1
|
Cosio MN, Alharbi WS, Sur A, Wang CH, Najafian A, Cundari TR, Powers DC. On the mechanism of intermolecular nitrogen-atom transfer from a lattice-isolated diruthenium nitride intermediate. Faraday Discuss 2023; 244:154-168. [PMID: 37186144 DOI: 10.1039/d2fd00167e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Catalyst confinement within microporous media provides the opportunity to site isolate reactive intermediates, enforce intermolecular functionalization chemistry by co-localizing reactive intermediates and substrates in molecular-scale interstices, and harness non-covalent host-guest interactions to achieve selectivities that are complementary to those accessible in solution. As part of an ongoing program to develop synthetically useful nitrogen-atom transfer (NAT) catalysts, we have demonstrated intermolecular benzylic amination of toluene at a Ru2 nitride intermediate confined within the interstices of a Ru2-based metal-organic framework (MOF), Ru3(btc)2X3 (btc = 1,3,5-benzenetricarboxylate, i.e., Ru-HKUST-1 for X = Cl). Nitride confinement within the extended MOF lattice enabled intermolecular C-H functionalization of benzylic C-H bonds in preference to nitride dimerization, which was encountered with soluble molecular analogues. Detailed study of the kinetic isotope effects (KIEs, i.e., kH/kD) of C-H amination, assayed both as intramolecular effects using partially labeled toluene and as intermolecular effects using a mixture of per-labeled and unlabeled toluene, provided evidence for restricted substrate mobility on the time scale of interstitial NAT. Analysis of these KIEs as a function of material mesoporosity provided approximate experimental values for functionalization in the absence of mass transport barriers. Here, we disclose a combined experimental and computational investigation of the mechanism of NAT from a Ru2 nitride to the C-H bond of toluene. Computed kinetic isotope effects for a H-atom abstraction (HAA)/radical rebound (RR) mechanism are in good agreement with experimental data obtained for C-H amination at the rapid diffusion limit. These results provide the first detailed analysis of the mechanism of intermolecular NAT to a C-H bond, bolster the use of KIEs as a probe of confinement effects on NAT within MOF lattices, and provide mechanistic insights unavailable by experiment because rate-determining mass transport obscured the underlying chemical kinetics.
Collapse
Affiliation(s)
- Mario N Cosio
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| | - Waad S Alharbi
- Department of Chemistry, Center of Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, USA.
- Chemistry Department, Science College, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Aishanee Sur
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| | - Chen-Hao Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| | - Ahmad Najafian
- Department of Chemistry, Center of Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, USA.
| | - Thomas R Cundari
- Department of Chemistry, Center of Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, USA.
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
| |
Collapse
|
2
|
Rettig ID, Xu J, Knight EA, Truong PT, Bowring MA. Variable Kinetic Isotope Effect Reveals a Multistep Pathway for Protonolysis of a Pt–Me Bond. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Irving D. Rettig
- Department of Chemistry, Reed College, Portland, Oregon97202, United States
| | - Jingtong Xu
- Department of Chemistry, Reed College, Portland, Oregon97202, United States
| | | | - Phan T. Truong
- Department of Chemistry, Reed College, Portland, Oregon97202, United States
| | - Miriam A. Bowring
- Department of Chemistry, Reed College, Portland, Oregon97202, United States
| |
Collapse
|
3
|
Boreen MA, Ye CZ, Kerridge A, McCabe KN, Skeel BA, Maron L, Arnold J. Does Reduction-Induced Isomerization of a Uranium(III) Aryl Complex Proceed via C-H Oxidative Addition and Reductive Elimination across the Uranium(II/IV) Redox Couple? Inorg Chem 2022; 61:8955-8965. [PMID: 35654478 DOI: 10.1021/acs.inorgchem.2c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reaction of the uranium(III) bis(amidinate) aryl complex {TerphC(NiPr)2}2U(Terph) (2, where Terph = 4,4″-di-tert-butyl-m-terphenyl-2'-yl) with a strong reductant enabled isolation of isomeric uranium(III) bis(amidinate) aryl product {TerphC(NiPr)2}2U(Terph*) (3, where Terph* = 4,4″-di-tert-butyl-m-terphenyl-4'-yl). In terms of connectivity, 3 differs from 2 only in the positions of the U-C and C-H bonds on the central aryl ring of the m-terphenyl-based ligand. A deuterium labeling study ruled out mechanisms for this isomerization involving intermolecular abstraction or deprotonation of the ligand C-H bonds activated during the reaction. Due to the complexity of this rapid, heterogeneous reaction, experimental studies could not further distinguish between two different intramolecular C-H activation mechanisms. However, high-level computational studies were consistent with a mechanism that included two sets of unimolecular, mononuclear C-H oxidative addition and reductive elimination steps involving uranium(II/IV).
Collapse
Affiliation(s)
- Michael A Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher Z Ye
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Karl N McCabe
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, Toulouse 31077, France
| | - Brighton A Skeel
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, Toulouse 31077, France
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Sun Y, Tan F, Hu R, Hu C, Li Y. Visible‐Light Photoredox‐Catalyzed
Hydrodecarboxylation and Deuterodecarboxylation of Fatty Acids. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuan‐Li Sun
- Center for Organic Chemistry Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 P. R. China
| | - Fang‐Fang Tan
- Center for Organic Chemistry Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 P. R. China
| | - Rong‐Gui Hu
- Center for Organic Chemistry Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 P. R. China
| | - Chun‐Hong Hu
- Center for Organic Chemistry Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 P. R. China
| | - Yang Li
- Center for Organic Chemistry Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an Shaanxi 710054 P. R. China
| |
Collapse
|
5
|
Van Trieste GP, Reid KA, Hicks MH, Das A, Figgins MT, Bhuvanesh N, Ozarowski A, Telser J, Powers DC. Nitrene Photochemistry of Manganese
N
‐Haloamides**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Kaleb A. Reid
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Madeline H. Hicks
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Anuvab Das
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Matthew T. Figgins
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Nattamai Bhuvanesh
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory Florida State University Tallahassee FL 32310 USA
| | - Joshua Telser
- Department of Biological, Physical and Chemical Sciences Roosevelt University Chicago IL 60605 USA
| | - David C. Powers
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| |
Collapse
|
6
|
Truong PT, Miller SG, McLaughlin Sta Maria EJ, Bowring MA. Large Isotope Effects in Organometallic Chemistry. Chemistry 2021; 27:14800-14815. [PMID: 34347912 DOI: 10.1002/chem.202102189] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 01/24/2023]
Abstract
The kinetic isotope effect (KIE) is key to understanding reaction mechanisms in many areas of chemistry and chemical biology, including organometallic chemistry. This ratio of rate constants, kH /kD , typically falls between 1-7. However, KIEs up to 105 have been reported, and can even be so large that reactivity with deuterium is unobserved. We collect here examples of large KIEs across organometallic chemistry, in catalytic and stoichiometric reactions, along with their mechanistic interpretations. Large KIEs occur in proton transfer reactions such as protonation of organometallic complexes and clusters, protonolysis of metal-carbon bonds, and dihydrogen reactivity. C-H activation reactions with large KIEs occur with late and early transition metals, photogenerated intermediates, and abstraction by metal-oxo complexes. We categorize the mechanistic interpretations of large KIEs into the following three types: (a) proton tunneling, (b) compound effects from multiple steps, and (c) semi-classical effects on a single step. This comprehensive collection of large KIEs in organometallics provides context for future mechanistic interpretation.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| | - Sophia G Miller
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| | | | - Miriam A Bowring
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| |
Collapse
|
7
|
Van Trieste GP, Reid KA, Hicks MH, Das A, Figgins MT, Bhuvanesh N, Ozarowski A, Telser J, Powers DC. Nitrene Photochemistry of Manganese N-Haloamides*. Angew Chem Int Ed Engl 2021; 60:26647-26655. [PMID: 34662473 DOI: 10.1002/anie.202108304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/06/2022]
Abstract
Manganese complexes supported by macrocyclic tetrapyrrole ligands represent an important platform for nitrene transfer catalysis and have been applied to both C-H amination and olefin aziridination catalysis. The reactivity of the transient high-valent Mn nitrenoids that mediate these processes renders characterization of these species challenging. Here we report the synthesis and nitrene transfer photochemistry of a family of MnIII N-haloamide complexes. The S=2 N-haloamide complexes are characterized by 1 H NMR, UV-vis, IR, high-frequency and -field EPR (HFEPR) spectroscopies, and single-crystal X-ray diffraction. Photolysis of these complexes results in the formal transfer of a nitrene equivalent to both C-H bonds, such as the α-C-H bonds of tetrahydrofuran, and olefinic substrates, such as styrene, to afford aminated and aziridinated products, respectively. Low-temperature spectroscopy and analysis of kinetic isotope effects for C-H amination indicate halogen-dependent photoreactivity: Photolysis of N-chloroamides proceeds via initial cleavage of the Mn-N bond to generate MnII and amidyl radical intermediates; in contrast, photolysis of N-iodoamides proceeds via N-I cleavage to generate a MnIV nitrenoid (i.e., {MnNR}7 species). These results establish N-haloamide ligands as viable precursors in the photosynthesis of metal nitrenes and highlight the power of ligand design to provide access to reactive intermediates in group-transfer catalysis.
Collapse
Affiliation(s)
| | - Kaleb A Reid
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Madeline H Hicks
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Anuvab Das
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew T Figgins
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Joshua Telser
- Department of Biological, Physical and Chemical Sciences, Roosevelt University, Chicago, IL, 60605, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
8
|
Brereton KR, Smith NE, Hazari N, Miller AJM. Thermodynamic and kinetic hydricity of transition metal hydrides. Chem Soc Rev 2020; 49:7929-7948. [DOI: 10.1039/d0cs00405g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review of thermodynamic and kinetic hydricity provides conceptual overviews, tutorials on how to determine hydricity both experimentally and computationally, and salient case studies.
Collapse
Affiliation(s)
| | | | - Nilay Hazari
- Department of Chemistry
- Yale University
- New Haven
- USA
| | | |
Collapse
|
9
|
Wang CH, Gao WY, Powers DC. Measuring and Modulating Substrate Confinement during Nitrogen-Atom Transfer in a Ru 2-Based Metal-Organic Framework. J Am Chem Soc 2019; 141:19203-19207. [PMID: 31782924 DOI: 10.1021/jacs.9b09620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The porosity and synthetic tunability of metal-organic frameworks (MOFs) has motivated interest in application of these materials as designer heterogeneous catalysts. While understanding substrate mobility in these materials is critical to the rational development of highly active catalyst platforms, experimental data are rarely available. Here we demonstrate kinetic isotope effect (KIE) analysis enables direct evaluation of the extent of substrate confinement as a function of material mesoporosity. Further, we provide evidence that suggests substrate confinement within a microporous Ru2-based MOF gives rise to quantum tunneling during interstitial C-H amination. The reported data provide the first evidence for tunneling during interstitial MOF chemistry and illustrate an experimental strategy to evaluate the impact of material structure on substrate mobility in porous catalysts.
Collapse
Affiliation(s)
- Chen-Hao Wang
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Wen-Yang Gao
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - David C Powers
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
10
|
Mori K, Futamura Y, Masuda S, Kobayashi H, Yamashita H. Controlled release of hydrogen isotope compounds and tunneling effect in the heterogeneously-catalyzed formic acid dehydrogenation. Nat Commun 2019; 10:4094. [PMID: 31554785 PMCID: PMC6761165 DOI: 10.1038/s41467-019-12018-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/12/2019] [Indexed: 11/08/2022] Open
Abstract
The hydrogen isotope deuterium is widely used in the synthesis of isotopically-labeled compounds and in the fabrication of semiconductors and optical fibers. However, the facile production of deuterium gas (D2) and hydrogen deuteride (HD) in a controlled manner is a challenging task, and rational heterogeneously-catalyzed protocols are still lacking. Herein, we demonstrate the selective production of hydrogen isotope compounds from a combination of formic acid and D2O, through cooperative action by a PdAg nanocatalyst on a silica substrate whose surface is modified with amine groups. In this process, D2 is predominantly evolved by the assist of weakly basic amine moieties, while nanocatalyst particles in the vicinity of strongly basic amine groups promote the preferential formation of HD. Kinetic data and calculations based on semi-classically corrected transition state theory coupled with density functional theory suggest that quantum tunneling dominates the hydrogen/deuterium exchange reaction over the metallic PdAg surfaces.
Collapse
Affiliation(s)
- Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Elements Strategy Initiative for Catalysts Batteries ESICB, Kyoto University, Katsura, Kyoto, 615-8520, Japan.
| | - Yuya Futamura
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shinya Masuda
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hisayoshi Kobayashi
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Elements Strategy Initiative for Catalysts Batteries ESICB, Kyoto University, Katsura, Kyoto, 615-8520, Japan.
| |
Collapse
|
11
|
Pirali T, Serafini M, Cargnin S, Genazzani AA. Applications of Deuterium in Medicinal Chemistry. J Med Chem 2019; 62:5276-5297. [DOI: 10.1021/acs.jmedchem.8b01808] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Marta Serafini
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
12
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1450] [Impact Index Per Article: 241.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
13
|
Clough BA, Mountford P. Synthesis of Titanium Borylimido Compounds Supported by Diamide-Amine Ligands and Their Reactions with Alkynes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin A. Clough
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Philip Mountford
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
14
|
Lui EKJ, Brandt JW, Schafer LL. Regio- and Stereoselective Hydroamination of Alkynes Using an Ammonia Surrogate: Synthesis of N-Silylenamines as Reactive Synthons. J Am Chem Soc 2018. [PMID: 29528631 DOI: 10.1021/jacs.7b13783] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An anti-Markovnikov selective hydroamination of alkynes with N-silylamines to afford N-silylenamines is reported. The reaction is catalyzed by a bis(amidate)bis(amido)Ti(IV) catalyst and is compatible with a variety of terminal and internal alkynes. Stoichiometric mechanistic studies were also performed. This method easily affords interesting N-silylenamine synthons in good to excellent yields and the easily removable silyl protecting group enables the catalytic synthesis of primary amines.
Collapse
Affiliation(s)
- Erica K J Lui
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia , Canada V6T 1Z1
| | - Jason W Brandt
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia , Canada V6T 1Z1
| | - Laurel L Schafer
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia , Canada V6T 1Z1
| |
Collapse
|
15
|
Huang X, Groves JT. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chem Rev 2018; 118:2491-2553. [PMID: 29286645 PMCID: PMC5855008 DOI: 10.1021/acs.chemrev.7b00373] [Citation(s) in RCA: 591] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/20/2022]
Abstract
As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal-oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal-oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron-oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs.
Collapse
Affiliation(s)
- Xiongyi Huang
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - John T. Groves
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
16
|
Wolczanski PT. Activation of Carbon–Hydrogen Bonds via 1,2-RH-Addition/-Elimination to Early Transition Metal Imides. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00753] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter T. Wolczanski
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Schafer DF, Wolczanski PT, Lobkovsky EB, MacMillan SN. Synthesis and Characterization of 5‐Coordinate Tungsten Hydride Anions: [(
t
Bu
3
SiNH)(
t
Bu
3
SiN=)
2
HWR]M. Isr J Chem 2017. [DOI: 10.1002/ijch.201700042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel F. Schafer
- Department of Chemistry & Chemical Biology, Baker Laboratory Cornell University Ithaca, New York 14853 USA
| | - Peter T. Wolczanski
- Department of Chemistry & Chemical Biology, Baker Laboratory Cornell University Ithaca, New York 14853 USA
| | - Emil B. Lobkovsky
- Department of Chemistry & Chemical Biology, Baker Laboratory Cornell University Ithaca, New York 14853 USA
| | - Samantha N. MacMillan
- Department of Chemistry & Chemical Biology, Baker Laboratory Cornell University Ithaca, New York 14853 USA
| |
Collapse
|
18
|
Clough BA, Mellino S, Clot E, Mountford P. New Scandium Borylimido Chemistry: Synthesis, Bonding, and Reactivity. J Am Chem Soc 2017; 139:11165-11183. [DOI: 10.1021/jacs.7b05405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Benjamin A. Clough
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Simona Mellino
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Eric Clot
- Institut
Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, cc 1501, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
| | - Philip Mountford
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
19
|
Dettenrieder N, Dietrich HM, Maichle-Mössmer C, Anwander R. Yttrium Siloxide Complexes Bearing Terminal Methyl Ligands: Molecular Models for Ln−CH3Terminated Silica Surfaces. Chemistry 2016; 22:13189-200. [DOI: 10.1002/chem.201602424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Nicole Dettenrieder
- Institute of Inorganic Chemistry; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - H. Martin Dietrich
- Institute of Inorganic Chemistry; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Cäcilia Maichle-Mössmer
- Institute of Inorganic Chemistry; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Reiner Anwander
- Institute of Inorganic Chemistry; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
20
|
Meisner J, Kästner J. Atom Tunneling in Chemistry. Angew Chem Int Ed Engl 2016; 55:5400-13. [DOI: 10.1002/anie.201511028] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/08/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Jan Meisner
- Institut für Theoretische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Johannes Kästner
- Institut für Theoretische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
21
|
Affiliation(s)
- Jan Meisner
- Institut für Theoretische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| | - Johannes Kästner
- Institut für Theoretische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| |
Collapse
|
22
|
Tseng KNT, Kampf JW, Szymczak NK. Mechanism of N,N,N-Amide Ruthenium(II) Hydride Mediated Acceptorless Alcohol Dehydrogenation: Inner-Sphere β-H Elimination versus Outer-Sphere Bifunctional Metal–Ligand Cooperativity. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00952] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kuei-Nin T. Tseng
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeff W. Kampf
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Differentiation of antiinflammatory and antitumorigenic properties of stabilized enantiomers of thalidomide analogs. Proc Natl Acad Sci U S A 2015; 112:E1471-9. [PMID: 25775521 DOI: 10.1073/pnas.1417832112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Therapeutics developed and sold as racemates can exhibit a limited therapeutic index because of side effects resulting from the undesired enantiomer (distomer) and/or its metabolites, which at times, forces researchers to abandon valuable scaffolds. Therefore, most chiral drugs are developed as single enantiomers. Unfortunately, the development of some chirally pure drug molecules is hampered by rapid in vivo racemization. The class of compounds known as immunomodulatory drugs derived from thalidomide is developed and sold as racemates because of racemization at the chiral center of the 3-aminoglutarimide moiety. Herein, we show that replacement of the exchangeable hydrogen at the chiral center with deuterium allows the stabilization and testing of individual enantiomers for two thalidomide analogs, including CC-122, a compound currently in human clinical trials for hematological cancers and solid tumors. Using "deuterium-enabled chiral switching" (DECS), in vitro antiinflammatory differences of up to 20-fold are observed between the deuterium-stabilized enantiomers. In vivo, the exposure is dramatically increased for each enantiomer while they retain similar pharmacokinetics. Furthermore, the single deuterated enantiomers related to CC-122 exhibit profoundly different in vivo responses in an NCI-H929 myeloma xenograft model. The (-)-deuterated enantiomer is antitumorigenic, whereas the (+)-deuterated enantiomer has little to no effect on tumor growth. The ability to stabilize and differentiate enantiomers by DECS opens up a vast window of opportunity to characterize the class effects of thalidomide analogs and improve on the therapeutic promise of other racemic compounds, including the development of safer therapeutics and the discovery of new mechanisms and clinical applications for existing therapeutics.
Collapse
|
24
|
Fortman GC, Boaz NC, Munz D, Konnick MM, Periana RA, Groves JT, Gunnoe TB. Selective Monooxidation of Light Alkanes Using Chloride and Iodate. J Am Chem Soc 2014; 136:8393-401. [DOI: 10.1021/ja502657g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- George C. Fortman
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Nicholas C. Boaz
- Department
of Chemistry and Princeton Institute for the Science and Technology
of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - Dominik Munz
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Roy A. Periana
- Scripps Research Institute, Jupiter, Florida 33458, United States
| | - John T. Groves
- Department
of Chemistry and Princeton Institute for the Science and Technology
of Materials, Princeton University, Princeton, New Jersey 08544, United States
| | - T. Brent Gunnoe
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
25
|
Webb JR, Burgess SA, Cundari TR, Gunnoe TB. Activation of carbon–hydrogen bonds and dihydrogen by 1,2-CH-addition across metal–heteroatom bonds. Dalton Trans 2013; 42:16646-65. [DOI: 10.1039/c3dt52164h] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Fan H, Fout AR, Bailey BC, Pink M, Baik MH, Mindiola DJ. Understanding intermolecular C–F bond activation by a transient titanium neopentylidyne: experimental and theoretical studies on the competition between 1,2-CF bond addition and [2 + 2]-cycloaddition/β-fluoride elimination. Dalton Trans 2013; 42:4163-74. [DOI: 10.1039/c3dt32570a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Sarma R, Angeles-Boza AM, Brinkley DW, Roth JP. Studies of the Di-iron(VI) Intermediate in Ferrate-Dependent Oxygen Evolution from Water. J Am Chem Soc 2012; 134:15371-86. [DOI: 10.1021/ja304786s] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rupam Sarma
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland
21218, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland
21218, United States
| | - David W. Brinkley
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland
21218, United States
| | - Justine P. Roth
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland
21218, United States
| |
Collapse
|
28
|
Jian Z, Rong W, Mou Z, Pan Y, Xie H, Cui D. Intramolecular C–H bond activation induced by a scandium terminal imido complex. Chem Commun (Camb) 2012; 48:7516-8. [DOI: 10.1039/c2cc33179a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Schafer DF, Wolczanski PT, Lobkovsky EB. Reactivity Studies of (tBu3SiNH)(tBu3SiN═)2WH Including Anionic Derivatives Featuring the Tris-tri-tert-butylsilylimide Tungsten Core. Organometallics 2011. [DOI: 10.1021/om200597z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel F. Schafer
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Peter T. Wolczanski
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Emil B. Lobkovsky
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
30
|
Schafer DF, Wolczanski PT, Lobkovsky EB. Alkane Binding Implicated in Reactions of (tBu3SiN═)3WHK and Alkyl Halides. Organometallics 2011. [DOI: 10.1021/om2009342] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Daniel F. Schafer
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Peter T. Wolczanski
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Emil B. Lobkovsky
- Department of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
31
|
Zhu Y, Chen CH, Fafard CM, Foxman BM, Ozerov OV. Net Heterolytic Cleavage of B–H and B–B Bonds Across the N–Pd Bond in a Cationic (PNP)Pd Fragment. Inorg Chem 2011; 50:7980-7. [DOI: 10.1021/ic2001283] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanjun Zhu
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77842, United States
| | - Chun-Hsing Chen
- Department of Chemistry, Brandeis University, MS 015, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Claudia M. Fafard
- Department of Chemistry, Brandeis University, MS 015, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bruce M. Foxman
- Department of Chemistry, Brandeis University, MS 015, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Oleg V. Ozerov
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77842, United States
| |
Collapse
|
32
|
Scott VJ, Labinger JA, Bercaw JE. Large Kinetic Isotope Effects for the Protonolysis of Metal–Methyl Complexes Are Not Reliable Mechanistic Indicators. Organometallics 2011. [DOI: 10.1021/om200432b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valerie J. Scott
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Jay A. Labinger
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - John E. Bercaw
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
33
|
Gómez-Gallego M, Sierra MA. Kinetic isotope effects in the study of organometallic reaction mechanisms. Chem Rev 2011; 111:4857-963. [PMID: 21545118 DOI: 10.1021/cr100436k] [Citation(s) in RCA: 527] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mar Gómez-Gallego
- Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain.
| | | |
Collapse
|
34
|
Webb JR, Bolaño T, Gunnoe TB. Catalytic oxy-functionalization of methane and other hydrocarbons: fundamental advancements and new strategies. CHEMSUSCHEM 2011; 4:37-49. [PMID: 21226209 DOI: 10.1002/cssc.201000319] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Joanna R Webb
- Department of Chemistry, University of Virginia, Charlottesville, 22904, USA
| | | | | |
Collapse
|
35
|
Nguyen AI, Zarkesh RA, Lacy DC, Thorson MK, Heyduk AF. Catalytic nitrene transfer by a zirconium(iv) redox-active ligand complex. Chem Sci 2011. [DOI: 10.1039/c0sc00414f] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Leitch DC, Schafer LL. Zirconium Alkyl Complexes Supported by Ureate Ligands: Synthesis, Characterization, and Precursors to Metal−Element Multiple Bonds. Organometallics 2010. [DOI: 10.1021/om100381d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David C. Leitch
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada, V6T 1Z1
| | - Laurel L. Schafer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada, V6T 1Z1
| |
Collapse
|
37
|
Ashley DC, Brinkley DW, Roth JP. Oxygen Isotope Effects as Structural and Mechanistic Probes in Inorganic Oxidation Chemistry. Inorg Chem 2010; 49:3661-75. [DOI: 10.1021/ic901778g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Daniel C. Ashley
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| | - David W. Brinkley
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Justine P. Roth
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| |
Collapse
|
38
|
Gregor LC, Chen CH, Fafard CM, Fan L, Guo C, Foxman BM, Gusev DG, Ozerov OV. Heterolytic splitting of H-X bonds at a cationic (PNP)Pd center. Dalton Trans 2010; 39:3195-202. [PMID: 20449447 DOI: 10.1039/b925265g] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The (PNP)PdOTf complex is a suitable synthetic equivalent of the [(PNP)Pd](+) fragment in reactions with various HX substrates. The [(PNP)Pd](+) fragment either simply binds HX molecules as L-type ligands (X = NH(2), PCy(2), imidazolyl) or heterolytically splits the H-X bond to produce [(PN(H)P)Pd-X](+) (X = H, CCR, SR). DFT calculations analyze the relative energetics of the two outcomes and agree with the experimental data. Calculations also allow to assess the unobserved Pd(IV) isomer [(PNP)Pd(H)(2)](+) and validate its unfavourability with respect to the Pd(II) isomer [(PN(H)P)PdH](+).
Collapse
Affiliation(s)
- Lauren C Gregor
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Balcells D, Clot E, Eisenstein O. C—H Bond Activation in Transition Metal Species from a Computational Perspective. Chem Rev 2010; 110:749-823. [PMID: 20067255 DOI: 10.1021/cr900315k] [Citation(s) in RCA: 843] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- David Balcells
- Institut Charles Gerhardt, Université Montpellier 2, CNRS 5253, cc 1501, Place Eugène Bataillon, 34000 Montpellier, France
| | - Eric Clot
- Institut Charles Gerhardt, Université Montpellier 2, CNRS 5253, cc 1501, Place Eugène Bataillon, 34000 Montpellier, France
| | - Odile Eisenstein
- Institut Charles Gerhardt, Université Montpellier 2, CNRS 5253, cc 1501, Place Eugène Bataillon, 34000 Montpellier, France
| |
Collapse
|
40
|
Zimmermann T, Vanícek J. Path integral evaluation of equilibrium isotope effects. J Chem Phys 2009; 131:024111. [PMID: 19603974 DOI: 10.1063/1.3167353] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A general and rigorous methodology to compute the quantum equilibrium isotope effect is described. Unlike standard approaches, ours does not assume separability of rotational and vibrational motions and does not make the harmonic approximation for vibrations or rigid rotor approximation for the rotations. In particular, zero point energy and anharmonicity effects are described correctly quantum mechanically. The approach is based on the thermodynamic integration with respect to the mass of isotopes and on the Feynman path integral representation of the partition function. An efficient estimator for the derivative of free energy is used whose statistical error is independent of the number of imaginary time slices in the path integral, speeding up calculations by a factor of approximately 60 at 500 K and more at room temperature. We describe the implementation of the methodology in the molecular dynamics package AMBER 10. The method is tested on three [1,5] sigmatropic hydrogen shift reactions. Because of the computational expense, we use ab initio potentials to evaluate the equilibrium isotope effects within the harmonic approximation and then the path integral method together with semiempirical potentials to evaluate the anharmonicity corrections. Our calculations show that the anharmonicity effects amount up to 30% of the symmetry reduced reaction free energy. The numerical results are compared with recent experiments of Doering et al., [J. Am. Chem. Soc. 128, 9080 (2006); J. Am. Chem. Soc.129, 2488 (2007)] confirming the accuracy of the most recent measurement on 2,4,6,7,9-pentamethyl-5-(5,5-(2)H(2))methylene-11,11a-dihydro-12H-naphthacene as well as concerns about compromised accuracy, due to side reactions, of another measurement on 2-methyl-10-(10,10-(2)H(2))methylenebicyclo[4.4.0]dec-1-ene.
Collapse
Affiliation(s)
- Tomás Zimmermann
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
41
|
Boutadla Y, Davies DL, Macgregor SA, Poblador-Bahamonde AI. Mechanisms of C-H bond activation: rich synergy between computation and experiment. Dalton Trans 2009:5820-31. [PMID: 19623381 DOI: 10.1039/b904967c] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent computational studies of C-H bond activation at late transition metal systems are discussed and processes where lone pair assistance via heteroatom co-ligands or carboxylates are highlighted as a particularly promising means of cleaving C-H bonds. The term 'ambiphilic metal ligand activation' (AMLA) is introduced to describe such reactions.
Collapse
Affiliation(s)
- Youcef Boutadla
- Department of Chemistry, University of Leicester, Leicester, UK LE1 7RH
| | | | | | | |
Collapse
|
42
|
Abbott JKC, Li L, Xue ZL. Preparation and Use of Ta(CD2But)5To Probe the Formation of (ButCD2)3Ta═CDBut. Kinetic and Mechanistic Studies of the Conversion of Pentaneopentyltantalum to the Archetypical Alkylidene Complex. J Am Chem Soc 2009; 131:8246-51. [DOI: 10.1021/ja901251c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julia K. C. Abbott
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600
| | - Liting Li
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600
| | - Zi-Ling Xue
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600
| |
Collapse
|
43
|
Parkin G. Temperature-dependent transitions between normal and inverse isotope effects pertaining to the interaction of H-H and C-H bonds with transition metal centers. Acc Chem Res 2009; 42:315-25. [PMID: 19133745 DOI: 10.1021/ar800156h] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deuterium kinetic isotope effects (KIEs) serve as versatile tools to infer details about reaction mechanisms and the nature of transition states, while equilibrium isotope effects (EIEs) associated with the site preferences of hydrogen and deuterium enable researchers to study aspects of molecular structure. Researchers typically interpret primary deuterium isotope effects based on two simple guidelines: (i) the KIE for an elementary reaction is normal (k(H)/k(D) > 1) and (ii) the EIE is dictated by deuterium preferring to be located in the site corresponding to the highest frequency oscillator. In this Account, we evaluate the applicability of these rules to the interactions of H-H and C-H bonds with a transition metal center. Significantly, experimental and computational studies question the predictability of primary EIEs in these systems based on the notion that deuterium prefers to occupy the highest frequency oscillator. In particular, the EIEs for (i) formation of sigma-complexes by coordination of H-H and C-H bonds and (ii) oxidative addition of dihydrogen exhibit unusual temperature dependencies, such that the same system may demonstrate both normal (i.e., K(H)/K(D) > 1) and inverse (i.e., K(H)/K(D) < 1) values. The transition between a normal and inverse EIE indicates that these systems do not demonstrate the typical monotonic variation predicted by the van't Hoff relationship. Instead, the calculated EIEs in these systems are 0 at 0 K, increase to a value greater than 1, and then decrease to unity at infinite temperature. This unusual behavior may be rationalized by considering the individual factors that contribute to the EIE. Specifically, the EIE may be expressed in the form EIE = SYM x MMI x EXC x ZPE (where SYM is the symmetry factor, MMI is the mass-moment of inertia term, EXC is the excitation term, and ZPE is the zero-point energy term), and the distinctive temperature profile results from the inverse ZPE (enthalpy) and normal [SYM x MMI x EXC] (entropy) components opposing each other and having different temperature dependencies. At low temperatures, the ZPE component dominates and the EIE is inverse, while at high temperatures, the [SYM x MMI x EXC] component dominates and the EIE is normal. The inverse nature of the ZPE term is a consequence of the rotational and translational degrees of freedom of RH (R = H, CH(3)) becoming low-energy isotopically sensitive vibrations in the product, while the normal nature of the [SYM x MMI x EXC] component results from deuterium substitution having a larger impact on the moment of inertia of the smaller molecule.
Collapse
Affiliation(s)
- Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027
| |
Collapse
|
44
|
Smirnov VV, Lanci MP, Roth JP. Computational Modeling of Oxygen Isotope Effects on Metal-Mediated O2 Activation at Varying Temperatures. J Phys Chem A 2009; 113:1934-45. [DOI: 10.1021/jp807796c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valeriy V. Smirnov
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Michael P. Lanci
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Justine P. Roth
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| |
Collapse
|
45
|
Wolczanski PT. Structure and reactivity studies of transition metals ligated by tBuSi3X (X = O, NH, N, S, and CC). Chem Commun (Camb) 2009:740-57. [DOI: 10.1039/b813992j] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Waterman R. Metal-phosphido and -phosphinidene complexes in P-E bond-forming reactions. Dalton Trans 2008:18-26. [PMID: 19081965 DOI: 10.1039/b813332h] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal complexes bearing terminal phosphido or phosphinidene ligands have become versatile tools in the stoichiometric and catalytic preparation of phosphorus-element bonds. This Perspective describes a selection of recent advances in this field, and certain emphasis has been placed on reactions that vary from what has been previously observed. Some of the general reactivity trends and mechanistic understanding in these metal-mediated reactions that has emerged are also described. Much of what is chronicled herein comes from a flux of reports over the last decade describing unique metal-mediated phosphorus-element bond formation reactions that are likely to stimulate further discoveries.
Collapse
Affiliation(s)
- Rory Waterman
- Department of Chemistry, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
47
|
Scott J, Basuli F, Fout A, Huffman J, Mindiola D. Evidence for the Existence of a Terminal Imidoscandium Compound: Intermolecular CH Activation and Complexation Reactions with the Transient ScNAr Species. Angew Chem Int Ed Engl 2008; 47:8502-5. [DOI: 10.1002/anie.200803325] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Scott J, Basuli F, Fout A, Huffman J, Mindiola D. Evidence for the Existence of a Terminal Imidoscandium Compound: Intermolecular CH Activation and Complexation Reactions with the Transient ScNAr Species. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803325] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Cundari TR, Jimenez-Halla JOC, Morello GR, Vaddadi S. Catalytic Tuning of a Phosphinoethane Ligand for Enhanced C−H Activation. J Am Chem Soc 2008; 130:13051-8. [DOI: 10.1021/ja803176j] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas R. Cundari
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, P.O. Box 305070, Denton, Texas 76203-5070
| | - J. Oscar C. Jimenez-Halla
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, P.O. Box 305070, Denton, Texas 76203-5070
| | - Glenn R. Morello
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, P.O. Box 305070, Denton, Texas 76203-5070
| | - Sridhar Vaddadi
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, P.O. Box 305070, Denton, Texas 76203-5070
| |
Collapse
|
50
|
Bernskoetter WH, Brookhart M. Kinetics and Mechanism of Iridium-Catalyzed Dehydrogenation of Primary Amines to Nitriles. Organometallics 2008. [DOI: 10.1021/om701148t] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wesley H. Bernskoetter
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Maurice Brookhart
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|