortical tumor tissue. A quintuple-modality nanoreporter based on gold nanostars for SERS, TPL, magnetic resonance imaging (MRI), computed tomography (CT), and PTT has recently been developed. The possibility of combining spectral selectivity and high sensitivity of the SERS process with the inherent molecular specificity of bioreceptor-based nanoprobes provides a unique multiplex and selective diagnostic modality. Several examples of optical detection using SERS in combination with other detection and treatment modalities are discussed to illustrate the usefulness and potential of SERS nanosensors and nanoreporters for medical applications.
Collapse
Affiliation(s)
- Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Department of Biomedical Engineering, Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ngo HT, Wang HN, Burke T, Ginsburg GS, Vo-Dinh T. Multiplex detection of disease biomarkers using SERS molecular sentinel-on-chip. Anal Bioanal Chem 2014; 406:3335-44. [PMID: 24577572 DOI: 10.1007/s00216-014-7648-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/17/2013] [Accepted: 01/21/2014] [Indexed: 11/25/2022]
Abstract
Developing techniques for multiplex detection of disease biomarkers is important for clinical diagnosis. In this work, we have demonstrated for the first time the feasibility of multiplex detection of genetic disease biomarkers using the surface-enhanced Raman scattering (SERS)-based molecular sentinel-on-chip (MSC) diagnostic technology. The molecular sentinel (MS) sensing mechanism is based upon the decrease of SERS intensity when Raman labels tagged at 3'-ends of MS nanoprobes are physically displaced from the nanowave chip's surface upon DNA hybridization. The use of bimetallic layer (silver and gold) for the nanowave fabrication was investigated. SERS measurements were performed immediately following a single hybridization reaction between the target single-stranded DNA sequences and the complementary MS nanoprobes immobilized on the nanowave chip without requiring target labeling (i.e., label-free), secondary hybridization, or post-hybridization washing, thus shortening the assay time and reducing cost. Two nucleic acid transcripts, interferon alpha-inducible protein 27 and interferon-induced protein 44-like, are used as model systems for the multiplex detection concept demonstration. These two genes are well known for their critical role in host immune response to viral infection and can be used as molecular signature for viral infection diagnosis. The results indicate the potential of the MSC technology for nucleic acid biomarker multiplex detection.
Collapse
Affiliation(s)
- Hoan T Ngo
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | | | | | | | | |
Collapse
|
9
|
Zhao J, Liu Y, Fales AM, Register J, Yuan H, Vo-Dinh T. Direct analysis of traditional Chinese medicines using Surface-Enhanced Raman Scattering (SERS). Drug Test Anal 2014; 6:1063-8. [PMID: 24522956 DOI: 10.1002/dta.1612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/29/2013] [Accepted: 12/30/2013] [Indexed: 01/04/2023]
Abstract
Surface-Enhanced Raman Scattering (SERS) spectrometry provides an excellent tool to characterize chemical constituents in Traditional Chinese Medicines (TCMs) without requiring separation and extraction procedures. This study involved the use of SERS to analyze two TCMs, namely Coptis chinensis and Phellodendron amurense, and their main active constituent, berberine. Using silver nanospheres as SERS-active probes, the decoctions of two raw TCMs and their counterfeits were analyzed. Density functional theory (DFT) was used to calculate the expected Raman spectrum of berberine, and liquid chromatography- mass spectrometry (LC-MS) was used as a comparative technique to quantify the amount of berberine in the samples. The results of the SERS measurements were consistent with the results of DFT calculations and LCMS analyses. To our knowledge, this is the first time that the potential of SERS was demonstrated as a sensitive, rapid, and non-destructive method to qualitatively and quantitatively analyze the active constituents in raw TCM products.
Collapse
Affiliation(s)
- Jing Zhao
- College of Science, South China Agricultural University, Guang Zhou, China; Department of Biomedical Engineering, Duke University, Durham, USA
| | | | | | | | | | | |
Collapse
|
10
|
Liu Y, Chang Z, Yuan H, Fales AM, Vo-Dinh T. Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics. NANOSCALE 2013; 5:12126-31. [PMID: 24162005 DOI: 10.1039/c3nr03762b] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd(3+). In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | | | | | | |
Collapse
|
11
|
Vo-Dinh T, Fales AM, Griffin GD, Khoury CG, Liu Y, Ngo H, Norton SJ, Register JK, Wang HN, Yuan H. Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy. NANOSCALE 2013; 5:10127-40. [PMID: 24056945 PMCID: PMC4355622 DOI: 10.1039/c3nr03633b] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This article provides an overview of the development and applications of plasmonics-active nanoprobes in our laboratory for chemical sensing, medical diagnostics and therapy. Molecular Sentinel nanoprobes provide a unique tool for DNA/RNA biomarker detection both in a homogeneous solution or on a chip platform for medical diagnostics. The possibility of combining spectral selectivity and high sensitivity of the surface-enhanced Raman scattering (SERS) process with the inherent molecular specificity of nanoprobes provides an important multiplex diagnostic modality. Gold nanostars can provide an excellent multi-modality platform, combining two-photon luminescence with photothermal therapy as well as Raman imaging with photodynamic therapy. Several examples of optical detection using SERS and photonics-based treatments are presented to illustrate the usefulness and potential of the plasmonic nanoprobes for theranostics, which seamlessly combines diagnostics and therapy.
Collapse
Affiliation(s)
- Tuan Vo-Dinh
- Department of Biomedical Engineering, Department of Chemistry, The Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ngo HT, Wang HN, Fales AM, Vo-Dinh T. Label-free DNA biosensor based on SERS Molecular Sentinel on Nanowave chip. Anal Chem 2013; 85:6378-83. [PMID: 23718777 PMCID: PMC4022286 DOI: 10.1021/ac400763c] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of a rapid, cost-effective, label-free biosensor for DNA detection is important for many applications in clinical diagnosis, homeland defense, and environment monitoring. A unique label-free DNA biosensor based on Molecular Sentinel (MS) immobilized on a plasmonic 'Nanowave' chip, which is also referred to as a metal film over nanosphere (MFON), is presented. Its sensing mechanism is based upon the decrease of the surface-enhanced Raman scattering (SERS) intensity when Raman label tagged at one end of MS is physically separated from the MFON's surface upon DNA hybridization. This method is label-free as the target does not have to be labeled. The MFON fabrication is relatively simple and low-cost with high reproducibility based on depositing a thin shell of gold over close-packed arrays of nanospheres. The sensing process involves a single hybridization step between the DNA target sequences and the complementary MS probes on the Nanowave chip without requiring secondary hybridization or posthybridization washing, thus resulting in rapid assay time and low reagent usage. The usefulness and potential application of the biosensor for medical diagnostics is demonstrated by detecting the human radical S-adenosyl methionine domain containing 2 (RSAD2) gene, a common inflammation biomarker.
Collapse
Affiliation(s)
- Hoan Thanh Ngo
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Hsin-Neng Wang
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Andrew M. Fales
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
13
|
Yuan H, Register JK, Wang HN, Fales AM, Liu Y, Vo-Dinh T. Plasmonic nanoprobes for intracellular sensing and imaging. Anal Bioanal Chem 2013; 405:6165-80. [DOI: 10.1007/s00216-013-6975-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 01/08/2023]
|
14
|
|
15
|
Baker GA, Moore DS. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 2005; 382:1751-70. [PMID: 16049671 DOI: 10.1007/s00216-005-3353-7] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022]
Abstract
This review describes advances made toward the application of surface-enhanced Raman scattering (SERS) in sensitive analysis and diagnostics. In the early sections of this review we briefly introduce the fundamentals of SERS including a discussion of SERS at the single-molecule level. Applications relevant to trace analysis, environmental monitoring, and homeland security and defense, for example high explosives and contaminant detection, are emphasized. Because the key to wider application of SERS analysis lies in the development of highly enhancing substrates, in the second half of the review we focus our attention on the extensive progress made in designing innovative soluble, supported, and ordered SERS-active nano-architectures to harness the potential of this technique toward solving current and emerging analytical tasks. No attempt or claim is made to review the field exhaustively in its entirety nor to cover all applications, but only to describe several significant milestones and progress made in these important areas and to provide some perspective on where the field is quickly moving.
Collapse
Affiliation(s)
- Gary A Baker
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
16
|
|
17
|
Min ES, Nam SI, Lee MS. Surface-Enhanced Raman Scattering of Indigo on a Stable Silver Foil Substrate Prepared by a Nitric Acid Etching Method. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2002. [DOI: 10.1246/bcsj.75.677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Yu JS, Yang C, Fang HQ. Variable thickness thin-layer cell for electrochemistry and in situ UV–VIS absorption, luminescence and surface-enhanced Raman spectroelectrochemistry. Anal Chim Acta 2000. [DOI: 10.1016/s0003-2670(00)01005-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
P�rez R, Rup�rez A, Rodriguez-Castell�n E, Laserna JJ. Study of experimental parameters for improved adsorbate detectability in SERS using etched silver substrates. SURF INTERFACE ANAL 2000. [DOI: 10.1002/1096-9918(200008)30:1<592::aid-sia856>3.0.co;2-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Surface-enhanced Raman spectroscopy using metallic nanostructures1The submitted manuscript has been authored by a contractor of the U.S Government under contract No. DE-AC05-96OR22464. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.1. Trends Analyt Chem 1998. [DOI: 10.1016/s0165-9936(98)00069-7] [Citation(s) in RCA: 374] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Xue G. Fourier transform Raman spectroscopy and its application for the analysis of polymeric materials. Prog Polym Sci 1997. [DOI: 10.1016/s0079-6700(96)00006-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Grabar KC, Smith PC, Musick MD, Davis JA, Walter DG, Jackson MA, Guthrie AP, Natan MJ. Kinetic Control of Interparticle Spacing in Au Colloid-Based Surfaces: Rational Nanometer-Scale Architecture. J Am Chem Soc 1996. [DOI: 10.1021/ja952233+] [Citation(s) in RCA: 454] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
|
24
|
Laserna J, Sutherland W, Winefordner J. Microspectrometric investigation of active substrates for surface enhanced Raman scattering. Anal Chim Acta 1990. [DOI: 10.1016/s0003-2670(00)83948-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Brabec V, Niki K. Surface Enhanced Raman Scattering Spectroscopy of Flavodoxin on Graphite Electrode with Silver Colloids. CHEM LETT 1988. [DOI: 10.1246/cl.1988.1445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
|