1
|
Paliwal K, Haldar P, Antharjanam PKS, Kumar M. Synthesis, Characterization, DNA/HSA Interaction, and Cytotoxic Activity of a Copper(II) Thiolate Schiff Base Complex and Its Corresponding Water-Soluble Stable Sulfinato-O Complex Containing Imidazole as a Co-ligand. ACS OMEGA 2023; 8:21948-21968. [PMID: 37360467 PMCID: PMC10286277 DOI: 10.1021/acsomega.3c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
A Cu(II) thiolato complex [CuL(imz)] (1) (H2L = o-HOC6H4C(H)=NC6H4SH-o) and the corresponding water-soluble stable sulfinato-O complex [CuL'(imz)] (2) (H2L' = o-HOC6H4C(H)=NC6H4S(=O)OH) were synthesized and characterized using physicochemical techniques. Compound 2 is found to be a dimer in the solid state as characterized using single-crystal X-ray crystallography. XPS studies clearly showed the differences in the sulfur oxidation states in 1 and 2. Both compounds are found to be monomers in solution as revealed from their four-line X-band electron paramagnetic resonance spectra in CH3CN at room temperature (RT). 1-2 were tested to assess their ability to exhibit DNA binding and cleavage activity. Spectroscopic studies and viscosity experiments suggest that 1-2 bind to CT-DNA through the intercalation mode having moderate binding affinity (Kb ∼ 104 M-1). This is further supported by molecular docking studies of complex 2 with CT-DNA. Both complexes display significant oxidative cleavage of pUC19 DNA. Complex 2 also showed hydrolytic DNA cleavage. The interaction of 1-2 with HSA revealed that they have strong ability to quench the intrinsic fluorescence of HSA by a static quenching mechanism (kq ∼ 1013 M-1 s-1). This is further complemented by Förster resonance energy transfer studies that revealed binding distances of r = 2.85 and 2.75 nm for 1 and 2, respectively, indicating high potential for energy transfer from HSA to complex. 1-2 were capable of inducing conformational changes of HSA at secondary and tertiary levels as observed from synchronous and three-dimensional fluorescence spectroscopy. Molecular docking studies with 2 indicate that it forms strong hydrogen bonds with Gln221 and Arg222 located near the entrance of site-I of HSA. 1-2 showed potential toxicity in human cervical cancer HeLa cells, lung cancer A549 cells, and cisplatin-resistant breast cancer MDA-MB-231 cells and appeared to be most potent against HeLa cells (IC50 = 2.04 μM for 1 and 1.86 μM for 2). In HeLa cells, 1-2 mediated cell cycle arrest in S and G2/M phases, which progressed into apoptosis. Apoptotic features seen from Hoechst and AO/PI staining, damaged cytoskeleton actin viewed from phalloidin staining, and increased caspase-3 activity upon treatment with 1-2 collectively suggested that they induced apoptosis in HeLa cells via caspase activation. This is further supported by western blot analysis of the protein sample extracted from HeLa cells treated with 2.
Collapse
Affiliation(s)
- Kumudini Paliwal
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Paramita Haldar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | | | - Manjuri Kumar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| |
Collapse
|
2
|
Puckowska A, Gawel M, Komorowska M, Drozdzal P, Arning A, Pawelski D, Brzezinski K, Plonska-Brzezinska ME. Synthesis and Structural Characterization of Pyridine-2,6-dicarboxamide and Furan-2,5-dicarboxamide Derivatives. Molecules 2022; 27:1819. [PMID: 35335183 PMCID: PMC8948770 DOI: 10.3390/molecules27061819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Derivatives based on pyridine-2-6- and furan-2,5-dicarboxamide scaffolds reveal numerous chemical properties and biological activities. This fact makes them an exciting research topic in supramolecular and coordination chemistry and in discovering new pharmacologically-active compounds. This work aimed to obtain a series of symmetrical pyridine-2-6- and furan-2,5-dicarboxamides through a condensation reaction of the appropriate acyl chlorides and aromatic amides. Successful syntheses were confirmed with NMR spectroscopy. We solved their crystal structures for seven compounds; two pyridine and five furan derivatives. Based on our crystallographic studies, we were able to indicate supramolecular features of the crystals under investigation. Additionally, Hirshfeld surface analysis allowed us to calculate a distribution of intermolecular contacts in the dicarboxamide crystals.
Collapse
Affiliation(s)
- Anna Puckowska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Magdalena Gawel
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland; (M.G.); (M.K.); (P.D.); (A.A.)
| | - Marlena Komorowska
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland; (M.G.); (M.K.); (P.D.); (A.A.)
| | - Pawel Drozdzal
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland; (M.G.); (M.K.); (P.D.); (A.A.)
| | - Aleksandra Arning
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland; (M.G.); (M.K.); (P.D.); (A.A.)
- Faculty of Chemistry, A. Mickiewicz University, Uniwersytetu Poznanskiego 8, 60-780 Poznan, Poland
| | - Damian Pawelski
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Krzysztof Brzezinski
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland; (M.G.); (M.K.); (P.D.); (A.A.)
| | - Marta E. Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| |
Collapse
|
3
|
Yadav V, Siegler MA, Goldberg DP. Temperature-Dependent Reactivity of a Non-heme Fe III(OH)(SR) Complex: Relevance to Isopenicillin N Synthase. J Am Chem Soc 2021; 143:46-52. [PMID: 33356198 DOI: 10.1021/jacs.0c09688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-heme iron complexes with cis-FeIII(OH)(SAr/OAr) coordination were isolated and examined for their reactivity with a tertiary carbon radical. The sulfur-ligated complex shows a temperature dependence on •OH versus ArS• transfer, whereas the oxygen-ligated complex does not. These results provide the first working model for C-S bond formation in isopenicillin N synthase and indicate that kinetic control may be a key factor in the selectivity of non-heme iron "rebound" processes.
Collapse
Affiliation(s)
- Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Prabha D, Pachisia S, Gupta R. Cobalt mediated N-alkylation of amines by alcohols: role of hydrogen bonding pocket. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01374a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cobalt complexes of amide-based pincers provide a H-bonding pocket that binds a reagent in the vicinity of the metal center. These complexes function as catalysts for the N-alkylation of amines using alcohols via a borrowing hydrogen strategy.
Collapse
Affiliation(s)
- Divya Prabha
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | - Sanya Pachisia
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| |
Collapse
|
5
|
Panda C, Sarkar A, Sen Gupta S. Coordination chemistry of carboxamide ‘Nx’ ligands to metal ions for bio-inspired catalysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Sudheer, Kumar V, Kumar P, Gupta R. Detection of Al3+ and Fe3+ ions by nitrobenzoxadiazole bearing pyridine-2,6-dicarboxamide based chemosensors: effect of solvents on detection. NEW J CHEM 2020. [DOI: 10.1039/d0nj00517g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid chemosensors, based on a pyridine-2,6-dicarboxamide fragment while containing a 4-nitrobenzoxadiazole group, are used for the sensing of Al3+ and Fe3+ ions where detection was significantly controlled by the selection of a solvent.
Collapse
Affiliation(s)
- Sudheer
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | - Vijay Kumar
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | - Pramod Kumar
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| |
Collapse
|
7
|
Ballesteros M, Tsui EY. Reactivity of Zinc Thiolate Bonds: Oxidative Organopolysulfide Formation and S3 Insertion. Inorg Chem 2019; 58:10501-10507. [DOI: 10.1021/acs.inorgchem.9b01074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Moises Ballesteros
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Emily Y. Tsui
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Sarkar P, Mukherjee C. A non-innocent pincer H 3L ONS ligand and its corresponding octahedral low-spin Fe(iii) complex formation via ligand-centric homolytic S-S bond scission. Dalton Trans 2018; 47:13337-13341. [PMID: 30207350 DOI: 10.1039/c8dt02763c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the presence of FeCl3 and Et3N, a ligand H4Ldtda(AP) underwent S-S bond cleavage and generated a pincer non-innocent H3LONS ligand, which formed a homoleptic, six-coordinate, low-spin Fe(iii) complex (1). The complex comprised two 2-iminobenzosemiquinone (1-) π-radicals and one thiyl π-radical.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | | |
Collapse
|
9
|
Robles-Marín E, Mondragón A, Martínez-Alanis PR, Aullón G, Flores-Alamo M, Castillo I. Easily reduced bis-pincer ( NS2) 2molybdenum( iv) to ( NHS2) 2Mo( ii) by alcohols vs. redox-inert ( NS2)( NHS2)iron( iii) complexes. Dalton Trans 2018; 47:10932-10940. [DOI: 10.1039/c8dt01562g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Iron and molybdenum complexes supported by a pincer-type dianionic [NS2]2− donor were prepared to compare their structural, spectroscopic, and electrochemical properties.
Collapse
Affiliation(s)
- Elvis Robles-Marín
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- CU
- México DF
| | | | - Paulina R. Martínez-Alanis
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Gabriel Aullón
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Marcos Flores-Alamo
- Facultad de Química
- División de Estudios de Posgrado
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- México DF
| | - Ivan Castillo
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- CU
- México DF
| |
Collapse
|
10
|
Jana M, Majumdar A. C–S Bond Cleavage, Redox Reactions, and Dioxygen Activation by Nonheme Dicobalt(II) Complexes. Inorg Chem 2017; 57:617-632. [DOI: 10.1021/acs.inorgchem.7b02432] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manish Jana
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Amit Majumdar
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
Wu Y, Chang C, Wang C, Hsieh C, Horng Y. C=N Bond Activation and Hydration by an Iron(III) Complex with Asymmetric Sulfur Oxygenation. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yun‐Ru Wu
- Department of Chemistry National Changhua University of Education 50058 Changhua Taiwan
| | - Chia‐Ming Chang
- Department of Chemistry National Changhua University of Education 50058 Changhua Taiwan
| | - Chia‐Chi Wang
- Department of Chemistry National Changhua University of Education 50058 Changhua Taiwan
| | - Chang‐Chih Hsieh
- Department of Chemistry National Changhua University of Education 50058 Changhua Taiwan
| | - Yih‐Chern Horng
- Department of Chemistry National Changhua University of Education 50058 Changhua Taiwan
| |
Collapse
|
12
|
Villar-Acevedo G, Lugo-Mas P, Blakely MN, Rees JA, Ganas AS, Hanada EM, Kaminsky W, Kovacs JA. Metal-Assisted Oxo Atom Addition to an Fe(III) Thiolate. J Am Chem Soc 2016; 139:119-129. [PMID: 28033001 DOI: 10.1021/jacs.6b03512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cysteinate oxygenation is intimately tied to the function of both cysteine dioxygenases (CDOs) and nitrile hydratases (NHases), and yet the mechanisms by which sulfurs are oxidized by these enzymes are unknown, in part because intermediates have yet to be observed. Herein, we report a five-coordinate bis-thiolate ligated Fe(III) complex, [FeIII(S2Me2N3(Pr,Pr))]+ (2), that reacts with oxo atom donors (PhIO, IBX-ester, and H2O2) to afford a rare example of a singly oxygenated sulfenate, [FeIII(η2-SMe2O)(SMe2)N3(Pr,Pr)]+ (5), resembling both a proposed intermediate in the CDO catalytic cycle and the essential NHase Fe-S(O)Cys114 proposed to be intimately involved in nitrile hydrolysis. Comparison of the reactivity of 2 with that of a more electron-rich, crystallographically characterized derivative, [FeIIIS2Me2NMeN2amide(Pr,Pr)]- (8), shows that oxo atom donor reactivity correlates with the metal ion's ability to bind exogenous ligands. Density functional theory calculations suggest that the mechanism of S-oxygenation does not proceed via direct attack at the thiolate sulfurs; the average spin-density on the thiolate sulfurs is approximately the same for 2 and 8, and Mulliken charges on the sulfurs of 8 are roughly twice those of 2, implying that 8 should be more susceptible to sulfur oxidation. Carboxamide-ligated 8 is shown to be unreactive towards oxo atom donors, in contrast to imine-ligated 2. Azide (N3-) is shown to inhibit sulfur oxidation with 2, and a green intermediate is observed, which then slowly converts to sulfenate-ligated 5. This suggests that the mechanism of sulfur oxidation involves initial coordination of the oxo atom donor to the metal ion. Whether the green intermediate is an oxo atom donor adduct, Fe-O═I-Ph, or an Fe(V)═O remains to be determined.
Collapse
Affiliation(s)
- Gloria Villar-Acevedo
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Priscilla Lugo-Mas
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Maike N Blakely
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Julian A Rees
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Abbie S Ganas
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Erin M Hanada
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Werner Kaminsky
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Julie A Kovacs
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
13
|
Hyodo K, Kitagawa S, Yamazaki M, Uchida K. Iron-Catalyzed Dehydration of Aldoximes to Nitriles Requiring Neither Other Reagents Nor Nitrile Media. Chem Asian J 2016; 11:1348-52. [DOI: 10.1002/asia.201600085] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Kengo Hyodo
- Department of Material Chemistry; Faculty of Science and Technology; Ryukoku University; Seta Otsu Shiga 520-2194 Japan
| | - Saki Kitagawa
- Department of Material Chemistry; Faculty of Science and Technology; Ryukoku University; Seta Otsu Shiga 520-2194 Japan
| | - Masayuki Yamazaki
- Department of Material Chemistry; Faculty of Science and Technology; Ryukoku University; Seta Otsu Shiga 520-2194 Japan
| | - Kingo Uchida
- Department of Material Chemistry; Faculty of Science and Technology; Ryukoku University; Seta Otsu Shiga 520-2194 Japan
| |
Collapse
|
14
|
Kumar P, Gupta R. The wonderful world of pyridine-2,6-dicarboxamide based scaffolds. Dalton Trans 2016; 45:18769-18783. [DOI: 10.1039/c6dt03578g] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective focusses on a variety of scaffolds based on a pyridine-2,6-dicarboxamide fragment and their noteworthy roles in coordination chemistry, biomimetic studies, catalysis, and sensing.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
15
|
Synthesis and structural characterisation of amides from picolinic acid and pyridine-2,6-dicarboxylic acid. Sci Rep 2015; 5:9950. [PMID: 25954918 PMCID: PMC4424836 DOI: 10.1038/srep09950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/24/2015] [Indexed: 11/25/2022] Open
Abstract
Coupling picolinic acid (pyridine-2-carboxylic acid) and pyridine-2,6-dicarboxylic acid with N-alkylanilines affords a range of mono- and bis-amides in good to moderate yields. These amides are of interest for potential applications in catalysis, coordination chemistry and molecular devices. The reaction of picolinic acid with thionyl chloride to generate the acid chloride in situ leads not only to the N-alkyl-N-phenylpicolinamides as expected but also the corresponding 4-chloro-N-alkyl-N-phenylpicolinamides in the one pot. The two products are readily separated by column chromatography. Chlorinated products are not observed from the corresponding reactions of pyridine-2,6-dicarboxylic acid. X-Ray crystal structures for six of these compounds are described. These structures reveal a general preference for cis amide geometry in which the aromatic groups (N-phenyl and pyridyl) are cis to each other and the pyridine nitrogen anti to the carbonyl oxygen. Variable temperature 1H NMR experiments provide a window on amide bond isomerisation in solution.
Collapse
|
16
|
Neuba A, Rohrmüller M, Hölscher R, Schmidt WG, Henkel G. A panel of peralkylated sulfur–guanidine type bases: Novel pro-ligands for use in biomimetic coordination chemistry. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Cavell AC, Hartley CL, Liu D, Tribble CS, McNamara WR. Sulfinato Iron(III) Complex for Electrocatalytic Proton Reduction. Inorg Chem 2015; 54:3325-30. [DOI: 10.1021/ic5030394] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrew C. Cavell
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - Carolyn L. Hartley
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - Dan Liu
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - Connor S. Tribble
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - William R. McNamara
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| |
Collapse
|
18
|
Guillet GL, Gordon JB, Di Francesco GN, Calkins MW, Čižmár E, Abboud KA, Meisel MW, García-Serres R, Murray LJ. A Family of Tri- and Dimetallic Pyridine Dicarboxamide Cryptates: Unusual O,N,O-Coordination and Facile Access to Secondary Coordination Sphere Hydrogen Bonding Interactions. Inorg Chem 2015; 54:2691-704. [DOI: 10.1021/ic502873d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gary L. Guillet
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Jesse B. Gordon
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Gianna N. Di Francesco
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Matthew W. Calkins
- Department
of Physics and the National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611-8440, United States
| | - Erik Čižmár
- Institute
of Physics, Faculty of Science, P.J. Šafárik University, 04154 Košice, Slovakia
| | - Khalil A. Abboud
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Mark W. Meisel
- Department
of Physics and the National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611-8440, United States
| | - Ricardo García-Serres
- Laboratoire
de Chimie de Biologie des Métaux, UMR 5249, Université Joseph Fourier, Grenoble-1, CNRS-CEA, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Leslie J. Murray
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
19
|
Zhang LM, Morrison CN, Kaiser JT, Rees DC. Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:274-82. [PMID: 25664737 PMCID: PMC4321486 DOI: 10.1107/s1399004714025243] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/17/2014] [Indexed: 11/11/2022]
Abstract
The X-ray crystal structure of the nitrogenase MoFe protein from Clostridium pasteurianum (Cp1) has been determined at 1.08 Å resolution by multiwavelength anomalous diffraction phasing. Cp1 and the ortholog from Azotobacter vinelandii (Av1) represent two distinct families of nitrogenases, differing primarily by a long insertion in the α-subunit and a deletion in the β-subunit of Cp1 relative to Av1. Comparison of these two MoFe protein structures at atomic resolution reveals conserved structural arrangements that are significant to the function of nitrogenase. The FeMo cofactors defining the active sites of the MoFe protein are essentially identical between the two proteins. The surrounding environment is also highly conserved, suggesting that this structural arrangement is crucial for nitrogen reduction. The P clusters are likewise similar, although the surrounding protein and solvent environment is less conserved relative to that of the FeMo cofactor. The P cluster and FeMo cofactor in Av1 and Cp1 are connected through a conserved water tunnel surrounded by similar secondary-structure elements. The long α-subunit insertion loop occludes the presumed Fe protein docking surface on Cp1 with few contacts to the remainder of the protein. This makes it plausible that this loop is repositioned to open up the Fe protein docking surface for complex formation.
Collapse
Affiliation(s)
- Li-Mei Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christine N. Morrison
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jens T. Kaiser
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
20
|
Das U, Ghorui T, Adhikari B, Roy S, Pramanik S, Pramanik K. Iridium-mediated C–S bond activation and transformation: organoiridium(iii) thioether, thiolato, sulfinato and thiyl radical compounds. Synthesis, mechanistic, spectral, electrochemical and theoretical aspects. Dalton Trans 2015; 44:8625-39. [DOI: 10.1039/c5dt00448a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The iridium-mediated C–S bond scission by an uncommon SET reductive process: exploration of S-centered reactivity of iridium(iii) thiolato complex.
Collapse
Affiliation(s)
- Ujjwal Das
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Tapas Ghorui
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Basab Adhikari
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Sima Roy
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Shuvam Pramanik
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Kausikisankar Pramanik
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata – 700032
- India
| |
Collapse
|
21
|
Synthesis, crystal structures and cytotoxic activity of mononuclear nickel(II) and dinuclear zinc(II) complexes with ligand derived from S-benzyldithiocarbazate. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Farber KM, Haddadin MJ, Kurth MJ. Davis-Beirut reaction: route to thiazolo-, thiazino-, and thiazepino-2H-indazoles. J Org Chem 2014; 79:6939-45. [PMID: 25019525 PMCID: PMC4120971 DOI: 10.1021/jo501014e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Methods for the construction of thiazolo-,
thiazino-, and thiazepino-2H-indazoles from o-nitrobenzaldehydes or o-nitrobenzyl bromides
and S-trityl-protected
1°-aminothioalkanes are reported. The process consists of formation
of the requisite N-(2-nitrobenzyl)(tritylthio)alkylamine,
subsequent deprotection of the trityl moiety with TFA, and immediate
treatment with aq. KOH in methanol under Davis–Beirut reaction
conditions to deliver the target thiazolo-, thiazino-, or thiazepino-2H-indazole in good overall yield. Subsequent S-oxidation gives the corresponding sulfone.
Collapse
Affiliation(s)
- Kelli M Farber
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | | | | |
Collapse
|
23
|
Thallaj NK, Orain PY, Thibon A, Sandroni M, Welter R, Mandon D. Steric Congestion at, and Proximity to, a Ferrous Center Leads to Hydration of α-Nitrile Substituents Forming Coordinated Carboxamides. Inorg Chem 2014; 53:7824-36. [DOI: 10.1021/ic500096h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nasser K. Thallaj
- Laboratoire de Chimie Biomimétique des Métaux de Transition, Institut de Chimie de Strasbourg−UMR 7177, CNRS−Université de Strasbourg, Bâtiment Le Bel, 4 rue Blaise Pascal, CS
90032, F-67081 Strasbourg
Cedex, France
- Faculty of
Applied Sciences, Department of Chemistry, Kalamoon University at Deratiah, P.O.
Box 222, Deratiah, Syria
| | - Pierre-Yves Orain
- Laboratoire de Chimie,
Electrochimie Moléculaires et Chimie Analytique, UMR 6521, CNRS−Université de Bretagne Occidentale, 6 Avenue
Victor Le Gorgeu, CS 93837, F-29238 Brest Cedex 3, France
| | - Aurore Thibon
- Laboratoire de Chimie Biomimétique des Métaux de Transition, Institut de Chimie de Strasbourg−UMR 7177, CNRS−Université de Strasbourg, Bâtiment Le Bel, 4 rue Blaise Pascal, CS
90032, F-67081 Strasbourg
Cedex, France
- Laboratoire CLAC, Institut de Chimie de Strasbourg−UMR 7177, CNRS−Université de Strasbourg, 1 rue
Blaise Pascal, F-67000 Strasbourg Cedex, France
| | - Martina Sandroni
- Laboratoire de Chimie,
Electrochimie Moléculaires et Chimie Analytique, UMR 6521, CNRS−Université de Bretagne Occidentale, 6 Avenue
Victor Le Gorgeu, CS 93837, F-29238 Brest Cedex 3, France
| | - Richard Welter
- Institut
de Biologie Moléculaire des Plantes, UPR CNRS 2357, Université de Strasbourg, F-67084 Strasbourg, France
| | - Dominique Mandon
- Laboratoire de Chimie Biomimétique des Métaux de Transition, Institut de Chimie de Strasbourg−UMR 7177, CNRS−Université de Strasbourg, Bâtiment Le Bel, 4 rue Blaise Pascal, CS
90032, F-67081 Strasbourg
Cedex, France
- Laboratoire de Chimie,
Electrochimie Moléculaires et Chimie Analytique, UMR 6521, CNRS−Université de Bretagne Occidentale, 6 Avenue
Victor Le Gorgeu, CS 93837, F-29238 Brest Cedex 3, France
| |
Collapse
|
24
|
Widger LR, Jiang Y, McQuilken AC, Yang T, Siegler MA, Matsumura H, Moënne-Loccoz P, Kumar D, de Visser SP, Goldberg DP. Thioether-ligated iron(II) and iron(III)-hydroperoxo/alkylperoxo complexes with an H-bond donor in the second coordination sphere. Dalton Trans 2014; 43:7522-32. [PMID: 24705907 PMCID: PMC4319814 DOI: 10.1039/c4dt00281d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The non-heme iron complexes, [Fe(II)(N3PySR)(CH3CN)](BF4)2 () and [Fe(II)(N3Py(amide)SR)](BF4)2 (), afford rare examples of metastable Fe(iii)-OOH and Fe(iii)-OOtBu complexes containing equatorial thioether ligands and a single H-bond donor in the second coordination sphere. These peroxo complexes were characterized by a range of spectroscopic methods and density functional theory studies. The influence of a thioether ligand and of one H-bond donor on the stability and spectroscopic properties of these complexes was investigated.
Collapse
Affiliation(s)
- Leland R Widger
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li Y, Jia Y, Wang Z, Li X, Feng W, Deng P, Yuan L. An insight into the extraction of transition metal ions by picolinamides associated with intramolecular hydrogen bonding and rotational isomerization. RSC Adv 2014. [DOI: 10.1039/c4ra02030h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disruption of intramolecular H-bonding via N-substitution leads to rotational isomerization and much improvement in extraction of Hg2+.
Collapse
Affiliation(s)
- Yan Li
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064, China
| | - Yiming Jia
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064, China
| | - Zhenwen Wang
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064, China
| | - Xianghui Li
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064, China
| | - Wen Feng
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064, China
| | - Pengchi Deng
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064, China
| | - Lihua Yuan
- College of Chemistry
- Key Laboratory for Radiation Physics and Technology of Ministry of Education
- Institute of Nuclear Science and Technology
- Sichuan University
- Chengdu 610064, China
| |
Collapse
|
26
|
Luo YH, Sun BW. Co-crystallization of pyridine-2-carboxamide with a series of alkyl dicarboxylic acids with different carbon chain: crystal structure, spectroscopy and Hirshfeld analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 120:228-236. [PMID: 24184625 DOI: 10.1016/j.saa.2013.09.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/18/2013] [Accepted: 09/29/2013] [Indexed: 06/02/2023]
Abstract
Three new co-crystals: pyridine-2-carboxamide-succinic acid (1), pyridine-2-carboxamide-glutaric acid (2) and pyridine-2-carboxamide-adipic acid (3) have been synthesized and characterized by single-crystal X-ray diffraction, TGA/DSC measurements, solid-state vibrational spectroscopy (IR and Raman) in this work. The investigation revealed that the carbon chain length of these alkyl acids changed the connecting motif of co-crystals 1-3 from trimer to 1D chain, and the formation of hydrogen bond interaction of pyridine-2-carboxamide with these alkyl acids lead to red shift of stretching vibration of NH2 and OH groups in IR and Raman spectra. We also studied Hirshfeld surface and UV properties of co-crystals 1-3, and we found that the carbon chain length lead to decrease of close intermolecular interactions, and the formation of hydrogen bond interaction lead to red shift of UV spectra.
Collapse
Affiliation(s)
- Yang-Hui Luo
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Bai-Wang Sun
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| |
Collapse
|
27
|
Wang D, Lindeman SV, Fiedler AT. Intramolecular Hydrogen Bonding in CuIIComplexes with 2,6-Pyridinedicarboxamide Ligands: Synthesis, Structural Characterization, and Physical Properties. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300579] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Dutta A, Flores M, Roy S, Schmitt JC, Hamilton GA, Hartnett HE, Shearer J, Jones AK. Sequential oxidations of thiolates and the cobalt metallocenter in a synthetic metallopeptide: implications for the biosynthesis of nitrile hydratase. Inorg Chem 2013; 52:5236-45. [PMID: 23587023 PMCID: PMC4046696 DOI: 10.1021/ic400171z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cobalt nitrile hydratases (Co-NHase) contain a catalytic cobalt(III) ion coordinated in an N2S3 first coordination sphere composed of two amidate nitrogens and three cysteine-derived sulfur donors: a thiolate (-SR), a sulfenate (-S(R)O(-)), and a sulfinate (-S(R)O2(-)). The sequence of biosynthetic reactions that leads to the post-translational oxidations of the metal and the sulfur ligands is unknown, but the process is believed to be initiated directly by oxygen. Herein we utilize cobalt bound in an N2S2 first coordination sphere by a seven amino acid peptide known as SODA (ACDLPCG) to model this oxidation process. Upon exposure to oxygen, Co-SODA is oxidized in two steps. In the first fast step (seconds), magnetic susceptibility measurements demonstrated that the metallocenter remains paramagnetic, that is, Co(2+), and sulfur K-edge X-ray absorption spectroscopy (XAS) is used to show that one of the thiolates is oxidized to sulfinate. In a second process on a longer time scale (hours), magnetic susceptibility measurements and Co K-edge XAS show that the metal is oxidized to Co(3+). Unlike other model complexes, additional slow oxidation of the second thiolate in Co-SODA is not observed, and a catalytically active complex is never formed. The likely reason is the absence of the axial thiolate ligand. In essence, the reactivity of Co-SODA can be described as between previously described models which either quickly convert to final product or are stable in air, and it offers a first glimpse into a possible oxidation pathway for nitrile hydratase biosynthesis.
Collapse
Affiliation(s)
- Arnab Dutta
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287
- Center for Bio-Inspired Solar Fuel Production, Arizona State University, Tempe, AZ 85287
| | - Marco Flores
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287
| | - Souvik Roy
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287
- Center for Bio-Inspired Solar Fuel Production, Arizona State University, Tempe, AZ 85287
| | | | | | - Hilairy E. Hartnett
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287
- School of Earth and Space Exploration; Arizona State University, Tempe, AZ 85287
| | - Jason Shearer
- Department of Chemistry, University of Nevada, Reno, Nevada 89557
| | - Anne K. Jones
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287
- Center for Bio-Inspired Solar Fuel Production, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
29
|
The Active Site of Nitrile Hydratase: An Assembly of Unusual Coordination Features by Nature. MOLECULAR DESIGN IN INORGANIC BIOCHEMISTRY 2013. [DOI: 10.1007/430_2012_85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Rajput A, Mukherjee R. Coordination chemistry with pyridine/pyrazine amide ligands. Some noteworthy results. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.03.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Abstract
The S-oxygenation of cysteine with dioxygen to give cysteine sulfinic acid occurs at the non-heme iron active site of cysteine dioxygenase. Similar S-oxygenation events occur in other non-heme iron enzymes, including nitrile hydratase and isopenicillin N synthase, and these enzymes have inspired the development of a class of [N(x)S(y)]-Fe model complexes. Certain members of this class have provided some intriguing examples of S-oxygenation, and this article summarizes these results, focusing on the non-heme iron(II/III)-thiolate model complexes that are known to react with O(2) or other O-atom transfer oxidants to yield sulfur oxygenates. Key aspects of the synthesis, structure, and reactivity of these systems are presented, along with any mechanistic information available on the oxygenation reactions. A number of iron(III)-thiolate complexes react with O(2) to give S-oxygenates, and the degree to which the thiolate sulfur donors are oxidized varies among the different complexes, depending upon the nature of the ligand, metal geometry, and spin state. The first examples of iron(II)-thiolate complexes that react with O(2) to give selective S-oxygenation are just emerging. Mechanistic information on these transformations is limited, with isotope labeling studies providing much of the current mechanistic data. The many questions that remain unanswered for both models and enzymes provide strong motivation for future work in this area.
Collapse
Affiliation(s)
- Alison C. McQuilken
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
32
|
McQuilken AC, Jiang Y, Siegler MA, Goldberg DP. Addition of dioxygen to an N4S(thiolate) iron(II) cysteine dioxygenase model gives a structurally characterized sulfinato-iron(II) complex. J Am Chem Soc 2012; 134:8758-61. [PMID: 22578255 PMCID: PMC3403739 DOI: 10.1021/ja302112y] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The non-heme iron enzyme cysteine dioxygenase (CDO) catalyzes the S-oxygenation of cysteine by O(2) to give cysteine sulfinic acid. The synthesis of a new structural and functional model of the cysteine-bound CDO active site, [Fe(II)(N3PyS)(CH(3)CN)]BF(4) (1) is reported. This complex was prepared with a new facially chelating 4N/1S(thiolate) pentadentate ligand. The reaction of 1 with O(2) resulted in oxygenation of the thiolate donor to afford the doubly oxygenated sulfinate product [Fe(II)(N3PySO(2))(NCS)] (2), which was crystallographically characterized. The thiolate donor provided by the new N3PyS ligand has a dramatic influence on the redox potential and O(2) reactivity of this Fe(II) model complex.
Collapse
Affiliation(s)
- Alison C. McQuilken
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland, 21218, United States
| | - Yunbo Jiang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland, 21218, United States
| | - Maxime A. Siegler
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland, 21218, United States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland, 21218, United States
| |
Collapse
|
33
|
Kumar D, Sastry GN, Goldberg DP, de Visser SP. Mechanism of S-oxygenation by a cysteine dioxygenase model complex. J Phys Chem A 2011; 116:582-91. [PMID: 22091701 DOI: 10.1021/jp208230g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, we present the first computational study on a biomimetic cysteine dioxygenase model complex, [Fe(II)(LN(3)S)](+), in which LN(3)S is a tetradentate ligand with a bis(imino)pyridyl scaffold and a pendant arylthiolate group. The reaction mechanism of sulfur dioxygenation with O(2) was examined by density functional theory (DFT) methods and compared with results obtained for cysteine dioxygenase. The reaction proceeds via multistate reactivity patterns on competing singlet, triplet, and quintet spin state surfaces. The reaction mechanism is analogous to that found for cysteine dioxygenase enzymes (Kumar, D.; Thiel, W.; de Visser, S. P. J. Am. Chem. Soc. 2011, 133, 3869-3882); hence, the computations indicate that this complex can closely mimic the enzymatic process. The catalytic mechanism starts from an iron(III)-superoxo complex and the attack of the terminal oxygen atom of the superoxo group on the sulfur atom of the ligand. Subsequently, the dioxygen bond breaks to form an iron(IV)-oxo complex with a bound sulfenato group. After reorganization, the second oxygen atom is transferred to the substrate to give a sulfinic acid product. An alternative mechanism involving the direct attack of dioxygen on the sulfur, without involving any iron-oxygen intermediates, was also examined. Importantly, a significant energetic preference for dioxygen coordinating to the iron center prior to attack at sulfur was discovered and serves to elucidate the function of the metal ion in the reaction process. The computational results are in good agreement with experimental observations, and the differences and similarities of the biomimetic complex and the enzymatic cysteine dioxygenase center are highlighted.
Collapse
Affiliation(s)
- Devesh Kumar
- Molecular Modelling Group, Indian Institute of Chemical Technology, Hyderabad 500-607, India.
| | | | | | | |
Collapse
|
34
|
Tamura M, Tsuge K, Igashira-Kamiyama A, Konno T. Bis(bipyridine)ruthenium(II) Complexes with an Aliphatic Sulfinato Donor: Synthesis, Characterization, and Properties. Inorg Chem 2011; 50:4764-71. [DOI: 10.1021/ic102319p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Motoshi Tamura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kiyoshi Tsuge
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Asako Igashira-Kamiyama
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
35
|
Macíčková-Cahová H, Pohl R, Horáková P, Havran L, Špaček J, Fojta M, Hocek M. Alkylsulfanylphenyl derivatives of cytosine and 7-deazaadenine nucleosides, nucleotides and nucleoside triphosphates: synthesis, polymerase incorporation to DNA and electrochemical study. Chemistry 2011; 17:5833-41. [PMID: 21472803 DOI: 10.1002/chem.201003496] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Indexed: 01/19/2023]
Abstract
Aqueous Suzuki-Miyaura cross-coupling reactions of halogenated nucleosides, nucleotides and nucleoside triphosphates derived from 5-iodocytosine and 7-iodo-7-deazaadenine with methyl-, benzyl- and tritylsufanylphenylboronic acids gave the corresponding alkylsulfanylphenyl derivatives of nucleosides and nucleotides. The modified nucleoside triphosphates were incorporated into DNA by primer extension by using Vent(exo-) polymerase. The electrochemical behaviour of the alkylsulfanylphenyl nucleosides indicated formation of compact layers on the electrode. Modified nucleotides and DNA with incorporated benzyl- or tritylsulfanylphenyl moieties produced signals in [Co(NH(3))(6)](3+) ammonium buffer, attributed to the Brdička catalytic response, depending on the negative potential applied. Repeated constant current chronopotentiometric scans in this medium showed increased Brdička catalytic response, which suggests the deprotection of the alkylsulfanyl derivatives to free thiols under the conditions.
Collapse
Affiliation(s)
- Hana Macíčková-Cahová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
36
|
Swartz RD, Coggins MK, Kaminsky W, Kovacs JA. Nitrile hydration by thiolate- and alkoxide-ligated Co-NHase analogues. Isolation of Co(III)-amidate and Co(III)-iminol intermediates. J Am Chem Soc 2011; 133:3954-63. [PMID: 21351789 DOI: 10.1021/ja108749f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrile hydratases (NHases) are thiolate-ligated Fe(III)- or Co(III)-containing enzymes, which convert nitriles to the corresponding amide under mild conditions. Proposed NHase mechanisms involve M(III)-NCR, M(III)-OH, M(III)-iminol, and M(III)-amide intermediates. There have been no reported crystallographically characterized examples of these key intermediates. Spectroscopic and kinetic data support the involvement of a M(III)-NCR intermediate. A H-bonding network facilitates this enzymatic reaction. Herein we describe two biomimetic Co(III)-NHase analogues that hydrate MeCN, and four crystallographically characterized NHase intermediate analogues, [Co(III)(S(Me2)N(4)(tren))(MeCN)](2+) (1), [Co(III)(S(Me2)N(4)(tren))(OH)](+) (3), [Co(III)(S(Me2)N(4)(tren))(NHC(O)CH(3))](+) (2), and [Co(III)(O(Me2)N(4)(tren))(NHC(OH)CH(3))](2+) (5). Iminol-bound 5 represents the first example of a Co(III)-iminol compound in any ligand environment. Kinetic parameters (k(1)(298 K) = 2.98(5) M(-1) s(-1), ΔH(‡) = 12.65(3) kcal/mol, ΔS(‡) = -14(7) e.u.) for nitrile hydration by 1 are reported, and the activation energy E(a) = 13.2 kcal/mol is compared with that (E(a) = 5.5 kcal/mol) of the NHase enzyme. A mechanism involving initial exchange of the bound MeCN for OH- is ruled out by the fact that nitrile exchange from 1 (k(ex)(300 K) = 7.3(1) × 10(-3) s(-1)) is 2 orders of magnitude slower than nitrile hydration, and that hydroxide bound 3 does not promote nitrile hydration. Reactivity of an analogue that incorporates an alkoxide as a mimic of the highly conserved NHase serine residue shows that this moiety facilitates nitrile hydration under milder conditions. Hydrogen-bonding to the alkoxide stabilizes a Co(III)-iminol intermediate. Comparison of the thiolate versus alkoxide intermediate structures shows that C≡N bond activation and C═O bond formation proceed further along the reaction coordinate when a thiolate is incorporated into the coordination sphere.
Collapse
Affiliation(s)
- Rodney D Swartz
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | | | | | | |
Collapse
|
37
|
Saha R, Biswas S, Steele IM, Dey K, Mostafa G. A supramolecular spin crossover Fe(III) complex and its Cr(III) isomer: stabilization of water-chloride cluster within supramolecular host. Dalton Trans 2011; 40:3166-75. [PMID: 21340091 DOI: 10.1039/c0dt01256d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metal complexes, [M(Hdammthiol)(2)]Cl·3H(2)O [M = Cr(III) (1), Fe(III) (2)] [where H(2)dammthiol is the thiol form of the ligand, diacetylmonoxime morpholine N-thiohydrazone] were synthesized by metal template reactions of diacetylemonoxime with morpholine N-thiohydrazide in the presence of CrCl(3)·6H(2)O and FeCl(3)·6H(2)O. Both the complexes (1 and 2) were characterized by single crystal X-ray crystallography, spectroscopic (IR and UV-vis), Mössbauer and TGA analyses. The single crystal X-ray studies of both complexes show that the supramolecular hosts, constructed by the discrete mononuclear complexes, form supramolecular channels along the c-axis which are filled up by water-chloride clusters. In both complexes, the 1D water-chloride chain with chair-like architecture within the supramolecular hosts presents novelty. The magnetic measurement study of Fe(III) complex shows a spin crossover from S = 1/2 at 2.5 K to S = 5/2 at 300 K. At very low temperature, the presence of strong cooperative hydrogen bonding interactions stabilizes the S = 1/2 state.
Collapse
Affiliation(s)
- Rajat Saha
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, India
| | | | | | | | | |
Collapse
|
38
|
Badiei YM, Siegler MA, Goldberg DP. O2 activation by bis(imino)pyridine iron(II)-thiolate complexes. J Am Chem Soc 2011; 133:1274-7. [PMID: 21207980 DOI: 10.1021/ja109923a] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The new iron(II)-thiolate complexes [((iPr)BIP)Fe(II)(SPh)(Cl)] (1) and [((iPr)BIP)Fe(II)(SPh)(OTf)] (2) [BIP = bis(imino)pyridine] were prepared as models for cysteine dioxygenase (CDO), which converts Cys to Cys-SO(2)H at a (His)(3)Fe(II) center. Reaction of 1 and 2 with O(2) leads to Fe-oxygenation and S-oxygenation, respectively. For 1 + O(2), the spectroscopic and reactivity data, including (18)O isotope studies, are consistent with an assignment of an iron(IV)-oxo complex, [((iPr)BIP)Fe(IV)(O)(Cl)](+) (3), as the product of oxygenation. In contrast, 2 + O(2) results in direct S-oxygenation to give a sulfonato product, PhSO(3)(-). The positioning of the thiolate ligand in 1 versus 2 appears to play a critical role in determining the outcome of O(2) activation. The thiolate ligands in 1 and 2 are essential for O(2) reactivity and exhibit an important influence over the Fe(III)/Fe(II) redox potential.
Collapse
Affiliation(s)
- Yosra M Badiei
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21212, United States
| | | | | |
Collapse
|
39
|
Pandey S, Das PP, Singh AK, Mukherjee R. Cobalt(ii), nickel(ii) and copper(ii) complexes of a hexadentate pyridine amide ligand. Effect of donor atom (ether vs. thioether) on coordination geometry, spin-state of cobalt and MIII–MII redox potential. Dalton Trans 2011; 40:10758-68. [DOI: 10.1039/c1dt10661a] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Jiang Y, Widger LR, Kasper GD, Siegler MA, Goldberg DP. Iron(II)-thiolate S-oxygenation by O2: synthetic models of cysteine dioxygenase. J Am Chem Soc 2010; 132:12214-5. [PMID: 20712312 DOI: 10.1021/ja105591q] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of structural and functional models of the active site of the nonheme iron enzyme cysteine dioxygenase (CDO) is reported. A bis(imino)pyridine ligand scaffold was employed to synthesize a mononuclear ferrous complex, Fe(II)(LN(3)S)(OTf) (1), which contains three neutral nitrogen donors and one anionic thiolato donor. Complex 1 is a good structural model of the Cys-bound active site of CDO. Reaction of 1 with O(2) results in oxygenation of the thiolato sulfur, affording the sulfonato complex Fe(II)(LN(3)SO(3))(OTf) (2) under mild conditions. Isotope labeling studies show that O(2) is the sole source of O atoms in the product and that the reaction proceeds via a dioxygenase-type mechanism for two out of three O atoms added, analogous to the dioxygenase reaction of CDO. The zinc(II) analog, Zn(LN(3)S)(OTf) (4), was prepared and found to be completely unreactive toward O(2), suggesting a critical role for Fe(II) in the oxygenation chemistry observed for 1. To our knowledge, S-oxygenation mediated by an Fe(II)-SR complex and O(2) is unprecedented.
Collapse
Affiliation(s)
- Yunbo Jiang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21212, USA
| | | | | | | | | |
Collapse
|
41
|
McDonald AR, Bukowski MR, Farquhar ER, Jackson TA, Koehntop KD, Seo MS, De Hont RF, Stubna A, Halfen JA, Münck E, Nam W, Que L. Sulfur versus iron oxidation in an iron-thiolate model complex. J Am Chem Soc 2010; 132:17118-29. [PMID: 21070030 DOI: 10.1021/ja1045428] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the absence of base, the reaction of [Fe(II)(TMCS)]PF6 (1, TMCS = 1-(2-mercaptoethyl)-4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecane) with peracid in methanol at -20 °C did not yield the oxoiron(IV) complex (2, [Fe(IV)(O)(TMCS)]PF6), as previously observed in the presence of strong base (KO(t)Bu). Instead, the addition of 1 equiv of peracid resulted in 50% consumption of 1. The addition of a second equivalent of peracid resulted in the complete consumption of 1 and the formation of a new species 3, as monitored by UV-vis, ESI-MS, and Mössbauer spectroscopies. ESI-MS showed 3 to be formulated as [Fe(II)(TMCS) + 2O](+), while EXAFS analysis suggested that 3 was an O-bound iron(II)-sulfinate complex (Fe-O = 1.95 Å, Fe-S = 3.26 Å). The addition of a third equivalent of peracid resulted in the formation of yet another compound, 4, which showed electronic absorption properties typical of an oxoiron(IV) species. Mössbauer spectroscopy confirmed 4 to be a novel iron(IV) compound, different from 2, and EXAFS (Fe═O = 1.64 Å) and resonance Raman (ν(Fe═O) = 831 cm(-1)) showed that indeed an oxoiron(IV) unit had been generated in 4. Furthermore, both infrared and Raman spectroscopy gave indications that 4 contains a metal-bound sulfinate moiety (ν(s)(SO2) ≈ 1000 cm (-1), ν(as)(SO2) ≈ 1150 cm (-1)). Investigations into the reactivity of 1 and 2 toward H(+) and oxygen atom transfer reagents have led to a mechanism for sulfur oxidation in which 2 could form even in the absence of base but is rapidly protonated to yield an oxoiron(IV) species with an uncoordinated thiol moiety that acts as both oxidant and substrate in the conversion of 2 to 3.
Collapse
Affiliation(s)
- Aidan R McDonald
- Department of Chemistry and Center for Metals in Biocatalysis, 207 Pleasant Street SE, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Masitas CA, Kumar M, Mashuta MS, Kozlowski PM, Grapperhaus CA. Controlled sulfur oxygenation of the ruthenium dithiolate (4,7-bis-(2'-methyl-2'-mercaptopropyl)-1-thia-4,7-diazacyclononane)RuPPh(3) under limiting O(2) conditions yields thiolato/sulfinato, sulfenato/sulfinato, and bis-sulfinato derivatives. Inorg Chem 2010; 49:10875-81. [PMID: 20973591 DOI: 10.1021/ic101221z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ruthenium(II) dithiolate complex (bmmp-TASN)RuPPh(3) (1) reacts with O(2) under limiting conditions to yield isolable sulfur oxygenated derivatives as a function of reaction time. With this approach, a family of sulfur-oxygenates has been prepared and isolated without the need for O-atom transfer agents or column chromatography. Addition of 5 equiv of O(2) to 1 yields the thiolato/sulfinato complex (bmmp-O(2)-TASN)RuPPh(3) (2) in 70% yield within 5 min. Increasing the reaction time to 12 h yields the sulfenato/sulfinato derivative (bmmp-O(3)-TASN)RuPPh(3) (3) in 82% yield. Longer reaction times and/or additional O(2) exposure yield the bis-sulfinato complex (bmmp-O(4)-TASN)RuPPh(3) (4). All products remain in the Ru(II) oxidation state under the conditions employed. Stoichiometric hydrolysis of acetonitrile to acetamide by 2 and 3 is observed in mixed acetonitrile, methanol, PIPES buffer (pH = 7.0) mixtures. The Ru(III)/(II) reduction potential of -0.85 V (versus ferrocenium/ferrocene) for 1 shifts to -0.39 and -0.26 V for 2 and 3, respectively, because of the decreased donor ability of sulfur upon oxygenation. X-ray diffraction studies reveal a decrease in Ru-S bond distances upon oxygenation by 0.045(1) and 0.158(1) Å for the sulfenato and sulfinato donors, respectively. Conversely, sulfur-oxygenation increases the Ru-P bond distance by 0.061(1) Å from 1 to 2 and an additional 0.027(1) Å from 2 to 3. Density functional theory investigations using the BP86 and B3LYP functionals with a LANL2DZ basis set for Ru and the 6-31G(d) basis set for all other atoms reveal a direct correlation between the oxygenation level and the Ru-P distance with an increase of 0.031 Å per O-atom.
Collapse
Affiliation(s)
- César A Masitas
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | | | | | | | | |
Collapse
|
43
|
Knapp SMM, Zakharov LN, Tyler DR. 2,2′-(Propane-2,2-diyl)dibenzothiazole. Acta Crystallogr Sect E Struct Rep Online 2010; 66:o2520. [PMID: 21587514 PMCID: PMC2983330 DOI: 10.1107/s1600536810035488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/02/2010] [Indexed: 11/11/2022]
Abstract
The two symmetry-independent molecules in the asymmetric unit of the title compound, C17H14N2S2, have similar geometry; the dihedral angles between the least-squares planes of the benzothiazole groups in the two molecules are 83.93 (3) and 81.26 (3)°.
Collapse
|
44
|
Sharma AK, Biswas S, Barman SK, Mukherjee R. Azo-containing pyridine amide ligand. A six-coordinate nickel(II) complex and its one-electron oxidized species: Structure and properties. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2010.03.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Nebe T, Xu JY, Beitat A, Würtele C, Walter O, Serafin M, Schindler S. Iron and cobalt complexes with the ligand (2-aminoethyl)bis(2-pyridylmethyl)amine (uns-penp) and derivatives. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2010.04.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Kapoor P, Pal Singh Pannu A, Sharma M, Singh Hundal M, Kapoor R. Syntheses and X-ray crystal structures of five- and six-coordinate copper(II) complexes of N,N,N′,N′-tetraalkylpyridine-2,6-dicarboxamides containing–OClO3 and–OSO2CF3 counter ions. J COORD CHEM 2010. [DOI: 10.1080/00958972.2010.517267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Pratibha Kapoor
- a Department of Chemistry , Panjab University , Chandigarh 160 014, India
| | | | - Mukesh Sharma
- a Department of Chemistry , Panjab University , Chandigarh 160 014, India
| | | | - Ramesh Kapoor
- c Indian Institute of Science Education and Research Mohali , Chandigarh 160 019, India
| |
Collapse
|
47
|
Rose MJ, Betterley NM, Oliver AG, Mascharak PK. Binding of Nitric Oxide to a Synthetic Model of Iron-Containing Nitrile Hydratase (Fe-NHase) and Its Photorelease: Relevance to Photoregulation of Fe-NHase by NO. Inorg Chem 2010; 49:1854-64. [DOI: 10.1021/ic902220a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Michael J. Rose
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Nolan M. Betterley
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| |
Collapse
|
48
|
Das P, Sarmah PP, Borah M, Phukan AK. Low-spin, mononuclear, Fe(III) complexes with P,N donor hemilabile ligands: A combined experimental and theoretical study. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2009.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Leigh DA, Lusby PJ, McBurney RT, Morelli A, Slawin AMZ, Thomson AR, Walker DB. Getting harder: cobalt(III)-template synthesis of catenanes and rotaxanes. J Am Chem Soc 2009; 131:3762-71. [PMID: 19275264 DOI: 10.1021/ja809627j] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of catenanes and rotaxanes using the hard trivalent transition metal ion cobalt(III) as a template is reported. Tridentate dianionic pyridine-2,6-dicarboxamido ligands, each with two terminal alkene groups, coordinate Co(III) in a mutually orthogonal arrangement such that entwined or interlocked molecular architectures are produced by ring-closing olefin metathesis. Double macrocyclization of two such ligands bound to Co(III) afford a non-interlocked "figure-of-eight" complex in 42% yield, the structure determined by X-ray crystallography. Preforming one macrocycle and carrying out a single macrocyclization of the second bis-olefin with both ligands attached to the Co(III) template led to the isomeric [2]catenate in 69% yield. The mechanically interlocked structure was confirmed by X-ray crystallography of both the Co(III) catenate and the metal-free catenand. A Co(III)-template [2]rotaxane was assembled in 61% yield by macrocyclization of the bis-olefin ligand about an appropriate dianionic thread. For both catenanes and rotaxanes, removal of the metal ion via reduction under acidic conditions to the more labile Co(II) gave neutral interlocked molecules with well-defined co-conformations stabilized by intercomponent hydrogen bonding.
Collapse
Affiliation(s)
- David A Leigh
- School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
50
|
Rose MJ, Betterley NM, Mascharak PK. Thiolate S-Oxygenation Controls Nitric Oxide (NO) Photolability of a Synthetic Iron Nitrile Hydratase (Fe-NHase) Model Derived from Mixed Carboxamide/Thiolate Ligand. J Am Chem Soc 2009; 131:8340-1. [DOI: 10.1021/ja9004656] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael J. Rose
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 96064
| | - Nolan M. Betterley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 96064
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 96064
| |
Collapse
|