1
|
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire MG. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev 2024; 124:3037-3084. [PMID: 38437627 PMCID: PMC10979405 DOI: 10.1021/acs.chemrev.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Smart Molecular, Inorganic and Hybrid Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Dibyendu Mondal
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Centre
for Nano and Material Sciences, JAIN (Deemed-to-be
University), Jain Global
Campus, Bangalore 562112, India
| | - Tejwant Singh Kang
- Department
of Chemistry, UGC Center for Advance Studies-II,
Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Mara G Freire
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Hengelbrock A, Schmidt A, Strube J. Digital Twin Fundamentals of mRNA In Vitro Transcription in Variable Scale Toward Autonomous Operation. ACS OMEGA 2024; 9:8204-8220. [PMID: 38405539 PMCID: PMC10882708 DOI: 10.1021/acsomega.3c08732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
The COVID-19 pandemic caused the rapid development of mRNA (messenger ribonucleic acid) vaccines and new RNA-based therapeutic methods. However, the approval rate for candidates has the potential to be increased, with a significant number failing so far due to efficacy, safety, and manufacturing deficiencies, hindering equitable vaccine distribution during pandemics. This study focuses on optimizing the production of mRNA, a critical component of mRNA-based vaccines, using a scalable machine by investigating the key mechanisms of mRNA in vitro transcription. First, kinetic parameters for the mRNA production process were determined. The validity of the determination and the robustness of the model are demonstrated by predicting different reactions with and without substrate limitations as well as different transcripts. The optimized reaction conditions, including temperature, urea concentration, and concentration of reaction-enhancing additives, resulted in a 55% increase in mRNA yield with a 33% reduction in truncated mRNA. Additionally, the feasibility of a segmented flow approach allowed for high-throughput screening (HTS), enabling the production of 20 vaccine candidates within a short time frame, representing a 10-fold increase in productivity, compared to nonsegmented reactions limited by the residence time in the plug flow reactor. The findings presented for the first time here contribute to the development of a fully continuous and efficient manufacturing process for mRNA and other cell and gene therapy drugs/vaccine candidates as presented in our previous work, which discussed the integration of process analytical technologies and predictive process models in a Biopharma 4.0 facility to enable the production of clinical and large-scale doses, ensuring a rapid and resilient supply of critical therapeutics. The results in this study especially highlight that the same machine and equipment can be used for screening and manufacturing different drug candidates in continuous operation. By streamlining production and adhering to quality standards, this approach enhances the industry's ability to respond swiftly to pandemics and public health emergencies, addressing the urgent need for accessible and effective vaccines.
Collapse
Affiliation(s)
- Alina Hengelbrock
- Institute for Separation
and Process Technology, Clausthal University
of Technology, Clausthal-Zellerfeld 38678, Germany
| | - Axel Schmidt
- Institute for Separation
and Process Technology, Clausthal University
of Technology, Clausthal-Zellerfeld 38678, Germany
| | - Jochen Strube
- Institute for Separation
and Process Technology, Clausthal University
of Technology, Clausthal-Zellerfeld 38678, Germany
| |
Collapse
|
3
|
Zhang M, Jun SH, Wee Y, Kim HS, Hwang ET, Shim J, Hwang SY, Lee J, Kim J. Activation of crosslinked lipases in mesoporous silica via lid opening for recyclable biodiesel production. Int J Biol Macromol 2022; 222:2368-2374. [PMID: 36216105 DOI: 10.1016/j.ijbiomac.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/17/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Lipases catalyze a wide range of industrially important reactions, including the transesterification of triglycerides with alcohols for biodiesel production, and the stabilization of lipases are critical to achieve their recycled uses. Here, nanoscale enzyme reactor (NER) of lipase from Rhizopus oryzae (LP) was prepared via a simple two-step process, comprising of enzyme adsorption into magnetically-separable mesoporous silica and follow-up crosslinking of adsorbed enzymes. In aqueous phase, the specific hydrolysis activity of NER-LP was 4.7 times lower than that of free LP. On the other hand, however, the specific transesterification activity of NER-LP (130.4 μmol/min/mg LP) in organic phase for biodiesel production was 50 times higher than that of free LP (2.6 μmol/min/mg LP). These results reveal that the enzyme crosslinking for the preparation of NER does not interfere with the interfacial activation of LP molecules, opening the lid of LP active site under an optimal hydrophobic environment provided by the combination of organic solvent and mesoporous silica. Magnetic separation and optimized washing protocol facilitated the recycled uses of NER-LP. Highly stable and active NER-LP in magnetically-separable mesoporous silica has demonstrated its great potentials as an environmentally-friendly nanobiocatalyst for various lipase applications, including plasticizers, biosurfactants, functional fatty acids, as well as recyclable biodiesel production.
Collapse
Affiliation(s)
- Meiling Zhang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Hyun Jun
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Youngho Wee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Han Sol Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan, 49315, Republic of Korea
| | - Jongmin Shim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Youn Hwang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Jian Y, Han Y, Fu Z, Xia M, Jiang G, Lu D, Wu J, Liu Z. The role of conformational dynamics on the activity of polymer-conjugated CalB in organic solvents. Phys Chem Chem Phys 2022; 24:22028-22037. [DOI: 10.1039/d2cp02208g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A perennial interest in enzyme catalysis has been expanding its applicability from aqueous phase where enzymes are naturally evolved to organic solvents in which the majority of industrial chemical synthesis...
Collapse
|
5
|
Butyrskaya EV, Korkmaz N, Zolotukhina EV, Krasiukova V, Silina YE. Mechanistic aspects of functional layer formation in hybrid one-step designed GOx/Nafion/Pd-NPs nanobiosensors. Analyst 2021; 146:2172-2185. [PMID: 33566051 DOI: 10.1039/d0an02429e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amperometric nanobiosensors are crucial time and cost effective analytical tools for the detection of a wide range of bioanalytes, viz. glucose present in complex environments at very low concentrations. Although the excellent analytical performance of nanobiosensors is undoubted, their exact molecular structure often remains unclear. Here, by combining advanced nanoanalytical approaches with theoretical modeling, we conducted a comprehensive study towards the investigation of the molecular structure of a hybrid GOx/Nafion/Pd-NPs layer deposited by electroplating from the multicomponent electrolyte solution on the surface of screen printed electrodes modified with graphene oxide. Specifically, we revealed that Pd2+ cations were adsorbed on GOx amino acid residues, forming the GOx·nPd2+ enzymatic complex. The highest adsorption energy of Pd2+ cations on GOx was found during their interaction with the side chains of basic amino acids and methionine. In addition, we showed and fully validated the end-structure of the one-step designed GOx/Nafion/Pd-NPs nanobiosensor as a structural model mainly composed of GOx and water molecules incorporated into the metal-polymer scaffold. Our approach will thus serve as a guideline for the study of molecular interactions occurring in complex systems and will contribute to the design of the next generation of hybrid nanobiosensors. The proposed mechanism, driving the self-assembly of the hybrid layer, will allow us to construct modular enzymatic nanoanalytical devices with tailored sequences in the future.
Collapse
Affiliation(s)
- E V Butyrskaya
- Department of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394006, Voronezh, Russia.
| | | | | | | | | |
Collapse
|
6
|
Zhao H. What do we learn from enzyme behaviors in organic solvents? - Structural functionalization of ionic liquids for enzyme activation and stabilization. Biotechnol Adv 2020; 45:107638. [PMID: 33002582 DOI: 10.1016/j.biotechadv.2020.107638] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/05/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
Enzyme activity in nonaqueous media (e.g. conventional organic solvents) is typically lower than in water by several orders of magnitude. There is a rising interest of developing new nonaqueous solvent systems that are more "water-like" and more biocompatible. Therefore, we need to learn from the current state of nonaqueous biocatalysis to overcome its bottleneck and provide guidance for new solvent design. This review firstly focuses on the discussion of how organic solvent properties (such as polarity and hydrophobicity) influence the enzyme activity and stability, and how these properties impact the enzyme's conformation and dynamics. While hydrophobic organic solvents usually lead to the maintenance of enzyme activity, solvents carrying functional groups like hydroxys and ethers (including crown ethers and cyclodextrins) can lead to enzyme activation. Ionic liquids (ILs) are designable solvents that can conveniently incorporate these functional groups. Therefore, we systematically survey these ether- and/or hydroxy-functionalized ILs, and find most of them are highly compatible with enzymes leading to high activity and stability. In particular, ILs carrying both ether and tert-alcohol groups are among the most enzyme-activating solvents. Future direction is to learn from enzyme behaviors in both water and nonaqueous media to design biocompatible "water-like" solvents.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639, United States.
| |
Collapse
|
7
|
Qin H, Hu T, Zhai Y, Lu N, Aliyeva J. The improved methods of heavy metals removal by biosorbents: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113777. [PMID: 31864928 DOI: 10.1016/j.envpol.2019.113777] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/13/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
For decades, a vast array of innovative biosorbents have been found out and used in the removal of heavy metals, including bacteria, algae and fungi, etc. Although extensive biological species have been tried as a biosorbent for heavy metals removal, for removal efficiency or economy efficiency limited, it has failed to make a substantial breakthrough in practical application. Thus, many improved methods based on biosorbents emerged. In this review, based on the literature and our research results, we highlight three types of novel methods for biosorbents removal of heavy metals: chemical modification of biosorbents; biomass and chemical materials combination; multiple biomass complex systems. We mainly focus on their configuration, biosorption performance, their creation method, regeneration/reuse, their application and development in the future. Through the comparative analysis of various methods, we think that intracellular autogenous nanomaterials may open up another window in biosorption of heavy metals area. At the same time, the combination of various treatment methods will be the development tendency of heavy metal pollution treatment in the future.
Collapse
Affiliation(s)
- Huaqing Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Tianjue Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Ningqin Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jamila Aliyeva
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
8
|
Bayout I, Bouzemi N, Guo N, Mao X, Serra S, Riva S, Secundo F. Natural flavor ester synthesis catalyzed by lipases. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ikram Bayout
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE), Department of Chemistry Badji Mokhtar University-Annaba Annaba Algeria
| | - Nassima Bouzemi
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE), Department of Chemistry Badji Mokhtar University-Annaba Annaba Algeria
| | - Na Guo
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Xiangzhao Mao
- College of Food Science and Engineering Ocean University of China Qingdao China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" Consiglio Nazionale delle Ricerche Milano Italy
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" Consiglio Nazionale delle Ricerche Milano Italy
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" Consiglio Nazionale delle Ricerche Milano Italy
| |
Collapse
|
9
|
Oh Y. Benzoate Surfactants for Enhancing the Activity of Lipoprotein Lipase from
Burkholderia
Species in Organic Solvent. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yeonock Oh
- Department of ChemistryPohang University of Science and Technology Pohang 37673 Republic of Korea
| |
Collapse
|
10
|
Dahanayake JN, Shahryari E, Roberts KM, Heikes ME, Kasireddy C, Mitchell-Koch KR. Protein Solvent Shell Structure Provides Rapid Analysis of Hydration Dynamics. J Chem Inf Model 2019; 59:2407-2422. [PMID: 30865440 DOI: 10.1021/acs.jcim.9b00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The solvation layer surrounding a protein is clearly an intrinsic part of protein structure-dynamics-function, and our understanding of how the hydration dynamics influences protein function is emerging. We have recently reported simulations indicating a correlation between regional hydration dynamics and the structure of the solvation layer around different regions of the enzyme Candida antarctica lipase B, wherein the radial distribution function (RDF) was used to calculate the pairwise entropy, providing a link between dynamics (diffusion) and thermodynamics (excess entropy) known as Rosenfeld scaling. Regions with higher RDF values/peaks in the hydration layer (the first peak, within 6 Å of the protein surface) have faster diffusion in the hydration layer. The finding thus hinted at a handle for rapid evaluation of hydration dynamics at different regions on the protein surface in molecular dynamics simulations. Such an approach may move the analysis of hydration dynamics from a specialized venture to routine analysis, enabling an informatics approach to evaluate the role of hydration dynamics in biomolecular function. This paper first confirms that the correlation between regional diffusive dynamics and hydration layer structure (via water center of mass around protein side-chain atom RDF) is observed as a general relationship across a set of proteins. Second, it seeks to devise an approach for rapid analysis of hydration dynamics, determining the minimum amount of information and computational effort required to get a reliable value of hydration dynamics from structural data in MD simulations based on the protein-water RDF. A linear regression model using the integral of the hydration layer in the water-protein RDF was found to provide statistically equivalent apparent diffusion coefficients at the 95% confidence level for a set of 92 regions within five different proteins. In summary, RDF analysis of 10 ns of data after simulation convergence is sufficient to accurately map regions of fast and slow hydration dynamics around a protein surface. Additionally, it is anticipated that a quick look at protein-water RDFs, comparing peak heights, will be useful to provide a qualitative ranking of regions of faster and slower hydration dynamics at the protein surface for rapid analysis when investigating the role of solvent dynamics in protein function.
Collapse
Affiliation(s)
- Jayangika N Dahanayake
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Elaheh Shahryari
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Kirsten M Roberts
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Micah E Heikes
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Chandana Kasireddy
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Katie R Mitchell-Koch
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| |
Collapse
|
11
|
Lee HS, Oh Y, Kim MJ, Im W. Molecular Basis of Aqueous-like Activity of Lipase Treated with Glucose-Headed Surfactant in Organic Solvent. J Phys Chem B 2018; 122:10659-10668. [DOI: 10.1021/acs.jpcb.8b07686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Sun Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Yeonock Oh
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Mahn-Joo Kim
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
12
|
Blatkiewicz M, Antecka A, Boruta T, Górak A, Ledakowicz S. Partitioning of laccases derived from Cerrena unicolor and Pleurotus sapidus in polyethylene glycol – phosphate aqueous two–phase systems. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Bafort F, Damblon C, Smargiasso N, De Pauw E, Perraudin JP, Jijakli MH. Reaction Product Variability and Biological Activity of the Lactoperoxidase System Depending on Medium Ionic Strength and pH, and on Substrate Relative Concentration. Chem Biodivers 2018; 15:e1700497. [PMID: 29266741 DOI: 10.1002/cbdv.201700497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/13/2017] [Indexed: 01/05/2023]
Abstract
The potential of ions produced in water by the lactoperoxidase system against plant pests has shown promising results. We tested the bioactivity of ions produced by the lactoperoxidase oxidation of I- and SCN- in several buffers or in tap water and characterized the ions produced. In vitro biological activity was tested against Penicillium expansum, the causal agent of mold in fruits, and the major cause of patulin contamination of fruit juices and compotes. In buffers, the ionic concentration was increased 3-fold, and pathogen inhibition was obtained down to the 1:15 dilution. In tap water, the ionic concentration was weaker, and pathogen inhibition was obtained only down to the 1:3 dilution. Acidic buffer increased ion concentrations as compared to less acidic (pH 5.6 or 6.2) or neutral buffers, as do increased ionic strength. 13 C-labelled SCN- and MS showed that different ions were produced in water and in buffers. In specific conditions the ion solution turned yellow and a product was formed, probably diiodothiocyanate (I2 SCN- ), giving an intense signal at 49.7 ppm in 13 C-NMR. The formation of the signal was unambiguously favored in acidic media and disadvantaged or inhibited in neutral or basic conditions. It was enhanced at a specific SCN- : I- ratio of 1:4.5, but decreased when the ratio was 1:2, and was inhibited at ratio SCN- >I- . We demonstrated that the formation of the signal required the interaction between I2 and SCN- , and MS showed the presence of I2 SCN- .
Collapse
Affiliation(s)
- Françoise Bafort
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liège University, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Christian Damblon
- Structural Biological Chemistry Laboratory (SBCL), Liège University, 4000, Liège, Belgium
| | - Nicolas Smargiasso
- Molecular Systems Research Unit, Mass Spectrometry Laboratory, Liège University, 4000, Liège, Belgium
| | - Edwin De Pauw
- Molecular Systems Research Unit, Mass Spectrometry Laboratory, Liège University, 4000, Liège, Belgium
| | | | - Mohamed Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liège University, Passage des Déportés 2, 5030, Gembloux, Belgium
| |
Collapse
|
14
|
Activation of Lipase-Catalyzed Reactions Using Ionic Liquids for Organic Synthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 168:79-104. [PMID: 29744541 DOI: 10.1007/10_2018_62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of ionic liquids to replace organic or aqueous solvents in biocatalysis processes has recently received great attention, and much progress has been made in this area; the lipase-catalyzed reactions are the most successful. Recent developments in the application of ionic liquids as solvents in lipase-catalyzed reactions for organic synthesis are reviewed, focusing on the ionic liquid mediated activation method of lipase-catalyzed reactions.
Collapse
|
15
|
Affiliation(s)
- Roger A. Sheldon
- Molecular
Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg, PO Wits 2050, South Africa
- Department
of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
16
|
Affiliation(s)
- Toshiyuki Itoh
- Department
of Chemistry and Biotechnology, Graduate School of Engineering and ‡Center for Research
on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| |
Collapse
|
17
|
Abstract
The family of silicatein enzymes from marine sponges (phylum Porifera) is unique in nature for catalyzing the formation of inorganic silica structures, which the organisms incorporate into their skeleton. However, the synthesis of organosiloxanes catalyzed by these enzymes has thus far remained largely unexplored. To investigate the reactivity of these enzymes in relation to this important class of compounds, their catalysis of Si-O bond hydrolysis and condensation was investigated with a range of model organosilanols and silyl ethers. The enzymes' kinetic parameters were obtained by a high-throughput colorimetric assay based on the hydrolysis of 4-nitrophenyl silyl ethers. These assays showed unambiguous catalysis with kcat/Km values on the order of 2-50 min-1 μM-1 Condensation reactions were also demonstrated by the generation of silyl ethers from their corresponding silanols and alcohols. Notably, when presented with a substrate bearing both aliphatic and aromatic hydroxy groups the enzyme preferentially silylates the latter group, in clear contrast to nonenzymatic silylations. Furthermore, the silicateins are able to catalyze transetherifications, where the silyl group from one silyl ether may be transferred to a recipient alcohol. Despite close sequence homology to the protease cathepsin L, the silicateins seem to exhibit no significant protease or esterase activity when tested against analogous substrates. Overall, these results suggest the silicateins are promising candidates for future elaboration into efficient and selective biocatalysts for organosiloxane chemistry.
Collapse
|
18
|
Canale TD, Sen D. Hemin-utilizing G-quadruplex DNAzymes are strongly active in organic co-solvents. Biochim Biophys Acta Gen Subj 2016; 1861:1455-1462. [PMID: 27856300 DOI: 10.1016/j.bbagen.2016.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 01/11/2023]
Abstract
The widespread use of organic solvents in industrial processes has focused in recent years on the utility of "green" solvents - those with less harmful environmental, health, and safety properties - such as methanol and formamide. However, protein enzymes, regarded as green catalysts, are often incompatible with organic solvents. Herein, we have explored the oxidative properties of a Fe(III)-heme, or hemin, utilizing catalytic DNA (heme·DNAzyme) in different green solvent-water mixtures. We find that the peroxidase and peroxygenase activities of the heme·DNAzyme are strongly enhanced in 20-30% v/v methanol or formamide, relative to water alone. Protic solvent content of >30% v/v gradually diminishes heme·DNAzyme catalytic activity; however, the heme·DNAzyme is still active in as high as 80% v/v methanol. In contrast to protic solvents, aqueous dimethylformamide solutions largely inhibit heme·DNAzyme activity. In view of the strong catalytic activity of heme·DNAzyme in aqueous methanol, we were able to determine that a 60% v/v methanol-water mixture gives the most optimal yield of the dibenzothiophene sulfoxide (DBTO) oxidation product of petroleum-derived dibenzothiophene (DBT). The high product yield reflects both DNAzyme catalysis and a high substrate availability. Overall, these results emphasize the excellent promise of G-quadruplex forming DNA catalysts in application to "greener" industrial chemistry. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Thomas D Canale
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
19
|
Liang YR, Wu Q, Lin XF. Effect of Additives on the Selectivity and Reactivity of Enzymes. CHEM REC 2016; 17:90-121. [PMID: 27490244 DOI: 10.1002/tcr.201600016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 01/05/2023]
Abstract
Enzymes have been widely used as efficient, eco-friendly, and biodegradable catalysts in organic chemistry due to their mild reaction conditions and high selectivity and efficiency. In recent years, the catalytic promiscuity of many enzymes in unnatural reactions has been revealed and studied by chemists and biochemists, which has expanded the application potential of enzymes. To enhance the selectivity and activity of enzymes in their natural or promiscuous reactions, many methods have been recommended, such as protein engineering, process engineering, and media engineering. Among them, the additive approach is very attractive because of its simplicity to use and high efficiency. In this paper, we will review the recent developments about the applications of additives to improve the catalytic performances of enzymes in their natural and promiscuous reactions. These additives include water, organic bases, water mimics, cosolvents, crown ethers, salts, surfactants, and some particular molecular additives.
Collapse
Affiliation(s)
- Yi-Ru Liang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xian-Fu Lin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
20
|
|
21
|
Lee E, Oh Y, Choi YK, Kim MJ. Aqueous-Level Turnover Frequency of Lipase in Organic Solvent. ACS Catal 2014. [DOI: 10.1021/cs500832e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Eungyeong Lee
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 790−784, Republic of Korea
| | - Yeonock Oh
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 790−784, Republic of Korea
| | - Yoon Kyung Choi
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 790−784, Republic of Korea
| | - Mahn-Joo Kim
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 790−784, Republic of Korea
| |
Collapse
|
22
|
Lux G, Mansfeld J, Ulbrich-Hofmann R. Phospholipase A(2)-catalyzed acylation of lysophospholipids analyzed by experimental design. Enzyme Microb Technol 2014; 64-65:60-6. [PMID: 25152418 DOI: 10.1016/j.enzmictec.2014.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
The catalytic potential of phospholipase A2 (PLA2) for the synthesis of phospholipids with defined fatty acid structure in the sn-2 position has been underestimated hitherto because of very low conversion in most organic solvents. One of the most suitable solvents for PLA2-catalyzed phospholipid synthesis is glycerol. With the aim to analyze the effect of several interacting reaction parameters on the product yield, we studied the conversion of 1-palmitoyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PC) with oleic acid as model reaction in mixtures of glycerol and methanol or ethanol by methods of experimental design. PLA2 from porcine pancreas (ppPLA2) and from bee venom (bvPLA2) were compared as catalysts. For each of the four systems, nine variables were evaluated using Plackett-Burman designs. The most significant four variables were used for subsequent modified D-optimal designs with 30 runs, yielding regression equations for describing the formation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine as a function of the variables. In both solvent systems ppPLA2 was more appropriate for the acylation reaction than bvPLA2. Methanol proved to be more convenient as co-solvent than ethanol. The catalysis by ppPLA2 was more sensitive toward the variables temperature and concentration of Tris-HCl, whereas the reaction time and enzyme activity were more important in the acylation by bvPLA2. Conversion up to 87 (ppPLA2) and 50% (bvPLA2) can be anticipated.
Collapse
Affiliation(s)
- Gabriele Lux
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Johanna Mansfeld
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany
| | - Renate Ulbrich-Hofmann
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, Germany.
| |
Collapse
|
23
|
Tielmann P, Kierkels H, Zonta A, Ilie A, Reetz MT. Increasing the activity and enantioselectivity of lipases by sol-gel immobilization: further advancements of practical interest. NANOSCALE 2014; 6:6220-8. [PMID: 24676487 DOI: 10.1039/c3nr06317h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The entrapment of lipases in hydrophobic silicate matrices formed by sol-gel mediated hydrolysis of RSi(OCH3)3/Si(OCH3)4 as originally reported in 1996 has been improved over the years by a number of modifications. In the production of second-generation sol-gel lipase immobilizates, a variety of additives during the sol-gel process leads to increased activity and enhanced stereoselectivity in esterifying kinetic resolution. Recent advances in this type of lipase immobilization are reviewed here, in addition to new results regarding the sol-gel entrapment of the lipase from Burkholderia cepacia. It constitutes an excellent heterogeneous biocatalyst in the acylating kinetic resolution of two synthetically and industrially important chiral alcohols, rac-sulcatol and rac-trans-2-methoxycyclohexanol. The observation that the catalyst can be used 10 times in recycling experiments without losing its significant activity or enantioselectivity demonstrates the practical viability of the sol-gel approach.
Collapse
Affiliation(s)
- Patrick Tielmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany.
| | | | | | | | | |
Collapse
|
24
|
Tobis J, Tiller JC. Impact of the configuration of a chiral, activating carrier on the enantioselectivity of entrapped lipase from Candida rugosa in cyclohexane. Biotechnol Lett 2014; 36:1661-7. [DOI: 10.1007/s10529-014-1519-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
25
|
Sharma S, Kanwar SS. Organic solvent tolerant lipases and applications. ScientificWorldJournal 2014; 2014:625258. [PMID: 24672342 PMCID: PMC3929378 DOI: 10.1155/2014/625258] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/31/2013] [Indexed: 11/23/2022] Open
Abstract
Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.
Collapse
Affiliation(s)
- Shivika Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Shamsher S. Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| |
Collapse
|
26
|
Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J. Strategies for Stabilization of Enzymes in Organic Solvents. ACS Catal 2013. [DOI: 10.1021/cs400684x] [Citation(s) in RCA: 415] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Veronika Stepankova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
- Enantis,
Ltd., Palackeho trida
1802/129, 612 00 Brno, Czech Republic
| | - Sarka Bidmanova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tana Koudelakova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Enantis,
Ltd., Palackeho trida
1802/129, 612 00 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and Research Centre
for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
- Enantis,
Ltd., Palackeho trida
1802/129, 612 00 Brno, Czech Republic
| |
Collapse
|
27
|
Akoz E, Akbulut OY, Yilmaz M. Calix[n]arene Carboxylic Acid Derivatives as Regulators of Enzymatic Reactions: Enhanced Enantioselectivity in Lipase-Catalyzed Hydrolysis of (R/S)-Naproxen Methyl Ester. Appl Biochem Biotechnol 2013; 172:509-23. [DOI: 10.1007/s12010-013-0527-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/15/2013] [Indexed: 11/28/2022]
|
28
|
Tahir MN, Cho E, Mischnick P, Lee JY, Yu JH, Jung S. Pentynyl dextran as a support matrix for immobilization of serine protease subtilisin Carlsberg and its use for transesterification of N-acetyl-l-phenylalanine ethyl ester in organic media. Bioprocess Biosyst Eng 2013; 37:687-95. [PMID: 23978850 DOI: 10.1007/s00449-013-1038-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
|
29
|
JIN Q, JIA G, WANG X, LI C. Comparison of the salt-induced activation of Pseudomonas cepacia lipase in organic media by phosphate buffer and sodium sulfate. CHINESE JOURNAL OF CATALYSIS 2013. [DOI: 10.1016/s1872-2067(12)60558-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Schoenfeld I, Dech S, Ryabenky B, Daniel B, Glowacki B, Ladisch R, Tiller JC. Investigations on diffusion limitations of biocatalyzed reactions in amphiphilic polymer conetworks in organic solvents. Biotechnol Bioeng 2013; 110:2333-42. [PMID: 23532873 DOI: 10.1002/bit.24906] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
The use of enzymes as biocatalysts in organic media is an important issue in modern white biotechnology. However, their low activity and stability in those media often limits their full-scale application. Amphiphilic polymer conetworks (APCNs) have been shown to greatly activate entrapped enzymes in organic solvents. Since these nanostructured materials are not porous, the bioactivity of the conetworks is strongly limited by diffusion of substrate and product. The present manuscript describes two different APCNs as nanostructured microparticles, which showed greatly increased activities of entrapped enzymes compared to those of the already activating membranes and larger particles. We demonstrated this on the example of APCN particles based on PHEA-l-PDMS loaded with α-Chymotrypsin, which resulted in an up to 28,000-fold higher activity of the enzyme compared to the enzyme powder. Furthermore, lipase from Rhizomucor miehei entrapped in particles based on PHEA-l-PEtOx was tested in n-heptane, chloroform, and substrate. Specific activities in smaller particles were 10- to 100-fold higher in comparison to the native enzyme. The carrier activity of PHEA-l-PEtOx microparticles was tenfold higher with some 25-50-fold lower enzyme content compared to a commercial product.
Collapse
Affiliation(s)
- Ina Schoenfeld
- Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Strasse 66, Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Kuldamrong W, Husson F, Kermasha S. Biocatalysis with hydroperoxide lyase in extracts fromPenicillium camembertiin neat organic solvent media. BIOCATAL BIOTRANSFOR 2013. [DOI: 10.3109/10242422.2013.776545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Mankova A, Borodin A, Kargovsky A, Brandt N, Luo Q, Sakodynskaya I, Wang K, Zhao H, Chikishev A, Shkurinov A, Zhang XC. Terahertz time-domain and FTIR spectroscopic study of interaction of α-chymotrypsin and protonated tris with 18-crown-6. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2012.12.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Gupta MN, Mukherjee J, Malhotra D. Use of high activity enzyme preparations in neat organic solvents for organic synthesis. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2053-7670-1-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Abstract
Lipases can be efficiently entrapped in the pores of hydrophobic silicates by a simple and cheap sol-gel process in which a mixture of a hydrophobic alkylsilane RSi(OCH3)3 and Si(OCH3)4 is hydrolyzed under basic conditions in the presence of the enzyme. Additives such as isopropanol, polyvinyl alcohol, cyclodextrins, ionic liquids or surfactants enhance the efficiency of this type of lipase-immobilization. The main area of application of these heterogeneous biocatalysts concerns esterification or transesterification in organic solvents, ionic liquids, or supercritical carbon dioxide. Rate enhancements (relative to the traditional use of lipase powders) of several orders of magnitude have been observed, in addition to higher thermal stability. The lipase-immobilizates are particularly useful in the kinetic resolution of chiral esters, enantioselectivity often being higher than what is observed when using the commercial forms of these lipases (powder or classical immobilizates). Thus, due to the low price of sol-gel entrapment, the excellent performance of the lipase-immobilizates, and the ready recyclability, the method is industrially viable.
Collapse
Affiliation(s)
- Manfred T Reetz
- Max-Planck-Institut fur Kohlenforschung, Mulheim an der Ruhr, Germany
| |
Collapse
|
35
|
Effects of stabilizing additives on the activity of alpha-chymotrypsin in organic solvent. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Enhancement of the activity and enantioselectivity of lipase by sol-gel encapsulation immobilization onto β-cyclodextrin-based polymer. Appl Biochem Biotechnol 2012; 166:1927-40. [PMID: 22383051 DOI: 10.1007/s12010-012-9621-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
Candida rugosa lipase was encapsulated within a chemically inert sol-gel support prepared by polycondensation with tetraethoxysilane and octyltriethoxysilane in the presence of β-cyclodextrin-based polymer. The catalytic activity of the encapsulated lipases was evaluated both in the hydrolysis of p-nitrophenylpalmitate and the enantioselective hydrolysis of racemic Naproxen methyl ester. It has been observed that the percent activity yield of the encapsulated lipase was 65 U/g, which is 7.5 times higher than that of the covalently immobilized lipase. The β-cyclodextrin-based encapsulated lipases had higher conversion and enantioselectivity compared with covalently immobilized lipase. The study confirms an excellent enantioselectivity (E >300) for the encapsulated lipase with an enantiomeric excess value of 98% for S-naproxen.
Collapse
|
37
|
Bang JK, Jung SO, Kim YW, Kim MJ. Subtilisin-Catalyzed Transesterifications in the Presence of Iron Oxide Nanoparticles in Organic Solvent: Dramatic Catalytic Improvement. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.8.2871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Catalytic effect of calix[n]arene based sol–gel encapsulated or covalent immobilized lipases on enantioselective hydrolysis of (R/S)-naproxen methyl ester. J INCL PHENOM MACRO 2011. [DOI: 10.1007/s10847-011-9962-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Lee JK, Kim MJ. Ionic liquid co-lyophilized enzyme for biocatalysis in organic solvent: Remarkably enhanced activity and enantioselectivity. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2010.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Shin JS, Kim BG. Kinetic resolution of alpha-methylbenzylamine with omicron-transaminase screened from soil microorganisms: application of a biphasic system to overcome product inhibition. Biotechnol Bioeng 2010; 55:348-58. [PMID: 18636493 DOI: 10.1002/(sici)1097-0290(19970720)55:2<348::aid-bit12>3.0.co;2-d] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two microorganisms showing high omicron-transaminase activity (Klebsiella pneumoniae JS2F and Bacillus thuringiensis JS64) were screened by the enrichment method using (S)-alpha-methylbenzylamine (alpha-MBA) as a sole nitrogen source. Optimal carbon and nitrogen sources for enzyme induction and the properties of omicron-transaminases were investigated. omicron-Transaminase from B. thuringiensis JS64 was highly enantioselective (E = 75.3) for (S)-enantiomer of alpha-MBA and showed remarkable stability. However, omicron-transaminase showed severe product inhibition by acetophenone. An aqueous/organic two-phase system was introduced to overcome this problem. Through solvent screening, cyclohexanone and ethyl acetate were selected as the best organic phases. The acetophenone-extracting capacity of the solvent and the biocompatibility of the solvent to the cell were important determinants in the reaction rate at high concentrations of alpha-MBA. The reaction rate of omicron-transamination was strongly influenced by the volume ratio of organic phase to aqueous phase as well as agitation speed in the biphasic mixture. Using the optimal volume ratio (Vorg:Vaq = 1:4) in the biphasic system with cyclohexanone, the reaction rate of omicron-transaminase under vigorous mixing conditions increased ninefold compared with that in the monophasic aqueous system. At the same optimal conditions, using whole cells, 500 mM alpha-MBA could be resolved successfully to above 95% enantiomeric excess of (R)-alpha-MBA with ca. 51% conversion. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 348-358, 1997.
Collapse
Affiliation(s)
- J S Shin
- Department of Chemical Technology, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
41
|
Moniruzzaman M, Kamiya N, Goto M. Activation and stabilization of enzymes in ionic liquids. Org Biomol Chem 2010; 8:2887-99. [PMID: 20445940 DOI: 10.1039/b926130c] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As environmentally benign "green" solvents, room temperature ionic liquids (ILs) have been used as solvents or (co)solvents in biocatalytic reactions and processes for a decade. The technological utility of enzymes can be enhanced greatly by their use in ionic liquids (ILs) rather than in conventional organic solvents or in their natural aqueous reaction media. In fact, the combination of green properties and unique tailor-made physicochemical properties make ILs excellent non-aqueous solvents for enzymatic catalysis with numerous advantages over other solvents, including high conversion rates, high selectivity, better enzyme stability, as well as better recoverability and recyclability. However, in many cases, particularly in hydrophilic ILs, enzymes show relative instability and/or lower activity compared with conventional solvents. To improve the enzyme activity as well as stability in ILs, various attempts have been made by modifying the form of the enzymes. Examples are enzyme immobilization onto support materials via adsorption or multipoint attachment, lyophilization in the presence of stabilizing agents, chemical modification with stabilizing agents, formation of cross-linked enzyme aggregates, pretreatment with polar organic solvents or enzymes combined with suitable surfactants to form microemulsions. The use of these enzyme preparations in ILs can dramatically increase the solvent tolerance, enhance activity as well as stability, and improve enantioselectivity. This perspective highlights a number of pronounced strategies being used successfully for activation and stabilization of enzymes in non-aqueous ILs media. This review is not intended to be comprehensive, but rather to present a general overview of the potential approaches to activate enzymes for diverse enzymatic processes and biotransformations in ILs.
Collapse
Affiliation(s)
- Muhammad Moniruzzaman
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan
| | | | | |
Collapse
|
42
|
Cianci M, Tomaszewski B, Helliwell JR, Halling PJ. Crystallographic Analysis of Counterion Effects on Subtilisin Enzymatic Action in Acetonitrile. J Am Chem Soc 2010; 132:2293-300. [DOI: 10.1021/ja908703c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michele Cianci
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Building 25a, Notkestrasse 85, 22603 Hamburg, Germany, WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, United Kingdom, and Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Bartlomiej Tomaszewski
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Building 25a, Notkestrasse 85, 22603 Hamburg, Germany, WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, United Kingdom, and Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - John R. Helliwell
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Building 25a, Notkestrasse 85, 22603 Hamburg, Germany, WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, United Kingdom, and Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Peter J. Halling
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Building 25a, Notkestrasse 85, 22603 Hamburg, Germany, WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, United Kingdom, and Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
43
|
Abstract
Calculation of kinetic constants of an enzymatic reaction in organic solvents requires knowledge of the functional active-site concentration in organic solvents, and this can be significantly different than that in water. An experimental method for active-site titration of serine proteases in organic media has been developed based on the kinetics of inhibition by phenylmethanesulfonyl fluoride (PMSF), a serine-specific inhibitor (or suicide substrate). This kinetic approach is fundamentally different from other techniques that require complete titration of all accessible enzyme active sites. This active site titration method was applied to subtilisins BPN' and Carlsberg and alpha-chymotrypsin and resulted in fractions of active sites that ranged from 8 to 62% (of the fraction active in water) depending on the enzyme, the method of enzyme preparation, and the organic solvent used. The active-site concentration of subtilisin BPN' and Carlsberg increased with increasing hydrophobicity of the solvent and with increasing solvent hydration in tetrahydrofuran. The dependence of the fraction of active sites on the nature of the organic solvent appears to be governed largely by solvent-induced inactivation caused by direct interaction of a hydrophilic solvent with the enzyme.
Collapse
Affiliation(s)
- P P Wangikar
- Department of Chemical and Biochemical Engineering, and Center for Biocatalysis and Bioprocessing, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
44
|
Triantafyllou AO, Wehtje E, Adlercreutz P, Mattiasson B. How do additives affect enzyme activity and stability in nonaqueous media? Biotechnol Bioeng 2009; 54:67-76. [PMID: 18634074 DOI: 10.1002/(sici)1097-0290(19970405)54:1<67::aid-bit8>3.0.co;2-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The catalytic activities of lyophilized powders of alpha-chymotrypsin and Candida antarctica lipase were found to increase 4- to 8-fold with increasing amounts of either buffer salts or potassium chloride in the enzyme preparation. Increasing amounts of sorbitol in the chymotrypsin preparation produced a modest increase in activity. The additives are basically thought to serve as immobilization matrices, the sorbitol being inferior because of its poor mechanical properties. Besides their role as supports, the buffer species were indispensable for the transesterification activity of chymotrypsin because they prevented perturbations of the pH during the course of the reaction. Hence, increasing amounts of buffer species yielded a 100-fold increase in transesterification activity. Effects of pH changes were not as predominant in the peptide synthesis and the lipase-catalyzed reactions. Immobilization of the protease on celite resulted in a remarkable improvement of transesterification activity as compared to the suspended protease, even in the absence of buffer species. Immobilization of the lipase caused a small improvement of activity. The activity of the immobilized enzymes was further enhanced 3-4 times by including increasing amounts of buffer salts in the preparation.The inclusion of increasing amounts of sodium phosphate or sorbitol to chymotrypsin rendered the catalyst more labile against thermal inactivation. The denaturation temperature decreased with 7 degrees C at the highest content of sodium phosphate, as compared to the temperature obtained for the denaturation of the pure protein. The apparent enthalpy of denaturation increased with increasing contents of the additives. The enhancement of hydration level and flexibility of the macromolecule upon addition of the compounds partly provides the explanation for the observed results.
Collapse
Affiliation(s)
- A O Triantafyllou
- Department of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, S-22100 Lund, Sweden.
| | | | | | | |
Collapse
|
45
|
Wu JC, Yang JX, Zhang SH, Chow Y, Talukder MMR, Choi WJ. Activity, stability and enantioselectivity of lipase-coated microcrystals of inorganic salts in organic solvents. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420903109020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Yan JY, Yan YJ, Yang JK, Xu L, Liu Y. Combined strategy for preparation of a bioimprinted Geotrichum sp. lipase biocatalyst effective in non-aqueous media. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
|
48
|
Triantafyllou AÖ, Wang D, Wehtje E, Adlercreutz P. Polyacrylamides as Immobilization Supports for use of Hydrolytic Enzymes in Organic Media. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242429709103509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Pirozzi D, Toscano G, Greco G. Effect of Water Diffusion Limitations on the Thermostability of Enzymes in Non-Aqueous Environments. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242429609110281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Xu JH, Zhou R, Bornscheuer UT. Comparison of differently modifiedPseudomonascepacialipases in enantioselective preparation of a chiral alcohol for agrochemical use. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500387342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|